1
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
2
|
Wang W, Rui M. Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development. J Genet Genomics 2024; 51:1151-1161. [PMID: 38925347 DOI: 10.1016/j.jgg.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wanting Wang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
3
|
Qiu B, Zhong Z, Dou L, Xu Y, Zou Y, Weldon K, Wang J, Zhang L, Liu M, Williams KE, Spence JP, Bell RL, Lai Z, Yong W, Liang T. Knocking out Fkbp51 decreases CCl 4-induced liver injury through enhancement of mitochondrial function and Parkin activity. Cell Biosci 2024; 14:1. [PMID: 38167156 PMCID: PMC10763032 DOI: 10.1186/s13578-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND AIMS Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CI, 06520, USA
| | - Zhaohui Zhong
- General Surgery Department, Peking University People's Hospital, Beijing, 100032, China
| | - Longyu Dou
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ming Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - John Paul Spence
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Weidong Yong
- Department of Surgery, Indiana University, School of Medicine, Indianapolis, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tiebing Liang
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|
4
|
Li J, Dai F, Kou X, Wu B, Xu J, He S. β-Actin: An Emerging Biomarker in Ischemic Stroke. Cell Mol Neurobiol 2023; 43:683-696. [PMID: 35556192 PMCID: PMC11415192 DOI: 10.1007/s10571-022-01225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
At present, the diagnosis of ischemic stroke mainly depends on neuroimaging technology, but it still has many limitations. Therefore, it is very important to find new biomarkers of ischemic stroke. Recently, β-actin has attracted extensive attention as a biomarker of a variety of cancers. Although several recent studies have been investigating its role in ischemic stroke and other cerebrovascular diseases, the understanding of this emerging biomarker in neurology is still limited. We examined human and preclinical studies to gain a comprehensive understanding of the literature on the subject. Most relevant literatures focus on preclinical research, and pay more attention to the role of β-actin in the process of cerebral ischemia, but some recent literatures reported that in human studies, serum β-actin increased significantly in the early stage of acute cerebral ischemia. This review will investigate the basic biology of β-actin, pay attention to the potential role of serum β-actin as an early diagnostic blood biomarker of ischemic stroke, and explore its potential mechanism in ischemic stroke and new strategies for stroke treatment in the future.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Fangyu Dai
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Xuelian Kou
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Wu
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Jie Xu
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Songbin He
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China.
| |
Collapse
|
5
|
Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson's Disease. CNS Drugs 2022; 36:1249-1267. [PMID: 36378485 DOI: 10.1007/s40263-022-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease and contributes significantly to morbidity globally. Currently, no disease-modifying therapies exist to combat this disorder. Insights from the molecular and cellular pathobiology of the disease seems to indicate promising therapeutic targets. The parkin protein has been extensively studied for its role in autosomal recessive Parkinson's disease and, more recently, its role in sporadic Parkinson's disease. Parkin is an E3 ubiquitin ligase that plays a prominent role in mitochondrial quality control, mitochondrial-dependent cell death pathways, and other diverse functions. Understanding the numerous roles of parkin has introduced many new possibilities for therapeutic modalities in treating both autosomal recessive Parkinson's disease and sporadic Parkinson's disease. In this article, we review parkin biology with an emphasis on mitochondrial-related functions and propose novel, potentially disease-modifying therapeutic approaches for treating this debilitating condition.
Collapse
|
6
|
Fernández-Santiago R, Esteve-Codina A, Fernández M, Valldeoriola F, Sanchez-Gómez A, Muñoz E, Compta Y, Tolosa E, Ezquerra M, Martí MJ. Transcriptome analysis in LRRK2 and idiopathic Parkinson's disease at different glucose levels. NPJ Parkinsons Dis 2021; 7:109. [PMID: 34853332 PMCID: PMC8636510 DOI: 10.1038/s41531-021-00255-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
Type-2 diabetes (T2D) and glucose metabolic imbalances have been linked to neurodegenerative diseases, including Parkinson's disease (PD). To detect potential effects of different glucose levels on gene expression, by RNA-seq we analyzed the transcriptome of dermal fibroblasts from idiopathic PD (iPD) patients, LRRK2-associated PD (L2PD) patients, and healthy controls (total n = 21 cell lines), which were cultured at two different glucose concentrations (25 and 5 mM glucose). In PD patients we identified differentially expressed genes (DEGs) that were related to biological processes mainly involving the plasmatic cell membrane, the extracellular matrix, and also neuronal functions. Such pathway deregulation was largely similar in iPD or L2PD fibroblasts. Overall, the gene expression changes detected in this study were associated with PD independently of glucose concentration.
Collapse
Affiliation(s)
- Rubén Fernández-Santiago
- Lab of Parkinson disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Catalonia, Spain.
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Manel Fernández
- Lab of Parkinson disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
| | - Francesc Valldeoriola
- Lab of Parkinson disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Catalonia, Spain
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Catalonia, Spain
| | - Almudena Sanchez-Gómez
- Lab of Parkinson disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Catalonia, Spain
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Catalonia, Spain
| | - Esteban Muñoz
- Lab of Parkinson disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Catalonia, Spain
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Lab of Parkinson disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Catalonia, Spain
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Catalonia, Spain
| | - Eduardo Tolosa
- Lab of Parkinson disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Catalonia, Spain
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Catalonia, Spain
| | - Mario Ezquerra
- Lab of Parkinson disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Catalonia, Spain.
| | - María J Martí
- Lab of Parkinson disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Catalonia, Spain
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Resveratrol Treatment in Human Parkin-Mutant Fibroblasts Modulates cAMP and Calcium Homeostasis Regulating the Expression of Mitochondria-Associated Membranes Resident Proteins. Biomolecules 2021; 11:biom11101511. [PMID: 34680144 PMCID: PMC8534032 DOI: 10.3390/biom11101511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkin plays an important role in ensuring efficient mitochondrial function and calcium homeostasis. Parkin-mutant human fibroblasts, with defective oxidative phosphorylation activity, showed high basal cAMP level likely ascribed to increased activity/expression of soluble adenylyl cyclase and/or low expression/activity of the phosphodiesterase isoform 4 and to a higher Ca2+ level. Overall, these findings support the existence, in parkin-mutant fibroblasts, of an abnormal Ca2+ and cAMP homeostasis in mitochondria. In our previous studies resveratrol treatment of parkin-mutant fibroblasts induced a partial rescue of mitochondrial functions associated with stimulation of the AMPK/SIRT1/PGC-1α pathway. In this study we provide additional evidence of the potential beneficial effects of resveratrol inducing an increase in the pre-existing high Ca2+ level and remodulation of the cAMP homeostasis in parkin-mutant fibroblasts. Consistently, we report in these fibroblasts higher expression of proteins implicated in the tethering of ER and mitochondrial contact sites along with their renormalization after resveratrol treatment. On this basis we hypothesize that resveratrol-mediated enhancement of the Ca2+ level, fine-tuned by the ER-mitochondria Ca2+ crosstalk, might modulate the pAMPK/AMPK pathway in parkin-mutant fibroblasts.
Collapse
|
8
|
De Caroli M, Barozzi F, Renna L, Piro G, Di Sansebastiano GP. Actin and Microtubules Differently Contribute to Vacuolar Targeting Specificity during the Export from the ER. MEMBRANES 2021; 11:membranes11040299. [PMID: 33924184 PMCID: PMC8074374 DOI: 10.3390/membranes11040299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Plants rely on both actin and microtubule cytoskeletons to fine-tune sorting and spatial targeting of membranes during cell growth and stress adaptation. Considerable advances have been made in recent years in the comprehension of the relationship between the trans-Golgi network/early endosome (TGN/EE) and cytoskeletons, but studies have mainly focused on the transport to and from the plasma membrane. We address here the relationship of the cytoskeleton with different endoplasmic reticulum (ER) export mechanisms toward vacuoles. These emergent features of the plant endomembrane traffic are explored with an in vivo approach, providing clues on the traffic regulation at different levels beyond known proteins’ functions and interactions. We show how traffic of vacuolar markers, characterized by different vacuolar sorting determinants, diverges at the export from the ER, clearly involving different components of the cytoskeleton.
Collapse
Affiliation(s)
- Monica De Caroli
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
| | - Fabrizio Barozzi
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Luciana Renna
- Department of Biology, University of Florence, 50121 Firenze, Italy;
| | - Gabriella Piro
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
| | - Gian-Pietro Di Sansebastiano
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
- Correspondence: ; Tel.: +39-0832-298-714
| |
Collapse
|
9
|
Siciliano RA, Mazzeo MF, Ferretta A, Pacelli C, Rosato A, Papa F, Scacco S, Papa S, Cocco T, Lippolis R. Decreased amount of vimentin N-terminal truncated proteolytic products in parkin-mutant skin fibroblasts. Biochem Biophys Res Commun 2020; 521:693-698. [PMID: 31699368 DOI: 10.1016/j.bbrc.2019.10.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
Vimentin, a member of cytoskeleton intermediate filaments proteins, plays a critical role in cell structure and dynamics. The present proteomic study reveals reduced amount of six different lengths, N-terminal truncated proteolytic products of vimentin, in the primary skin fibroblasts from two unrelated PD patients, as compared to control fibroblasts. The decreased amount of N-terminal truncated forms of vimentin in parkin-mutant fibroblasts, could contribute to impairment of cellular function, potentially contributing to the pathogenesis of Parkinson disease.
Collapse
Affiliation(s)
| | | | - Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Sense Organs University of Bari "Aldo Moro" Bari, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Rosato
- Department of Chemistry, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs University of Bari "Aldo Moro" Bari, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs University of Bari "Aldo Moro" Bari, Italy
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs University of Bari "Aldo Moro" Bari, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs University of Bari "Aldo Moro" Bari, Italy.
| | - Rosa Lippolis
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy.
| |
Collapse
|
10
|
González-Casacuberta I, Juárez-Flores DL, Morén C, Garrabou G. Bioenergetics and Autophagic Imbalance in Patients-Derived Cell Models of Parkinson Disease Supports Systemic Dysfunction in Neurodegeneration. Front Neurosci 2019; 13:894. [PMID: 31551675 PMCID: PMC6748355 DOI: 10.3389/fnins.2019.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide affecting 2-3% of the population over 65 years. This prevalence is expected to rise as life expectancy increases and diagnostic and therapeutic protocols improve. PD encompasses a multitude of clinical, genetic, and molecular forms of the disease. Even though the mechanistic of the events leading to neurodegeneration remain largely unknown, some molecular hallmarks have been repeatedly reported in most patients and models of the disease. Neuroinflammation, protein misfolding, disrupted endoplasmic reticulum-mitochondria crosstalk, mitochondrial dysfunction and consequent bioenergetic failure, oxidative stress and autophagy deregulation, are amongst the most commonly described. Supporting these findings, numerous familial forms of PD are caused by mutations in genes that are crucial for mitochondrial and autophagy proper functioning. For instance, late and early onset PD associated to mutations in Leucine-rich repeat kinase 2 (LRRK2) and Parkin (PRKN) genes, responsible for the most frequent dominant and recessive inherited forms of PD, respectively, have emerged as promising examples of disease due to their established role in commanding bioenergetic and autophagic balance. Concomitantly, the development of animal and cell models to investigate the etiology of the disease, potential biomarkers and therapeutic approaches are being explored. One of the emerging approaches in this context is the use of patient's derived cells models, such as skin-derived fibroblasts that preserve the genetic background and some environmental cues of the patients. An increasing number of reports in these PD cell models postulate that deficient mitochondrial function and impaired autophagic flux may be determinant in PD accelerated nigral cell death in terms of limitation of cell energy supply and accumulation of obsolete and/or unfolded proteins or dysfunctional organelles. The reliance of neurons on mitochondrial oxidative metabolism and their post-mitotic nature, may explain their increased vulnerability to undergo degeneration upon mitochondrial challenges or autophagic insults. In this scenario, proper mitochondrial function and turnover through mitophagy, are gaining in strength as protective targets to prevent neurodegeneration, together with the use of patient-derived fibroblasts to further explore these events. These findings point out the presence of molecular damage beyond the central nervous system (CNS) and proffer patient-derived cell platforms to the clinical and scientific community, which enable the study of disease etiopathogenesis and therapeutic approaches focused on modifying the natural history of PD through, among others, the enhancement of mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Diana Luz Juárez-Flores
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Constanza Morén
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| |
Collapse
|
11
|
Calvano CD, Ventura G, Sardanelli AMM, Savino L, Losito I, Michele GD, Palmisano F, Cataldi TRI. Searching for Potential Lipid Biomarkers of Parkinson's Disease in Parkin-Mutant Human Skin Fibroblasts by HILIC-ESI-MS/MS: Preliminary Findings. Int J Mol Sci 2019; 20:ijms20133341. [PMID: 31284683 PMCID: PMC6650793 DOI: 10.3390/ijms20133341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/09/2023] Open
Abstract
Early diagnosis of neural changes causing cerebral impairment is critical for proposing preventive therapies for Parkinson’s disease (PD). Biomarkers currently available cannot be informative of PD onset since they are characterized by analysing post-mortem tissues from patients with severe degeneration of the substantia nigra. Skin fibroblasts (SF) are now recognized as a useful model of primary human cells, capable of reflecting the chronological and biological aging of the subjects. Here a lipidomic study of easily accessible primary SF is presented, based on hydrophilic interaction liquid chromatography coupled to electrospray ionization and mass spectrometry (HILIC/ESI-MS). Phospholipids (PL) from dermal fibroblasts of five PD patients with different parkin mutations and healthy control SF were characterized by single and tandem MS measurements using a hybrid quadrupole-Orbitrap and a linear ion trap mass analysers. The proposed approach enabled the identification of more than 360 PL. Univariate statistical analyses highlight abnormality of PL metabolism in the PD group, suggesting down- or up-regulation of certain species according to the extent of disease progression. These findings, although preliminary, suggest that the phospholipidome of human SF represents a source of potential biomarkers for the early diagnosis of PD. The dysregulation of ethanolamine plasmalogens in the circulatory system, especially those containing polyunsaturated fatty acids (PUFA), might be likely associated with neurodegeneration.
Collapse
Affiliation(s)
- Cosima D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Anna Maria M Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70100 Bari, Italy.
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Roma, Italy.
| | - Laura Savino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70100 Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
12
|
Calvano CD, Ventura G, Sardanelli AM, Losito I, Palmisano F, Cataldi TRI. Identification of neutral and acidic glycosphingolipids in the human dermal fibroblasts. Anal Biochem 2019; 581:113348. [PMID: 31251925 DOI: 10.1016/j.ab.2019.113348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
Skin fibroblasts are recognized as a valuable model of primary human cells able of mirroring the chronological and biological aging. Here, a lipidomic study of glycosphingolipids (GSL) occurring in the easily accessible human dermal fibroblasts (HDF) is presented. Reversed-phase liquid chromatography with negative electrospray ionization (RPLC-ESI) coupled to either orbitrap or linear ion-trap multiple-stage mass spectrometry was applied to characterize GSL in commercially adult and neonatal primary human fibroblast cells and in skin samples taken from an adult volunteer. Collision-induced dissociation in negative ion mode allowed us to get information on the monosaccharide number and ceramide composition, whereas tandem mass spectra on the ceramide anion was useful to identify the sphingoid base. Nearly sixty endogenous GSL species were successfully recognized, namely 33 hexosyl-ceramides (i.e., HexCer, Hex2Cer and Hex3Cer) and 24 gangliosides as monosialic acid GM1, GM2 and GM3, along with 5 globosides Gb4. An average content of GSLs was attained and the most representative GSL in skin fibroblasts were Hex3Cer, also known as Gb3Cer, followed by Gb4, HexCer and Hex2Cer , while gangliosides were barely quantifiable. The most abundant GSLs in the examined cell lines share the same ceramide base (i.e. d18:1) and the relative content was d18:1/24:1 > d18:1/24:0 > d18:1/16:0 > d18:1/22:0.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Italy; Department of Medicine, Campus Bio-Medico University of Rome, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
13
|
Synergistic Effect of Mitochondrial and Lysosomal Dysfunction in Parkinson's Disease. Cells 2019; 8:cells8050452. [PMID: 31091796 PMCID: PMC6563092 DOI: 10.3390/cells8050452] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Crosstalk between lysosomes and mitochondria plays a central role in Parkinson’s Disease (PD). Lysosomal function may be influenced by mitochondrial quality control, dynamics and/or respiration, but whether dysfunction of endocytic or autophagic pathway is associated with mitochondrial impairment determining accumulation of defective mitochondria, is not yet understood. Here, we performed live imaging, western blotting analysis, sequencing of mitochondrial DNA (mtDNA) and senescence-associated beta-galactosidase activity assay on primary fibroblasts from a young patient affected by PD, her mother and a healthy control to analyze the occurrence of mtDNA mutations, lysosomal abundance, acidification and function, mitochondrial biogenesis activation and senescence. We showed synergistic alterations in lysosomal functions and mitochondrial biogenesis, likely associated with a mitochondrial genetic defect, with a consequent block of mitochondrial turnover and occurrence of premature cellular senescence in PARK2-PD fibroblasts, suggesting that these alterations represent potential mechanisms contributing to the loss of dopaminergic neurons.
Collapse
|
14
|
Bianco M, Vergara D, De Domenico S, Maffia M, Gaballo A, Arima V. Quartz Crystal Microbalance as Cell-Based Biosensor to Detect and Study Cytoskeletal Alterations and Dynamics. Biotechnol J 2018; 13:e1700699. [PMID: 29663725 DOI: 10.1002/biot.201700699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/09/2018] [Indexed: 02/04/2023]
Abstract
Several techniques can be used to monitor cell dynamism after a perturbation. Among these, Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) offers the great advantage to study the mechanical properties of cells in real-time and with a great sensitivity. Here, we used QCM-D to investigate the effects of two cytoskeleton-targeting agents, cytochalasin D (CytoD) and Y27632, on human MCF-7 cells. Cell adhesion on the sensor surface, crucial for in-flow experiments, was obtained by covalent adsorption of a fibronectin (FN) film, an extracellular matrix (ECM) protein. Direct analysis of MCF-7 cells on FN-coated sensor, shows a specific cellular response that was revealed and quantified by QCM-D after drugs exposure. Notably, upon treatment with Y27632, we observed a two-regime dissipation behavior that we associated with specific modifications of actin filaments and signaling proteins providing a link between biophysical and molecular mechanisms. Overall, this approach opens new opportunities for studying cellular response to mechanical cues in different biological conditions.
Collapse
Affiliation(s)
- Monica Bianco
- CNR-NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.,Laboratory of Clinical Proteo-mics, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy
| | - Stefania De Domenico
- Biotecgen, c/o Department of Biological and Environmental Sciences and Technologies, Lecce, Italy.,Institute of Sciences of Food Production, National Research Council, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.,Laboratory of Clinical Proteo-mics, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy
| | - Antonio Gaballo
- CNR-NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Lecce, Italy
| | - Valentina Arima
- CNR-NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Lecce, Italy
| |
Collapse
|
15
|
Girolimetti G, Guerra F, Iommarini L, Kurelac I, Vergara D, Maffia M, Vidone M, Amato LB, Leone G, Dusi S, Tiranti V, Perrone AM, Bucci C, Porcelli AM, Gasparre G. Platinum-induced mitochondrial DNA mutations confer lower sensitivity to paclitaxel by impairing tubulin cytoskeletal organization. Hum Mol Genet 2018; 26:2961-2974. [PMID: 28486623 DOI: 10.1093/hmg/ddx186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
Development of chemoresistance is a cogent clinical issue in oncology, whereby combination of anticancer drugs is usually preferred also to enhance efficacy. Paclitaxel (PTX), combined with carboplatin, represents the standard first-line chemotherapy for different types of cancers. We here depict a double-edge role of mitochondrial DNA (mtDNA) mutations induced in cancer cells after treatment with platinum. MtDNA mutations were positively selected by PTX, and they determined a decrease in the mitochondrial respiratory function, as well as in proliferative and tumorigenic potential, in terms of migratory and invasive capacity. Moreover, cells bearing mtDNA mutations lacked filamentous tubulin, the main target of PTX, and failed to reorient the Golgi body upon appropriate stimuli. We also show that the bioenergetic and cytoskeletal phenotype were transferred along with mtDNA mutations in transmitochondrial hybrids, and that this also conferred PTX resistance to recipient cells. Overall, our data show that platinum-induced deleterious mtDNA mutations confer resistance to PTX, and confirm what we previously reported in an ovarian cancer patient treated with carboplatin and PTX who developed a quiescent yet resistant tumor mass harboring mtDNA mutations.
Collapse
Affiliation(s)
- Giulia Girolimetti
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Michele Vidone
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Laura Benedetta Amato
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Giulia Leone
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sabrina Dusi
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute Carlo Besta, 20126 Milan, Italy
| | - Anna Myriam Perrone
- Unit of Gynecologic Oncology, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Interdepartmental Center for Industrial Research, Health Sciences and Technologies (CIRI-HST), University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University Hospital S.Orsola-Malpighi, 40138 Bologna, Italy
| |
Collapse
|
16
|
Resveratrol Modulation of Protein Expression in parkin-Mutant Human Skin Fibroblasts: A Proteomic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2198243. [PMID: 29138676 PMCID: PMC5613453 DOI: 10.1155/2017/2198243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
Abstract
In this study, we investigated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) analysis the effects of resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson's disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson's disease. Functional alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level, reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus, our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the cellular homeostasis in parkin-mutant fibroblasts.
Collapse
|
17
|
Activation mechanisms of the E3 ubiquitin ligase parkin. Biochem J 2017; 474:3075-3086. [PMID: 28860335 DOI: 10.1042/bcj20170476] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Monogenetic, familial forms of Parkinson's disease (PD) only account for 5-10% of the total number of PD cases, but analysis of the genes involved therein is invaluable to understanding PD-associated neurodegenerative signaling. One such gene, parkin, encodes a 465 amino acid E3 ubiquitin ligase. Of late, there has been considerable interest in the role of parkin signaling in PD and in identifying its putative substrates, as well as the elucidation of the mechanisms through which parkin itself is activated. Its dysfunction underlies both inherited and idiopathic PD-associated neurodegeneration. Here, we review recent literature that provides a model of activation of parkin in the setting of mitochondrial damage that involves PINK1 (PTEN-induced kinase-1) and phosphoubiquitin. We note that neuronal parkin is primarily a cytosolic protein (with various non-mitochondrial functions), and discuss potential cytosolic parkin activation mechanisms.
Collapse
|
18
|
Vergara D, Stanca E, Guerra F, Priore P, Gaballo A, Franck J, Simeone P, Trerotola M, De Domenico S, Fournier I, Bucci C, Salzet M, Giudetti AM, Maffia M. β-Catenin Knockdown Affects Mitochondrial Biogenesis and Lipid Metabolism in Breast Cancer Cells. Front Physiol 2017; 8:544. [PMID: 28798698 PMCID: PMC5529387 DOI: 10.3389/fphys.2017.00544] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
β-catenin plays an important role as regulatory hub in several cellular processes including cell adhesion, metabolism, and epithelial mesenchymal transition. This is mainly achieved by its dual role as structural component of cadherin-based adherens junctions, and as a key nuclear effector of the Wnt pathway. For this dual role, different classes of proteins are differentially regulated via β-catenin dependent mechanisms. Here, we applied a liquid chromatography-mass spectrometry (LC-MS/MS) approach to identify proteins modulated after β-catenin knockdown in the breast cancer cell line MCF-7. We used a label free analysis to compare trypsin-digested proteins from CTR (shCTR) and β-catenin knockout cells (shβcat). This led to the identification of 98 differentially expressed proteins, 53 of them were up-regulated and 45 down-regulated. Loss of β-catenin induced morphological changes and a significant modulation of the expression levels of proteins associated with primary metabolic processes. In detail, proteins involved in carbohydrate metabolism and tricarboxylic acid cycle were found to be down-regulated, whereas proteins associated to lipid metabolism were found up-regulated in shβcat compared to shCTR. A loss of mitochondrial mass and membrane potential was also assessed by fluorescent probes in shβcat cells with respect to the controls. These data are consistent with the reduced expression of transcriptional factors regulating mitochondrial biogenesis detected in shβcat cells. β-catenin driven metabolic reprogramming resulted also in a significant modulation of lipogenic enzyme expression and activity. Compared to controls, β-catenin knockout cells showed increased incorporation of [1-14C]acetate and decreased utilization of [U-14C]glucose for fatty acid synthesis. Our data highlight a role of β-catenin in the regulation of metabolism and energy homeostasis in breast cancer cells.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" HospitalLecce, Italy
| | - Eleonora Stanca
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" HospitalLecce, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Paola Priore
- CNR NANOTEC - Institute of NanotechnologyLecce, Italy
| | | | - Julien Franck
- University of Lille, Institut national de la santé et de la recherche médicale, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISMLille, France
| | - Pasquale Simeone
- Unit of Cytomorphology, CeSI-MeT and Department of Medicine and Aging Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio"Chieti, Italy
| | - Marco Trerotola
- Unit of Cancer Pathology, CeSI-MeT and Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio"Chieti, Italy
| | | | - Isabelle Fournier
- University of Lille, Institut national de la santé et de la recherche médicale, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISMLille, France
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Michel Salzet
- University of Lille, Institut national de la santé et de la recherche médicale, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISMLille, France
| | - Anna M Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" HospitalLecce, Italy
| |
Collapse
|
19
|
Lobasso S, Tanzarella P, Vergara D, Maffia M, Cocco T, Corcelli A. Lipid profiling of parkin-mutant human skin fibroblasts. J Cell Physiol 2017; 232:3540-3551. [PMID: 28109117 DOI: 10.1002/jcp.25815] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 12/14/2022]
Abstract
Parkin mutations are a major cause of early-onset Parkinson's disease (PD). The impairment of protein quality control system together with defects in mitochondria and autophagy process are consequences of the lack of parkin, which leads to neurodegeneration. Little is known about the role of lipids in these alterations of cell functions. In the present study, parkin-mutant human skin primary fibroblasts have been considered as cellular model of PD to investigate on possible lipid alterations associated with the lack of parkin protein. Dermal fibroblasts were obtained from two unrelated PD patients with different parkin mutations and their lipid compositions were compared with that of two control fibroblasts. The lipid extracts of fibroblasts have been analyzed by combined matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) and thin-layer chromatography (TLC). In parallel, we have performed direct MALDI-TOF/MS lipid analyses of intact fibroblasts by skipping lipid extraction steps. Results show that the proportions of some phospholipids and glycosphingolipids were altered in the lipid profiles of parkin-mutant fibroblasts. The detected higher level of gangliosides, phosphatidylinositol, and phosphatidylserine could be linked to dysfunction of autophagy and mitochondrial turnover; in addition, the lysophosphatidylcholine increase could represent the marker of neuroinflammatory state, a well-known component of PD.
Collapse
Affiliation(s)
- Simona Lobasso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | - Paola Tanzarella
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| |
Collapse
|
20
|
Christianson MS, Gerolstein AL, Lee HJ, Monseur BC, Robinson DN, Evans JP. Effects of Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) inhibition on sperm incorporation and cortical tension in mouse eggs. Mol Reprod Dev 2016; 83:188-9. [PMID: 26781791 DOI: 10.1002/mrd.22617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/17/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Mindy S Christianson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Baltimore, Maryland.,Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Amanda L Gerolstein
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Baltimore, Maryland
| | - Hyo J Lee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Baltimore, Maryland
| | - Brent C Monseur
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|