1
|
Ni JR, Zhang QH, Deng JL, Wang HH, Duan YC, Zhang CJ, Jiang LT. Promotion Effect of Catalpol on Angiogenesis and Potential Mechanisms: A Research Based on Network Pharmacology. Chem Biol Drug Des 2024; 104:e14602. [PMID: 39134897 DOI: 10.1111/cbdd.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/18/2024]
Abstract
Catalpol, a natural iridoid glycoside, has potential therapeutic benefits, including anti-inflammatory and neuroprotective effects. Investigating catalpol's role in angiogenesis is critical for understanding its potential therapeutic applications, particularly in diseases where modulating angiogenesis is beneficial. This study investigates catalpol's influence on angiogenesis and its mechanisms, combining network pharmacology and in vitro experiments. The target genes corresponding to the catalpol were analyzed by SwissTargetPrediction. Then angiogenesis-related targets were acquired from databases like GeneCards. Subsequently, the Database for Annotation, Visualization and Integrated Discovery was employed for Gene Ontology and pathway analysis, while Cytoscape visualized protein interactions. The effect of catalpol on viability and angiogenesis of HUVECs was further examined using Cell Counting Kit-8 and angiogenesis assays. RT-qPCR and western blot were applied to check the expression of angiogenesis-related proteins. Totally, 312 target genes of catalpol and 823 angiogenesis-related targets were obtained with 56 common targets leading to PPI network analysis, highlighting hub genes (AKT1, EGFR, STAT3, MAPK3, and CASP3). These hub genes were mainly enriched in lipid and atherosclerosis pathway and EGFR-related pathway. The in vitro experimental results showed that catalpol achieved a concentration-dependent increase in HUVECs viability. Catalpol also promoted the migration and angiogenesis of HUVECs and up-regulated the expression of EGFR. EGFR knockdown inhibited the effect of catalpol on HUVECs. Catalpol promotes angiogenesis in HUVECs by upregulating EGFR and angiogenesis-related proteins, indicating its potential therapeutic application in vascular-related diseases.
Collapse
Affiliation(s)
- Jin-Rong Ni
- Department of Orthopedics, Jiangsu Province (Suqian) Hospital, Suqian, China
| | - Qun-Hu Zhang
- Department of Orthopedics, Jiangsu Province (Suqian) Hospital, Suqian, China
| | - Jie-Lin Deng
- Department of Orthopedics, Jiangsu Province (Suqian) Hospital, Suqian, China
| | - Hai-Hu Wang
- Department of Orthopedics, Jiangsu Province (Suqian) Hospital, Suqian, China
| | - Yong-Chi Duan
- Department of Orthopedics, Jiangsu Province (Suqian) Hospital, Suqian, China
| | - Cheng-Ji Zhang
- Department of Orthopedics, Jiangsu Province (Suqian) Hospital, Suqian, China
| | - Lue-Tao Jiang
- Department of Orthopedics, Jiangsu Province (Suqian) Hospital, Suqian, China
| |
Collapse
|
2
|
Shi Q, He J, Chen G, Xu J, Zeng Z, Zhao X, Zhao B, Gao X, Ye Z, Xiao M, Li H. The chemical composition of Diwu YangGan capsule and its potential inhibitory roles on hepatocellular carcinoma by microarray-based transcriptomics. J Tradit Complement Med 2024; 14:381-390. [PMID: 39035694 PMCID: PMC11259662 DOI: 10.1016/j.jtcme.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 07/23/2024] Open
Abstract
The Traditional Chinese Medicine compound preparation known as Diwu Yanggan capsule (DWYG) can effectively hinder the onset and progression of hepatocellular carcinoma (HCC), which is recognized worldwide as a significant contributor to fatalities associated with cancer. Nevertheless, the precise mechanisms implicated have remained ambiguous. In present study, the model of HCC was set up by the 2-acetylaminofluorene (2-AAF)/partial hepatectomy (PH) in rats. To confirm the differentially expressed genes (DEGs) identified in the microarray analysis, real-time quantitative reverse transcription PCR (qRT-PCR) was conducted. In the meantime, the liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS) was employed to characterize the component profile of DWYG. Consequently, the DWYG treatment exhibited the ability to reverse 51 variation genes induced by 2-AAF/PH. Additionally, there was an overlap of 54 variation genes between the normal and model groups. Upon conducting RT-qPCR analysis, it was observed that the expression levels of all genes were increased by 2-AAF/PH and subsequently reversed after DWYG treatment. Notably, the fold change of expression levels for all genes was below 0.5, with 3 genes falling below 0.25. Moreover, an investigation was conducted to determine the signaling pathway that was activated/inhibited in the HCC group and subsequently reversed in the DWYG group. Moreover, the component profile of DWYG encompassed a comprehensive compilation of 206 compounds that were identified or characterized. The findings of this study elucidated the potential alleviative mechanisms of DWYG in the context of HCC, thereby holding significant implications for its future clinical utilization and widespread adoption.
Collapse
Affiliation(s)
- Qingxin Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jiangcheng He
- Wuhan Integrated Traditional Chinese and Western Medicine Orthopedic Hospital, Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Guangya Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xueyan Zhao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Binbin Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiang Gao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Zhihua Ye
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Mingzhong Xiao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Hanmin Li
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
3
|
Ndongwe T, Witika BA, Mncwangi NP, Poka MS, Skosana PP, Demana PH, Summers B, Siwe-Noundou X. Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970-2022. Cancers (Basel) 2023; 15:770. [PMID: 36765728 PMCID: PMC9913650 DOI: 10.3390/cancers15030770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The rise of cancer cases has coincided with the urgent need for the development of potent chemical entities and/or modification of existing commodities to improve their efficacy. Increasing evidence suggests that cancer remains one of the leading causes of death globally, with colon cancer cases alone likely to rise exponentially by 2030. The exponential rise in cancer prevalence is largely attributable to the growing change toward a sedentary lifestyle and modern diets, which include genetically modified foods. At present, the prominent treatments for cancer are chemotherapy, surgery, and radiation. Despite slowing cancer progression, these treatments are known to have devastating side effects that may deteriorate the health of the patient, thus, have a low risk-benefit ratio. In addition, many cancer drugs have low bioavailability, thereby limiting their therapeutic effects in cancer patients. Moreover, the drastic rise in the resistance of neoplastic cells to chemotherapeutic agents is rendering the use of some drugs ineffective, thereby signaling the need for more anticancer chemical entities. As a result, the use of natural derivatives as anticancer agents is gaining considerable attention. Iridoids have the potential to form conjugates with other anticancer, antidiabetic, antileishmanial, and antimalarial drugs, which synergistically have the potential to increase their effects. Published studies have identified the role of iridoids, which, if fully explored, may result in cheaper and less toxic alternative/adjuvant cancer drugs. The subject of this article is natural and synthetic iridoid derivatives and their potential therapeutic roles as anticancer agents.
Collapse
Affiliation(s)
- Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Nontobeko P. Mncwangi
- Department of Pharmacy Practice, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Madan S. Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Phumzile P. Skosana
- Department of Clinical Pharmacy, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Patrick H. Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Beverley Summers
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| |
Collapse
|
4
|
Liu J, Du J, Li Y, Wang F, Song D, Lin J, Li B, Li L. Catalpol induces apoptosis in breast cancer in vitro and in vivo: Involvement of mitochondria apoptosis pathway and post-translational modifications. Toxicol Appl Pharmacol 2022; 454:116215. [PMID: 36067808 DOI: 10.1016/j.taap.2022.116215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Breast cancer is a fatal cancer with the highest mortality in female. New strategies for anti-breast cancer are still urgently needed. Catalpol, an iridoid glycoside extracted from the traditional Chinese medicinal plant Rehmannia glutinosa, has shown anticancer efficacy in various cancer cells. However, its effect on breast cancer remains unclear. In this study, we aim to investigate the anti-breast cancer activity of catalpol and elucidate its underlying mechanism. Cell counting kit-8 (CCK-8) and morphology change showed that catalpol could inhibit the proliferation and viability of MCF-7 cells. Catalpol administration reduced the tumor volume in xenograft model. Catalpol induced apoptosis in MCF-7 cells confirmed by Hoechst 33342 staining and Annexin V-FITC/PI double staining. In vivo, catalpol also induced apoptosis as seen from the increased level of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) in tumor. According to JC-1 and Dichlorodi-hydrofluorescein Diacetate (DCFH-DA) staining, loss of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation was found in MCF-7 cells treated with catalpol. Furthermore, catalpol also increased the level of cytoplasmic cytochrome c and activity of caspase-3 in MCF-7 cells. Likewise, histopathological and immunohistochemical (IHC) assay also found that catalpol enhanced the levels of cytochrome c and caspase-3 in breast cancer tissues. Ultimately, acetylation, 2-hydroxyisobutyrylation and lactylation were dramatically increased, whereas succinylation, malonylation and phosphorylation were markedly decreased in the breast cancer tumor treated with catalpol. Taken together, catalpol inhibited breast cancer in vitro and in vivo through induction of apoptosis via mitochondria apoptosis pathway and regulation of protein post-translational modifications (PTMs). Thus, it can be considered as an excellent candidate compound for treatment of breast cancer.
Collapse
Affiliation(s)
- Jierong Liu
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Jikun Du
- Central Research Laboratory, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, The Second People's Hospital of Bao'an Shenzhen (Group) Shenzhen, China
| | - Yuanhua Li
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Daibo Song
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China; Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jiantao Lin
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baohong Li
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Department of Pharmacology, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
5
|
Wang H, Wu J, Fan H, Ji Y, Han C, Li C, Jiang S. The Impact of Catalpol on Proliferation, Apoptosis, Migration, and Oxidative Stress of Lung Cancer Cells Based on Nrf2/ARE Signaling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5621341. [PMID: 35898682 PMCID: PMC9313965 DOI: 10.1155/2022/5621341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
The effects of catalpol on lung cancer cell proliferation, apoptosis, migration, and oxidative stress via the Nrf2/ARE signaling pathway are investigated in this work. Catalpol-12 g/mL group, catalpol-24 g/mL group, catalpol-48 g/mL group, catalpol - 48 g/mL + vector group, catalpol - 48 g/mL + Nrf2 group, si-NC group, and si-Nrf2 group were used to split lung cancer cells A549 into control groups. Proliferation was detected using the CCK-8 assay; apoptosis was detected using flow cytometry; migration was detected using the transwell chamber; ROS was distinguished using the DCFHDA method; MDA, SOD, and GSH were detected using the microvolume method; and Cleaved Caspase-3, Cleaved Caspase-9, Nrf2, HO-1, MMP-9, and MMP-2 were detected using the Western blot method. Catalpol 12 g/mL and 24 g/mL-48 g/mL treatment decreased the proliferation activity, migration number, and Nrf2, HO-1, MMP-9, and MMP-2 protein levels of lung cancer cells when compared to the control group. SOD and GSH levels of lung cancer cells were decreased, and MDA and ROS levels were increased. Cleaved caspase-3, cleaved caspase-9 protein expression levels, and apoptosis were boosted (P < 0.05). The proliferation activity, migration number, and protein levels of Nrf2, HO-1, MMP-9, and MMP-2 in the catalpol - 48 g/mL + Nrf2 group were raised compared to the catalpol - 48 g/mL + vector group, whereas there was an apparent drop in the Cleaved Caspase-3, Cleaved Caspase-9, and apoptosis rate. Similarly, SOD and GSH contents increased, whereas MDA and ROS decreased (P < 0.05). The proliferation activity, migration number, and Nrf2, HO-1, MMP-9, and MMP-2 protein levels of lung cancer cells in the si-Nrf2 group were all decreased when compared to the si-NC and control groups. Cleaved Caspase-3 and Cleaved Caspase-9 protein expression, on the other hand, increased as MDA and ROS levels were raised while SOD and GSH levels dropped (P < 0.05). It reveals that catalpol inhibits the Nrf2/ARE signaling pathway, which causes antiproliferation, migration, apoptosis, and oxidative stress in cancer cells of lungs. The rate of apoptosis was also lowered.
Collapse
Affiliation(s)
- Huanyuan Wang
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Jingtao Wu
- Department of Thoracic Surgery, Medical College of Nanchang University, Nanchang, 330006 Jiangxi, China
| | - Haiyin Fan
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Yuan Ji
- Department of Clinical Nursing, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Chunbin Han
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Chao Li
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029 Jiangxi, China
| | - Sicong Jiang
- Division of Thoracic and Endocrine Surgery, unige.it, 1211 Geneva 4, Switzerland
| |
Collapse
|
6
|
Li M, Jiang H, Hao Y, Du K, Du H, Ma C, Tu H, He Y. A systematic review on botany, processing, application, phytochemistry and pharmacological action of Radix Rehmnniae. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114820. [PMID: 34767834 DOI: 10.1016/j.jep.2021.114820] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Rehmanniae (RR) is the tuber root of Rehmannia glutionsa Libosch, which was firstly recorded in Shennong's Classic of Materia Medica (⟪⟫). RR is a non-toxic and wide used traditional Chinese medicine. RR has the effect of clearing heat, generating essence, cooling blood, stopping bleeding, nourishing yin and blood, and filling marrow. It is used in clinic in the form of processed decoction pieces, including Dry Radix Rehmnniae (DRR) and Rehmanniae Radix Praeparata (RRP). The application of RR in traditional Chinese medicine (TCM) prescriptions can treat various diseases, such as anemia, irregular menstruation, deficiency of liver yin, renal failure and so on. AIM OF REVIEW This paper aims to provide a comprehensive and productive review of RR, which mainly contains botanical characteristics, processing methods, traditional application, chemical composition, quality control and pharmacological action. MATERIALS AND METHODS Literature search was conducted through the Web of Science, Baidu Scholar, ScienceDirect, PubMed, CNKI, and WanFang DATA using the keywords "Radix Rehmnniae", "Rehmanniae Radix Praeparata", "processing", "clinical application", "chemical composition", "quality control", and "pharmacological action". In addition, information was collected from relevant textbooks, reviews, and documents. RESULTS RR is a traditional Chinese herbal medicine with clinical value and rich resources. More than 100 components have been isolated and identified from RR. It has multiple pharmacological actions, such as hemostasis, antioxidation, anti-osteoporosis, lowering blood sugar, improving renal function, anti-inflammation, protecting neuronal function, antidepression and anti-anxiety. DRR and RRP are two different processed products of RR. After processing, there are great changes in property, taste, efficacy, clinical application, chemical composition and pharmacological action. At present, identifying chemical constituents of RR and its medicinal value has been deeply studied. However, there is a lack of research on the reasons for the differences in pharmacological effects between DRR and RRP. The reasons for these differences need to be further verified. Catalpol, the active component of RR, has been studied extensively in the literature, but the pharmacological effects of catalpol cannot represent the pharmacological effects of the whole RR. In the future, effective components such as rehmannioside D, polysaccharide, total glycosides, and effective parts in RR need to be further studied and developed. The pharmacodynamic material basis and mechanism of RR need to be further discussed. The scientific connotation and processing methods of RRP need to be studied and standardized.
Collapse
Affiliation(s)
- Minmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yule Hao
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Kequn Du
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hongling Du
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chuan Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - He Tu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, 610041, China.
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Guizhou Yibai Pharmaceutical Co. Ltd. Guiyang, 550008, China.
| |
Collapse
|
7
|
Mehany ABM, Belal A, Mohamed AF, Shaaban S, Abdelhamid G. Apoptotic and anti-angiogenic effects of propolis against human bladder cancer: molecular docking and in vitro screening. Biomarkers 2022; 27:138-150. [PMID: 34927500 DOI: 10.1080/1354750x.2021.2020903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Bladder cancer is still of unknown initiation and progression, it is difficult to treat the patient once bladder cancer have a distant metastasis. MATERIALS AND METHODS In the present study, propolis extract was evaluated against bladder cancer cells (T24). Two independent pathways were investigated, apoptosis and angiogenesis, Bax, Bcl-2, P53, and caspase-3 for apoptosis, vascular endothelial growth factor receptor and protein kinase A as angiogenesis potential targets. OBJECTIVES Molecular docking studies will be conducted for the major known constituents of Egyptian propolis into apoptotic and angiogenic protein targets, to give better insights to the possible binding mode and interactions and investigate the ability of propolis constituents to target both apoptotic and angiogenic pathways. RESULTS Propolis showed anti-proliferative activity against T24 cancer cell line, the IC50 value was 6.36 µg/ml. Also significant effects of propolis on Bax, Bcl-2, P53, and caspase-3 were observed. DISCUSSION These obtained results proved the ability of propolis to induce cell death. Also it has revealed noticeable effects on protein kinase A and vascular endothelial growth factor receptor. CONCLUSION The obtained results can encourage us to say that propolis extract can induce a programmed cell death in human bladder cancer cells, and also affect angiogenesis.
Collapse
Affiliation(s)
- Ahmed B M Mehany
- Genetic Engineering, Department of Zoology, Faculty of Science Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Aly Fahmy Mohamed
- Holding Company for Production of Vaccines and Biological Products (VACSERA), Agouza, Egypt
| | - Salwa Shaaban
- Department of Microbiology& Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ghada Abdelhamid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Egypt
| |
Collapse
|
8
|
Potential Roles of Iridoid Glycosides and Their Underlying Mechanisms against Diverse Cancer Growth and Metastasis: Do They Have an Inhibitory Effect on Cancer Progression? Nutrients 2021; 13:nu13092974. [PMID: 34578851 PMCID: PMC8466600 DOI: 10.3390/nu13092974] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Iridoids are glycosides found in plants, having inherent roles in defending them against infection by viruses and microorganisms, and in the rapid repair of damaged areas. The emerging roles of iridoid glycosides on pharmacological properties have aroused the curiosity of many researchers, and studies undertaken indicate that iridoid glycosides exert inhibitory effects in numerous cancers. This review focuses on the roles and the potential mechanism of iridoid glycosides at each stage of cancer development such as proliferation, epithelial mesenchymal transition (EMT), migration, invasion and angiogenesis. Overall, the reviewed literature indicates that iridoid glycosides inhibit cancer growth by inducing cell cycle arrest or by regulating apoptosis-related signaling pathways. In addition, iridoid glycosides suppress the expression and activity of matrix metalloproteinases (MMPs), resulting in reduced cancer cell migration and invasiveness. The antiangiogenic mechanism of iridoid glycosides was found to be closely related to the transcriptional regulation of pro-angiogenic factors, i.e., vascular endothelial growth factors (VEGFs) and cluster of differentiation 31 (CD31). Taken together, these results indicate the therapeutic potential of iridoid glycosides to alleviate or prevent rapid cancer progression and metastasis.
Collapse
|
9
|
Catalpol exerts antiallergic effects in IgE/ovalbumin-activated mast cells and a murine model of ovalbumin-induced allergic asthma. Int Immunopharmacol 2021; 96:107782. [PMID: 34022666 DOI: 10.1016/j.intimp.2021.107782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Immunoglobulin E (IgE) and mast cells play important roles in the pathogenesis of allergic asthma. Catalpol, an iridoid glycoside, exerts many biological functions including anti-inflammatory activities. Herein, we investigated catalpol to determine both its antiallergic effects on IgE/ovalbumin (OVA)-stimulated mouse bone marrow-derived mast cells and its therapeutic actions in murine allergic asthma. We found that catalpol dramatically suppressed IgE/OVA-induced mast cell degranulation. Meanwhile, 5 ~ 100 μM of catalpol neither affected the expression level of the high-affinity receptor of IgE (FcεRI) by mast cells nor induced mast cell apoptosis. In addition, mRNA expression levels of inflammatory enzymes including cyclooxygenase (COX)-1, COX-2, and 5-lipoxygenase were downregulated. Administration of catalpol also suppressed production of prostaglandin D2 (PGD2), interleukin (IL)-6, and IL-13, while not affecting tumor necrosis factor (TNF)-α production. Further, catalpol pretreatment significantly attenuated the FcεRI-mediated Akt signaling pathway. In mice with IgE/OVA-induced asthma, oral administration of catalpol remarkably suppressed the production of OVA-specific IgE, the development of airway hyperresponsiveness (AHR), and the infiltration of eosinophils and neutrophils into the lungs. Histological studies demonstrated that catalpol substantially inhibited the recruitment of mast cells and increased mucus production in lung tissues. Catalpol-treated mice had significantly lower levels of helper T cell type 2 (Th2) cytokines (IL-4, IL-5, and IL-13), PGD2, eotaxin-1, and C-X-C chemokine ligand-1 (CXCL1) in bronchoalveolar lavage fluid (BALF) than did the allergic group. Collectively, these results indicated that the suppressive effects of catalpol on degranulation and mediator generation by mast cells were beneficial in treating allergic asthma.
Collapse
|
10
|
Xia Y, Chen R, Lu G, Li C, Lian S, Kang TW, Jung YD. Natural Phytochemicals in Bladder Cancer Prevention and Therapy. Front Oncol 2021; 11:652033. [PMID: 33996570 PMCID: PMC8120318 DOI: 10.3389/fonc.2021.652033] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Phytochemicals are natural small-molecule compounds derived from plants that have attracted attention for their anticancer activities. Some phytochemicals have been developed as first-line anticancer drugs, such as paclitaxel and vincristine. In addition, several phytochemicals show good tumor suppression functions in various cancer types. Bladder cancer is a malignant tumor of the urinary system. To date, few specific phytochemicals have been used for bladder cancer therapy, although many have been studied in bladder cancer cells and mouse models. Therefore, it is important to collate and summarize the available information on the role of phytochemicals in the prevention and treatment of bladder cancer. In this review, we summarize the effects of several phytochemicals including flavonoids, steroids, nitrogen compounds, and aromatic substances with anticancer properties and classify the mechanism of action of phytochemicals in bladder cancer. This review will contribute to facilitating the development of new anticancer drugs and strategies for the treatment of bladder cancer using phytochemicals.
Collapse
Affiliation(s)
- Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ruijiao Chen
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Guangzhen Lu
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Changlin Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Taek-Won Kang
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
11
|
Liu A, Zhang B, Zhao W, Tu Y, Wang Q, Li J. Catalpol ameliorates psoriasis-like phenotypes via SIRT1 mediated suppression of NF-κB and MAPKs signaling pathways. Bioengineered 2020; 12:183-195. [PMID: 33323018 PMCID: PMC8806253 DOI: 10.1080/21655979.2020.1863015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease that affects approximately 2% of worldwide population, and causing long-term troubles to the patients. Therefore, it is urgent to develop safe and effective therapeutic drugs. Catalpol is a natural iridoid glucoside, that has several remarkable pharmacological effects, however, whether catalpol can alleviated psoriasis has not been explored. The goal of the present work is to study the role of catalpol in psoriasis in vivo and in vitro. Imiquimod-induced psoriasis-like mice were applied with different concentrations of catalpol for 8 consecutive days. The severity degree of psoriasis was estimated and the skin pathological changes were detected by H&E staining. Also, TNF-α-stimulated keratinocytes were treated with different concentrations of catalpol, then the oxidative stress and inflammation factors, as well as the expression of SIRT1 and activation of NF-kB and MAPK pathways were measured. The results showed that catalpol reduced the erythema, scaling, ear thickness, and changed pathological phenotypes in the lesioned skin region in mice. Treatment with catalpol significantly suppressed the oxidative stress and inflammatory reactions in vivo and in vitro, as reflected by the decreased secretion or expression of oxidative stress indicators and proinflammatory factors. Furthermore, the SIRT1 was up-regulated and the NF-κB and MAPKs signaling pathways were suppressed by the treatment of catalpol in vivo and in vitro. In summary, our data suggested that catalpol may have a therapeutic property of psoriasis by ameliorating oxidative stress and inflammation partly through SIRT1 mediated suppression of NF-κB and MAPKs pathways. Abbreviation: CAT: catalase; ELISA: enzyme-linked immunosorbent assay; GSH: glutathione; HRP: horseradish peroxidase; IMQ: imiquimod; JNK: c-Jun NH 2-terminal kinases; MAPKs: mitogen-activated protein kinases; MDA: malondialdehyde; NC: negative control group; NF-kB: nuclear factor kappa B; PASI: psoriasis area and severity index; PVDF: polyvinylidene difluoride membranes; qRT-PCR: quantitative real time polymerase chain reaction; ROS: reactive oxygen species; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel; SIRT1: silent information regulator 1; SOD: Cu/Zn superoxide dismutase
Collapse
Affiliation(s)
- Aimin Liu
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Buxin Zhang
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Wei Zhao
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Yuanhui Tu
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Qingxing Wang
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| | - Jing Li
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, People's Republic of China
| |
Collapse
|
12
|
Wu L, Li H, Chen S, Wu X, Chen X, Wang F. Catalpol inhibits the proliferation, migration and metastasis of HCC cells by regulating miR‑140‑5p expression. Mol Med Rep 2020; 23:29. [PMID: 33179108 PMCID: PMC7673346 DOI: 10.3892/mmr.2020.11667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/15/2020] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent malignant tumor. Catalpol is a Chinese medicine extract with a number of pharmacologically active properties. The present study aimed to investigate the effects and mechanisms of catalpol in HCC. HCC cells were treated with catalpol in the presence or absence of microRNA (miR)-140-5p inhibitor, and assays to determine cell viability, proliferation, invasion and migration were performed. Reverse transcription-quantitative PCR and western blotting were performed to determine the mRNA and protein expression levels of miR-140-5p, vimentin, N-Cadherin and E-Cadherin. Moreover, cells were treated with catalpol in the absence or presence of transforming growth factor (TGF)-β1, and the cell morphology was observed under a microscope. The results demonstrated that catalpol inhibited cell proliferation, invasion and migration, and decreased the expression levels of vimentin and N-cadherin, but increased the expression levels of E-cadherin and miR-140-5p. Catalpol inhibited morphological changes in epithelial-mesenchymal transformation (EMT) of cells induced by TGF-β1. Following inhibition of miR-140-5p expression, the proliferation, invasion and migration of HCC cells were promoted, E-cadherin expression was decreased, and the levels of vimentin and N-cadherin were increased. The miR-140-5p inhibitor effectively reversed the inhibitory effect of catalpol on cell proliferation, invasion and migration. Thus, the results suggested that the antitumor potential of catalpol in HCC may be exerted by regulating the expression of miR-140-5p to inhibit proliferation, invasion, migration and EMT of HCC cells.
Collapse
Affiliation(s)
- Linsheng Wu
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Haoxia Li
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Shengyou Chen
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiaoqiang Wu
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiaomin Chen
- Department of Geriatric Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Fangping Wang
- Department of Hepatobiliary Surgery, The People's Hospital of Xinchang, Shaoxing, Zhejiang 312500, P.R. China
| |
Collapse
|
13
|
Meng J, Zhang W, Wang C, Zhang W, Zhou C, Jiang G, Hong J, Yan S, Yan W. Catalpol suppresses osteoclastogenesis and attenuates osteoclast-derived bone resorption by modulating PTEN activity. Biochem Pharmacol 2019; 171:113715. [PMID: 31751538 DOI: 10.1016/j.bcp.2019.113715] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Excessive activation of osteoclast activity is responsible for many bone diseases, such as osteoporosis, rheumatoid arthritis, periprosthetic osteolysis, and periodontitis. Natural compounds that inhibit osteoclast formation and/or function have therapeutic potential for treating these diseases. Catalpol, a bioactive iridoid extracted from a traditional herbal medicine Rehmannia glutinosa, exhibits various pharmacological properties, including anti-inflammatory, antioxidant, antidiabetic, and antitumor effects. However, its effects on osteoclast formation and function remain unknown. In the present study, we showed that catalpol inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and bone resorption, as well as the expression of osteoclast-related marker genes. The investigation of molecular mechanisms showed that catalpol upregulated phosphatase and tensin homolog (PTEN) activity by reducing its ubiquitination and degradation, subsequently suppressing RANKL-induced NF-κB and AKT signaling pathways, leading to an inhibition on NFATc1 induction. Furthermore, catalpol protected mice against inflammation- and ovariectomy-induced bone loss by inhibiting osteoclast activity in vivo. These results suggest that catalpol might be developed as a promising candidate for treating osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Jiahong Meng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, China.
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Yu Z, Chen Y, Liang C. Eriocalyxin B Induces Apoptosis and Autophagy Involving Akt/Mammalian Target of Rapamycin (mTOR) Pathway in Prostate Cancer Cells. Med Sci Monit 2019; 25:8534-8543. [PMID: 31714902 PMCID: PMC6873644 DOI: 10.12659/msm.917333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Eriocalyxin B (EriB), a diterpenoid isolated from the plant Isodon eriocalyx, has been shown to possess anti-tumor properties. However, few systematic studies of the mechanism underlying the anti-tumor activity of Eriocalyxin B in prostate cancer cells have been published. The aim of this study was to investigate the effect of Eriocalyxin B on prostate cancer cells. Material/Methods In the present study, the PC-3 (androgen-independent) and 22RV1 (androgen-dependent) human prostate cancer cell lines were cultured with and without increasing doses of Eriocalyxin B. MTT assay was used to measure cell viability. Western blotting was performed to measure levels of proteins associated with apoptosis and autophagy. Flow cytometry was used to assess changes in cell apoptosis and cycle. Fluorescence microscopy was used to capture images of autophagy-related proteins. Results Treatment of human prostate cancer cells with Eriocalyxin B resulted in apoptosis in a dose- and time-dependent manner. Eriocalyxin B also induced autophagy, with elevated LC3B-II protein expression and punctuate patterns. Additionally, autophagy protected prostate cancer cells from apoptosis induced by Eriocalyxin B, which was demonstrated by addition of chloroquine (CQ). Moreover, the results indicated that Eriocalyxin B could inhibit the phosphorylation of Akt and mTOR. Eriocalyxin B induced apoptosis and autophagy by inhibition of the Akt/mTOR pathway. Conclusions Eriocalyxin B induces apoptosis and autophagy involving the Akt/mTOR pathway in prostate cancer cells in vitro. These findings provide evidence for Eriocalyxin B as a potent therapeutic for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ziqiang Yu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland).,Institute of Urology, Anhui Medical University, Hefei, Anhui, China (mainland).,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland).,Institute of Urology, Anhui Medical University, Hefei, Anhui, China (mainland).,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland).,Institute of Urology, Anhui Medical University, Hefei, Anhui, China (mainland).,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
15
|
Zhao L, Wang Y, Liu Q. Catalpol inhibits cell proliferation, invasion and migration through regulating miR-22-3p/MTA3 signalling in hepatocellular carcinoma. Exp Mol Pathol 2019; 109:51-60. [DOI: 10.1016/j.yexmp.2019.104265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/13/2019] [Accepted: 05/24/2019] [Indexed: 01/19/2023]
|
16
|
Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits bladder cancer cell growth via the mitochondrial apoptosis and JNK pathways. Toxicol Appl Pharmacol 2019; 371:41-54. [PMID: 30946863 DOI: 10.1016/j.taap.2019.03.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/22/2022]
Abstract
Erianin, a component extracted from the traditional Chinese herbal medicine Dendrobium, has shown significant anti-tumour activity in various cancers but not in bladder cancer. In this study, we assessed the effects of Erianin on bladder cancer growth and elucidated the related mechanisms. First, Erianin was synthesized with high yields, and markedly suppressed EJ and T24 cell proliferation. It induced G2/M-phase arrest in vitro. Furthermore, Erianin triggered apoptosis via caspase cascades activation and the mitochondrial-mediated apoptotic pathway. Bim up-regulation and Bcl-2 down-regulation as the symbol of apoptosis which were found to play the dominant role in the effects of Erianin. We further showed that JNK pathway activation is necessary for the Erianin-mediated anti-proliferation and apoptotic response. Finally, Erianin exhibited anti-tumour activity and induced apoptosis in tumour tissue in vivo. Collectively, these results suggest that Erianin induced cell cycle G2/M-phase arrest and apoptosis via the JNK signalling pathway in bladder cancer, indicating the potential usefulness of Erianin for the therapy of bladder cancer.
Collapse
|
17
|
Wang Z, Lu Y, Sheng B, Ding Y, Cheng X. Catalpol inhibits TGF-β1-induced epithelial-mesenchymal transition in human non-small-cell lung cancer cells through the inactivation of Smad2/3 and NF-κB signaling pathways. J Cell Biochem 2019; 120:2251-2258. [PMID: 30203551 DOI: 10.1002/jcb.27535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/01/2018] [Indexed: 01/24/2023]
Abstract
Catalpol, one of the main active ingredients isolated from Rehmannia glutinosa, was reported to possess anticancer activity. However, the role of catalpol in transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in human non-small-cell lung cancer (NSCLC) cells has not been elucidated. The objective of this study was to investigate the effect of catalpol on EMT in human NSCLC cells. Our results showed that catalpol significantly inhibited the TGF-β1-induced cell migration and invasion of A549 cells, as well as repressed matrix metalloproteinase (MMP)2 and MMP9 expression induced by TGF-β1 in A549 cells. In addition, catalpol markedly repressed the EMT process in A549 cells in response to TGF-β1. Furthermore, catalpol prevented the activation of Smad2/3 and nuclear factor κB (NF-κB) signaling pathways induced by TGF-β1 in A549 cells. In conclusion, these findings indicated that catalpol inhibits TGF-β1-induced EMT in human NSCLC cells through the inactivation of Smad2/3 and NF-κB signaling pathways. Thus, catalpol may be a promising agent for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zuopei Wang
- Department of Thoracic Surgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yi Lu
- Department of Thoracic Surgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Bo Sheng
- Department of Thoracic Surgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yi Ding
- Department of Thoracic Surgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Xiaoke Cheng
- Department of Scientific Research, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
18
|
Li Y, Wang H, Yang X. Effects of catalpol on bronchial asthma and its relationship with cytokines. J Cell Biochem 2018; 120:8992-8998. [PMID: 30536454 DOI: 10.1002/jcb.28170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 01/16/2023]
Abstract
An animal (BALB/c mice) model of catalpol associated with bronchial asthma in vivo was established, and the effects of catalpol and its relationship with cytokines were investigated. A total of 30 adult BALB/c mice were randomly divided into a positive control group, a model group, and a catalpol group, with 10 mice in each group. The lung function of mice, the cell count, and the cytokine concentrations in bronchoalveolar lavage fluid (BALF) were detected. The levels of cytokines [interleukin 4 (IL-4), interleukin 5 (IL5), and interferon gamma (IFN-γ)] in BALF were measured with enzyme-linked immunosorbent assay methods. The total number of cells in the BALF of the group treated with catalpol was significantly lower than the model group. After treatment with catalpol, the eosinophils and neutrophils of the mice were remarkably reduced compared with the model group. The malondialdehyde content in the lung tissue homogenate of the mice was also decreased in the catalpol group. The cytokines IL-5 and IL-4 exhibited a similar tendency: the concentrations of IL-4 and IL-5 for the catalpol group were dramatically decreased compared with the model group. However, the IFN-γ concentration for the catalpol group was higher than the model group. The results indicated that IL-5 may involve in the pathologic process of asthma-like IL-4, and an inflammatory reaction may still exist in the airway during the remission stage of asthma. The imbalances of the cytokine network might be an important molecular basis in the asthma pathogenesis. It is suggested that catalpol may be a potential drug for the clinical treatment of asthma.
Collapse
Affiliation(s)
- Yanlin Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hai Wang
- Department of Pediatrics, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xu Yang
- Department of Pediatrics, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Fei B, Dai W, Zhao S. Efficacy, Safety, and Cost of Therapy of the Traditional Chinese Medicine, Catalpol, in Patients Following Surgical Resection for Locally Advanced Colon Cancer. Med Sci Monit 2018; 24:3184-3192. [PMID: 29763415 PMCID: PMC5975072 DOI: 10.12659/msm.907569] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background The aim of this study was to evaluate the efficacy, safety, and cost of treatment of the traditional Chinese herbal medicine, catalpol, in patients following surgical resection for locally advanced colon cancer. Material/Methods The 345 patients who had undergone surgical resection for locally advanced colon adenocarcinoma, were divided into three groups: a placebo-treated group (n=115); patients treated with an intraperitoneal injection of 10 mg/kg catalpol twice a day for 12 weeks (treatment group) (n=115); patients treated with 5 mg/kg intravenous bevacizumab twice a week for 12 weeks (control group) (n=115). Serum levels of carbohydrate antigen 19-9 (CA 19-9), carcinoembryonic antigen (CEA), matrix metalloproteinases-2 (MMP-2), and matrix metalloproteinases-9 (MMP-9) were measured. Patient overall survival (OS), cancer-free survival (CFS), adverse effects, and cost of therapy were evaluated. Statistical analysis included the Wilcoxon rank sum test and Tukey’s test for clinicopathological response at 95% confidence interval (CI). Results Patients in the catalpol-treated group had significantly reduced serum levels of CA 19-9 (p=0.0002, q=3.202), CEA (p=0.0002, q=3.007), MMP-2 (p≤0.0001, q=6.883), and MMP-9 (p<0.0001, q=3.347). Only non-fatal adverse effects occurred in the catalpol treatment group (p<0.0001, q=5.375). OS and CFS were significantly increased in the catalpol treatment group compared with the placebo group (p<0.0001 q=7.586). The cost of catalpol treatment compared favorably with other treatments (p<0.0001, q=207.17). Conclusions In this preliminary study, treatment with the Chinese herbal medicine, catalpol, showed benefits in clinical outcome, at low cost, and with no serious complications.
Collapse
Affiliation(s)
- Baogang Fei
- Department of Anorectal Surgery, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China (mainland)
| | - Wei Dai
- Department of Surgery, Jingshan Maternal and Child Health Family Planning Service Center, Jingshan, Hubei, China (mainland)
| | - Shouhe Zhao
- Department of Dermatology, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
20
|
Dimitrova P, Alipieva K, Grozdanova T, Simova S, Bankova V, Georgiev MI, Popova MP. New iridoids from Verbascum nobile and their effect on lectin-induced T cell activation and proliferation. Food Chem Toxicol 2017; 111:605-615. [PMID: 29208506 DOI: 10.1016/j.fct.2017.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
The Verbascum species are widely used traditional herb remedies against respiratory, inflammatory conditions and disorders. In the present study methanol extract of the aerial parts of the endemic Verbascum nobile Velen, was investigated and two novel iridoid glycosides 1 and 2, together with nine known constituents: iridoids, phenylethanoids, and saponins characteristic of Verbascum genus were identified. Further, the biological activity of the extract and selected isolated compounds on concanavalin (Con A)-induced T cell proliferation and activation of human Jurkat T cell line and splenic murine CD3 T cells was evaluated. T cell growth was studied by colorimetric-based WST proliferation assay while DNA content, cell cycling, dynamic of cell proliferation, expression of activation markers, intracellular expression of cytokine IFN-γ, and phosphorylation of ERK were analyzed by flow cytometry. Caspase-mediated apoptosis resulting in a poly (ADP-ribose) polymerase (PARP) cleavage was assessed by colorimetric in-cell kit. It was found that the extract, and all tested compounds (1, 2, 3 and 9) inhibited lectin-induced cell growth of Jurkat T cell line. The novel compounds decreased the frequencies of cells in S phase without causing a significant cell cycle arrest at G1 phase, caspases-mediated apoptosis and/or a profound change in the dynamic of splenic murine CD3+ T cell proliferation. Both compounds showed stronger inhibitory effect on Con A-induced ERK phosphorylation than the known bioactive compounds 3 and 9, and suppressed the expression of early activation marker CD69, the intracellular level of IFN-γ, and the generation of CD3+IFN-γ+ effectors. Our data suggest that the novel iridoid glycosides might have a potential to modulate T cell-related pathologies.
Collapse
Affiliation(s)
- Petya Dimitrova
- Department of Immunology, The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, bl. 26 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad Georgi Bonchev Str., 1113 Sofia, Bulgaria.
| | - Tsvetinka Grozdanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Svetlana Simova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Milena P Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9 Acad Georgi Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
21
|
Catalpol suppressed proliferation, growth and invasion of CT26 colon cancer by inhibiting inflammation and tumor angiogenesis. Biomed Pharmacother 2017; 95:68-76. [DOI: 10.1016/j.biopha.2017.08.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
|
22
|
Wang W, Shen F, Wang C, Lu W, Wei J, Shang A, Wang C. MiR-1-3p inhibits the proliferation and invasion of bladder cancer cells by suppressing CCL2 expression. Tumour Biol 2017; 39:1010428317698383. [PMID: 28618950 DOI: 10.1177/1010428317698383] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We attempted to analyze the effects of miR-1-3p and CCL2 on the proliferation, migration, and invasion of bladder cancer cells. A total of 18 pairs of bladder cancer tissues with corresponding adjacent tissues and the 6 cases of normal tissues were collected. The expressions of miR-1-3p and CCL2 in the cancer tissues were evaluated using quantitative real-time polymerase chain reaction and western blot. The relationship between miR-1-3p and CCL2 was assessed using luciferase reporter assay. The UM-UC-3 bladder cancer cells were transfected with CCL2 small interfering RNA and miR-1-3p mimics. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, wound healing assay, Transwell assay, and the flow cytometry test were used to detect the proliferation, migration, invasion, and apoptosis of bladder cancer cells. Bladder cancer tissues had lower levels of miR-1-3p but higher levels of CCL2 than normal tissues ( p < 0.05). The transfection of miR-1-3p mimics and CCL2 small interfering RNA remarkably suppressed cell proliferation and invasion and promoted apoptosis of cells ( p < 0.05). Results of the luciferase reporter gene assay demonstrated that miR-1-3p targeted CCL2. MiR-1-3p suppresses the proliferation and invasion of urinary bladder cancer cells by targeting CCL2.
Collapse
Affiliation(s)
- Weiwei Wang
- 1 Department of Pathology, The First People's Hospital of Yancheng City, Yancheng, China.,2 Department of Pathology, The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Fujun Shen
- 3 Department of Oncology, Yancheng Hospital Affiliated to Medical College of Southeast University and The Third People's Hospital of Yancheng City, Yancheng, China
| | - Chunlei Wang
- 4 Department of Laboratory Medicine, The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Wenying Lu
- 4 Department of Laboratory Medicine, The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Jun Wei
- 5 Clinical Medicine School, Ningxia Medical University, Yinchuan, China
| | - Anquan Shang
- 4 Department of Laboratory Medicine, The Sixth People's Hospital of Yancheng City, Yancheng, China.,5 Clinical Medicine School, Ningxia Medical University, Yinchuan, China
| | - Chunbin Wang
- 3 Department of Oncology, Yancheng Hospital Affiliated to Medical College of Southeast University and The Third People's Hospital of Yancheng City, Yancheng, China
| |
Collapse
|
23
|
Chen Y, Zhang Y, Xu M, Luan J, Piao S, Chi S, Wang H. Catalpol alleviates ovalbumin-induced asthma in mice: Reduced eosinophil infiltration in the lung. Int Immunopharmacol 2016; 43:140-146. [PMID: 27992791 DOI: 10.1016/j.intimp.2016.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Radix Rehmanniae Preparata is a traditional Chinese herbal medicine used to treat asthma, and catalpol is one of the main active ingredients in this herb. In the present study, the effects of catalpol on asthma and the underlying mechanism were explored. METHODS Mice with ovalbumin (OVA)-induced asthma were given 5 or 10mg/kg catalpol from Day 15 to Day 28 (intraperitoneal injection). Histopathologic changes were detected by Hematoxylin and Eosin staining and Periodic Acid Schiff staining. The levels of IgE, interleukin (IL)-4, IL-5 and eotaxin were measured by ELISA. The numbers of lymphocytes, monocytes, basophils and eosinophils in the bronchoalveolar lavage fluid were determined by Wright-Giemsa staining. The expression and distribution of eotaxin and C-C chemokine receptor 3 (CCR3) were detected by immunohistochemistry and immunofluorescence. The expression of interleukin-5 receptor α (IL-5Rα) was detected by Western blot assay. RESULTS Catalpol inhibited OVA-induced inflammation and IgE secretion in the lung. OVA-induced type 2 inflammation was suppressed by catalpol as evidenced by decreased levels of IL-4 and IL-5. Moreover, catalpol inhibited the aberrant eosinophil infiltration in the lungs, and also suppressed OVA-induced elevation of eosinophil chemokine eotaxin and its receptor CCR3. In addition, IL-5Rα expression in the bone marrow cells derived from catalpol-treated asthmatic mice was lower than that from the untreated asthmatic mice. CONCLUSION Our study demonstrated that catalpol attenuated OVA-induced asthma and inhibit the infiltration of inflammatory cells, especially eosinophils, into the lung. This study suggests that catalpol may become a promising drug for the treatment of asthma.
Collapse
Affiliation(s)
- Yanyan Chen
- The Second Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yongzheng Zhang
- The Second Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Mingyuan Xu
- Department of Pharmacy, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Junqi Luan
- The First Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shengai Piao
- The First Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shuang Chi
- Department of Endemic Disease, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Hai Wang
- The Second Department of Paediatrics, the First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| |
Collapse
|
24
|
Yu R, Yu BX, Chen JF, Lv XY, Yan ZJ, Cheng Y, Ma Q. Anti-tumor effects of Atractylenolide I on bladder cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:40. [PMID: 26931119 PMCID: PMC4774103 DOI: 10.1186/s13046-016-0312-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atractylenolide I (ATR-1), an active component of Rhizoma Atractylodis Macrocephalae, possesses cytotoxicity against various carcinomas. However, little is known about the effects of ATR-1on bladder cancer. In the present study, the anti-tumor activity of ATR-1 was examined on bladder cancer cells both in vivo and in vitro. METHODS MTT assay was used to assess the cytotoxic effect of ATR-1. Cell cycle distribution and apoptosis levels were evaluated using flow cytometry. Western blotting assay was applied to measure the levels of proteins associated with the apoptotic pathway, cell cycle progression and PI3K/Akt/mTOR signaling pathway. Tumor models in nude mice were induced by injection of T-24 and 253J human bladder cancer cells. RESULTS ATR-1 inhibited bladder cancer cell proliferation, arrested cell cycle in G2/M phase through up-regulation of p21 and down-regulation of cyclin B1, CDK1 and Cdc25c. Meanwhile, ATR-1 also triggered cellular apoptosis depending on the activation of mitochondrial apoptotic pathway. Mechanism investigation indicated that ATR-1 exerts its anti-tumor effect also relies on the inhibition of PI3K/Akt/mTOR signaling pathway. Finally, mice studies showed that ATR-1 blocked the T-24 or 253J-induced xenograft tumor growth without noticeable toxicity. CONCLUSIONS ATR-1 may be served as a potential therapeutic agent for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Fenghua St., 315211, Ningbo, China
| | - Bi-Xia Yu
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China
| | - Jun-Feng Chen
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China
| | - Xiu-Yi Lv
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China
| | - Ze-Jun Yan
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China.,Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China
| | - Yue Cheng
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China. .,Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China. .,Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China.
| |
Collapse
|
25
|
Zhong Y, Wang K, Zhang X, Cai X, Chen Y, Deng Y. Nephrokeli, a Chinese herbal formula, may improve IgA nephropathy through regulation of the sphingosine-1-phosphate pathway. PLoS One 2015; 10:e0116873. [PMID: 25633986 PMCID: PMC4310606 DOI: 10.1371/journal.pone.0116873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 12/15/2014] [Indexed: 01/12/2023] Open
Abstract
Nephrokeli (NPKL) is a Chinese herbal formula that has been used to treat patients with IgA nephropathy (IgAN) for improvement of proteinuria and kidney injury. However, the mechanism remains unclear. Sphingosine-1-phosphate (S1P) and its receptors S1PR2 and S1PR3 are known to play an important role in kidney disease. Here, we tested whether NPKL is able to regulate the S1P pathway in the kidney of IgAN rats. Four groups of rats were included in the study: Control, IgAN, IgAN treated with losartan, and IgAN treated with NPKL. The IgAN model was generated by injection of bovine serum albumin and staphylococcus enterotoxin B. We found that IgAN rats had increased staining for proliferating cell nuclear antigen (PCNA) in the mesangial area and increased mRNA and protein levels of S1PR2 and S1PR3 in the kidney compared to control rats. Connective tissue growth factor (CTGF), a downstream growth factor in the S1P pathway, was also elevated in the kidney of IgAN rats. Treatment with either NPKL or losartan was able to reduce PCNA staining and the expression of both S1PR2 and S1PR3 in the kidney of IgAN rats. However, NPKL (but not losartan treatment) reduced the expression of CTGF in the kidney of IgAN rats. In addition, we treated rat mesangial cells with sera collected from either NPKL-treated rats or control rats and found that NPKL-serum was able to reduce S1P-induced mesangial cell proliferation and the expression of S1PR2/S1PR3 and CTGF. NPKL also attenuates expression of fibrosis, inflammation, and oxidative stress markers in the kidney of IgAN rats. Our studies provide the mechanism by which NPKL attenuates kidney injury in IgAN rats.
Collapse
Affiliation(s)
- Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (YZ); (YD)
| | - Ke Wang
- Surgical Research Institute of Traditional Chinese Medicine Combined with Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwen Zhang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofan Cai
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (YZ); (YD)
| |
Collapse
|