1
|
Mazumdar J, Chowdhury P, Mondal BC, Das AK, Ghosh U. Elevated Telomeric Repeat-Containing RNA (TERRA) Levels Linked to Telomere Dysfunction and Telomerase Inactivity in Blood Cells of Children With Aplastic Anemia. Cureus 2024; 16:e71241. [PMID: 39525171 PMCID: PMC11550455 DOI: 10.7759/cureus.71241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Aplastic anemia (AA) is characterized by pancytopenia and hypocellularity of the bone marrow. Certain inherited or genetic forms of AA have also been associated with telomere dysfunction. Here, we report the clinical manifestations of eleven AA patients aged between one and 12 years, along with the expression of a few candidate genes involved in the telomere length (TL) maintenance pathway. Methods The clinical manifestations were recorded for all the patients. The average telomere length of peripheral blood mononuclear cells (PBMC), the expression of telomerase subunits, telomere-associated proteins, and chromosome-specific telomeric repeat-containing RNA (TERRA) in whole blood cells of each patient was compared with an age-matched control group consisting of five clinically confirmed normal individuals. Results Out of 11 AA patients, four were found to have upper limb anomalies, and two showed short stature along with other defects. All the patients showed significantly shorter telomere length compared with the age-matched control group. The essential subunits of telomerase (hTERT and hTERC) were significantly low, and the shelterin protein is abnormally expressed in all patients implicating a compromised TL maintenance pathway. Notably, AA with combined androgen and prednisolone treatment showed a marked reduction of TERRA level than that of AA without androgen/prednisolone therapy. Conclusion Based on the findings and observations made, it appears that there might be an association between telomere dysfunction and elevated levels of TERRA in patients diagnosed with aplastic anemia who are 12 years of age or younger.
Collapse
Affiliation(s)
- Jayitri Mazumdar
- Department of Pediatric Cardiology, Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, IND
| | - Priyanka Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, IND
| | - Badal Chandra Mondal
- Department of Pediatrics, Calcutta National Medical College and Hospital, Kolkata, IND
| | - Anjan Kumar Das
- Department of Pathology, Calcutta National Medical College and Hospital, Kolkata, IND
| | - Utpal Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, IND
| |
Collapse
|
2
|
Joo SY, Sung K, Lee H. Balancing act: BRCA2's elaborate management of telomere replication through control of G-quadruplex dynamicity. Bioessays 2024; 46:e2300229. [PMID: 38922965 DOI: 10.1002/bies.202300229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.
Collapse
Affiliation(s)
- So Young Joo
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| | - Keewon Sung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, South Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Al-Turki TM, Maranon DG, Nelson CB, Lewis AM, Luxton JJ, Taylor LE, Altina N, Wu F, Du H, Kim J, Damle N, Overbey E, Meydan C, Grigorev K, Winer DA, Furman D, Mason CE, Bailey SM. Telomeric RNA (TERRA) increases in response to spaceflight and high-altitude climbing. Commun Biol 2024; 7:698. [PMID: 38862827 PMCID: PMC11167063 DOI: 10.1038/s42003-024-06014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 06/13/2024] Open
Abstract
Telomeres are repetitive nucleoprotein complexes at chromosomal termini essential for maintaining genome stability. Telomeric RNA, or TERRA, is a previously presumed long noncoding RNA of heterogeneous lengths that contributes to end-capping structure and function, and facilitates telomeric recombination in tumors that maintain telomere length via the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway. Here, we investigated TERRA in the radiation-induced DNA damage response (DDR) across astronauts, high-altitude climbers, healthy donors, and cellular models. Similar to astronauts in the space radiation environment and climbers of Mt. Everest, in vitro radiation exposure prompted increased transcription of TERRA, while simulated microgravity did not. Data suggest a specific TERRA DDR to telomeric double-strand breaks (DSBs), and provide direct demonstration of hybridized TERRA at telomere-specific DSB sites, indicative of protective TERRA:telomeric DNA hybrid formation. Targeted telomeric DSBs also resulted in accumulation of TERRA foci in G2-phase, supportive of TERRA's role in facilitating recombination-mediated telomere elongation. Results have important implications for scenarios involving persistent telomeric DNA damage, such as those associated with chronic oxidative stress (e.g., aging, systemic inflammation, environmental and occupational radiation exposures), which can trigger transient ALT in normal human cells, as well as for targeting TERRA as a therapeutic strategy against ALT-positive tumors.
Collapse
Affiliation(s)
- Taghreed M Al-Turki
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
- Lineberger Comprehensive Cancer Center and Departments of Microbiology and Immunology, and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Christopher B Nelson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW, 2145, Australia
| | - Aidan M Lewis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Noelia Altina
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Fei Wu
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA, USA
| | - Huixun Du
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A Winer
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA, USA
| | - David Furman
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford, CA, USA
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
4
|
Stylianakis E, Chan JPK, Law PP, Jiang Y, Khadayate S, Karimi MM, Festenstein R, Vannier JB. Mouse HP1γ regulates TRF1 expression and telomere stability. Life Sci 2023; 331:122030. [PMID: 37598977 DOI: 10.1016/j.lfs.2023.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
AIMS Telomeric repeat-containing RNAs are long non-coding RNAs generated from the telomeres. TERRAs are essential for the establishment of heterochromatin marks at telomeres, which serve for the binding of members of the heterochromatin protein 1 (HP1) protein family of epigenetic modifiers involved with chromatin compaction and gene silencing. While HP1γ is enriched on gene bodies of actively transcribed human and mouse genes, it is unclear if its transcriptional role is important for HP1γ function in telomere cohesion and telomere maintenance. We aimed to study the effect of mouse HP1γ on the transcription of telomere factors and molecules that can affect telomere maintenance. MAIN METHODS We investigated the telomere function of HP1γ by using HP1γ deficient mouse embryonic fibroblasts (MEFs). We used gene expression analysis of HP1γ deficient MEFs and validated the molecular and mechanistic consequences of HP1γ loss by telomere FISH, immunofluorescence, RT-qPCR and DNA-RNA immunoprecipitation (DRIP). KEY FINDINGS Loss of HP1γ in primary MEFs led to a downregulation of various telomere and telomere-accessory transcripts, including the shelterin protein TRF1. Its downregulation is associated with increased telomere replication stress and DNA damage (γH2AX), effects more profound in females. We suggest that the source for the impaired telomere maintenance is a consequence of increased telomeric DNA-RNA hybrids and TERRAs arising at and from mouse chromosomes 18 and X. SIGNIFICANCE Our results suggest an important transcriptional control by mouse HP1γ of various telomere factors including TRF1 protein and TERRAs that has profound consequences on telomere stability, with a potential sexually dimorphic nature.
Collapse
Affiliation(s)
- Emmanouil Stylianakis
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jackson Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Pui Pik Law
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Yi Jiang
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Sanjay Khadayate
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad Mahdi Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Richard Festenstein
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jean-Baptiste Vannier
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Dey P, Biswas S, Das R, Chatterjee S, Ghosh U. p38 MAPK inhibitor SB203580 enhances anticancer activity of PARP inhibitor olaparib in a synergistic way on non-small cell lung carcinoma A549 cells. Biochem Biophys Res Commun 2023; 670:55-62. [PMID: 37276791 DOI: 10.1016/j.bbrc.2023.05.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
The Poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib gives promising results against various types of cancers in clinical trials. The combination of drugs always increases therapeutic efficacy because of targeting multiple pathways of cancer progression. Our objective was to explore the potential synergistic anticancer activities of olaparib combined with p38 MAPK inhibitor (MAPKi) SB203580 on non-small cell lung carcinoma (NSCLC) A549 cells. The effects of the individual compound and their combination on cell survival, DNA damage as detected by γH2AX foci, expression of key proteins in Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ) repair, caspase 3 activation, nuclear fragmentation and telomerase regulation were studied in A549 cells. The results showed that olaparib and SB203580 individually reduced cell viability in a dose-dependent manner but combined treatment synergistically reduced cell viability. Olaparib combined with SB203580 significantly reduced error-free HR repair via reducing MRE11-RAD50 and promoted error-prone NHEJ repair by increasing Ku70-Ku80 leading to increased DNA damage-induced apoptosis. Notably, the alteration of proteins in HR/NHEJ pathways, DNA damage and induction of apoptosis was significant by combined treatment but not by 1 μM olaparib treatment alone. In addition, combined treatment reduced telomerase activity more than single treatment via reducing telomerase subunits. These data implicated that the anticancer potential of olaparib was significantly increased by combining SB203580 through increasing DNA damage-induced apoptosis and inhibiting telomerase activity.
Collapse
Affiliation(s)
- Payel Dey
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India
| | - Soumyajit Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India
| | - Rima Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India
| | - Sandipan Chatterjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India.
| |
Collapse
|
6
|
Ghosh S, De D, Banerjee V, Biswas S, Ghosh U. High throughput screening of a new fluorescent G-quadruplex ligand having telomerase inhibitory activity in human A549 cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-22. [PMID: 36919622 DOI: 10.1080/15257770.2023.2188220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Identification of a new G-quadruplex ligand having anti-telomerase activity would be a promising strategy for cancer therapy. The screened compound from ZINC database using docking studies was experimentally verified for its binding with three different telomeric G-quadruplex DNA sequences and anti-telomerase activity in A549 cells. Identified compound is an intrinsic fluorescent molecule, permeable to live cells and has a higher affinity to 22AG out of three different telomeric G-quadruplex DNA. It showed cytotoxicity and a significant reduction of telomerase activity in human A549 cells at a very low dose. So, this compound has a good anti-cancer effect.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Debapriya De
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Victor Banerjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Soumyajit Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
7
|
Expression of Cellular and Extracellular TERRA, TERC and TERT in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23116183. [PMID: 35682861 PMCID: PMC9181112 DOI: 10.3390/ijms23116183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/14/2023] Open
Abstract
Non-coding RNAs are transcribed from telomeres and the telomeric repeat-containing RNAs (TERRA) are implicated in telomere homeostasis and in cancer. In this study, we aimed to assess in hepatocellular carcinoma (HCC) the cellular and extracellular expression of TERRA, the telomerase RNA subunit (TERC) and the telomerase catalytic subunit (TERT). We determined by qPCR the expression level of TERRA 1_2_10_13q, TERRA 15q, TERRA XpYp, TERC and of TERT mRNA in HCC tissues and in the plasma of HCC patients. Further, we profiled the same transcripts in the HCC cell lines, HA22T/VGH and SKHep1C3, and in the extracellular vesicles (EVs) derived from their secretomes. We found that the expression of TERRA and TERT mRNA was significantly deregulated in HCC, being TERRA downregulated and TERT mRNA upregulated in HCC tissues vs. the peritumoral (PT) ones, and the receiver operating characteristic (ROC) curve analyses revealed a significant ability in discriminating HCC from PT tissue. Further, the determinations of circulating TERRA and TERC showed higher amounts of these transcripts in the plasma of HCC patients vs. controls and ROC analyses gave significant results. The expression characterization of the cultured HCC cells showed their ability to produce and secrete TERRA and TERC into the EVs; the ability to produce TERT mRNA that was not detectable in the EVs; and the ability to respond to sorafenib treatment increasing TERRA expression. Our results highlight that: (i) both cellular and extracellular expressions of TERRA and TERC are dysregulated in HCC as well as the cellular expression of TERT mRNA and (ii) the combined detection of TERRA and TERC in plasma may represent a promising approach for non-invasive diagnostic molecular indicators of HCC.
Collapse
|
8
|
De D, Chowdhury P, Panda SK, Ghosh U. Leaf Extract and Active Fractions of Dillenia pentagyna Roxb. Reduce In Vitro Human Cancer Cell Migration Via NF-κB Pathway. Integr Cancer Ther 2022; 21:15347354221128832. [PMID: 36419372 PMCID: PMC9703490 DOI: 10.1177/15347354221128832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Different parts of Dillenia pentagyna have long been used in traditional medicines to cure several diseases including cancer. However, the mechanism(s) of anti-cancer effects are still unknown. We aimed to elucidate the anti-metastatic potential of ethanolic extracts of leaves of D. pentagyna (EELDP) and active fractions of it in highly metastatic human cancer cells. METHODS We screened different HPLC fractions of EELDP based on their anti-metastatic effect. We used TLC and ESI-MS for determining the presence of various phytochemicals in EELDP and fractions. We monitored in vitro anti-metastasis effect of EELDP (0-0.6 mg/ml) and active fractions (0-0.050 mg/ml) on various human cancer cells like A549, HeLa, and U2OS. RESULTS EELDP significantly reduced cell viability and cell migration in A549, HeLa, and U2OS cells. However, higher sensitivity was observed in A549 cells. We screened 2 active HPLC fractions F6 and F8 having anti-MMPs activity. EELDP and active fractions reduced metastasis via the NF-κB pathway, decreased the expression of Vimentin, N-cadherin, and increased the expression of Claudin-1. CONCLUSION Significant reduction of metastasis by EELDP at a dose of 0.1 mg/ml or by active fractions at 0.050 mg/ml implicates that the active compound(s) present in crude or fractions are extremely potent to control highly metastatic cancer.
Collapse
Affiliation(s)
- Debapriya De
- University of Kalyani, Kalyani, West Bengal, India
| | | | | | - Utpal Ghosh
- University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
9
|
Sadhukhan R, Ghosh U. PARP1 modulates telomere sister chromatid exchange and telomere length homeostasis by regulating telomere localization of SLX4 in U2OS cells. Life Sci 2021; 277:119556. [PMID: 33945829 DOI: 10.1016/j.lfs.2021.119556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Poly(ADP-ribose) polymerase1 (PARP1) interacts and poly(ADP-ribosyl)ates telomere repeat binding factor 2 (TRF2), which acts as a platform to recruit a large number of proteins at the telomere. Since the discovery of TRF2-SLX4 interaction, SLX4 is becoming the key player in telomere length (TL) maintenance and repair by telomere sister chromatid exchange (T-SCE). Defective TL maintenance pathway results in a spectrum of diseases called telomeropathies like dyskeratosis congenita, aplastic anemia, fanconi anemia, cancer. We aimed to study the role of SLX4 and PARP1 on each other's telomere localization, T-SCE, and TL maintenance in human telomerase-negative osteosarcoma U2OS cells to understand some of the molecular mechanisms of telomere homeostasis. MATERIALS AND METHODS We checked the role of SLX4 and PARP1 on each other's telomere localization by telomere immunofluorescence. We have cloned full-length wild-type and catalytically inactive mutant PARP1 to understand the role of poly(ADP-ribosyl)ation reaction by PARP1 in telomere length homeostasis. TL of U2OS cells was measured by Q-FISH. T-SCE was measured by Telomere-FISH. KEY FINDINGS We observed that SLX4 has no role in the telomere localization of PARP1. However, reduced localization of SLX4 at undamaged and damaged telomere upon PARP1 depletion was reversed by overexpression of exogenous wild-type PARP1 but not by overexpression of catalytically inactive mutant PARP1. PARP1 depletion synergized SLX4 depletion-mediated reduction of T-SCE. Furthermore, SLX4 depletion elongated TL, and combined insufficiency of SLX4 with PARP1 further elongated TL. CONCLUSION So, PARP1 controls SLX4 recruitment at telomere by poly(ADP-ribosyl)ation reaction, thereby regulating SLX4-mediated T-SCE and TL homeostasis.
Collapse
Affiliation(s)
- Ratan Sadhukhan
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India.
| |
Collapse
|
10
|
Kang S, Cao J, Zhang M, Li X, Guo QL, Zeng H, Wei Z, Gong X, Wang J, Liu B, Shu B, Xu X, Huang ZS, Li D. Transcriptional regulation of telomeric repeat-containing RNA by acridine derivatives. RNA Biol 2021; 18:2261-2277. [PMID: 33749516 DOI: 10.1080/15476286.2021.1899652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Telomere is a specialized DNA-protein complex that plays an important role in maintaining chromosomal integrity. Shelterin is a protein complex formed by six different proteins, with telomeric repeat factors 1 (TRF1) and 2 (TRF2) binding to double-strand telomeric DNA. Telomeric DNA consists of complementary G-rich and C-rich repeats, which could form G-quadruplex and intercalated motif (i-motif), respectively, during cell cycle. Its G-rich transcription product, telomeric repeat-containing RNA (TERRA), is essential for telomere stability and heterochromatin formation. After extensive screening, we found that acridine derivative 2c and acridine dimer DI26 could selectively interact with TRF1 and telomeric i-motif, respectively. Compound 2c blocked the binding of TRF1 with telomeric duplex DNA, resulting in up-regulation of TERRA. Accumulated TERRA could bind with TRF1 at its allosteric site and further destabilize its binding with telomeric DNA. In contrast, DI26 could destabilize telomeric i-motif, resulting in down-regulation of TERRA. Both compounds exhibited anti-tumour activity for A549 cells, but induced different DNA damage pathways. Compound 2c significantly suppressed tumour growth in A549 xenograft mouse model. The function of telomeric i-motif structure was first studied with a selective binding ligand, which could play an important role in regulating TERRA transcription. Our results showed that appropriate level of TERRA transcript could be important for stability of telomere, and acridine derivatives could be further developed as anti-cancer agents targeting telomere. This research increased understanding for biological roles of telomeric i-motif, TRF1 and TERRA, as potential anti-cancer drug targets.
Collapse
Affiliation(s)
- Shuangshuang Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Jiaojiao Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Xiaoya Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Qian-Liang Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Huang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Jing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Bobo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou and P.R. China
| | - Xiaoli Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou and P.R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| |
Collapse
|
11
|
De D, Chowdhury P, Panda SK, Ghosh U. Ethanolic extract of leaf of Dillenia pentagyna reduces in-vitro cell migration and induces intrinsic pathway of apoptosis via downregulation of NF-κβ in human NSCLC A549 cells. J Cell Biochem 2019; 120:19841-19857. [PMID: 31318086 DOI: 10.1002/jcb.29289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Despite the advancement of the pharmaceutical industry, medicinal plants are still a reliable source of traditional medicines to cure a number of diseases. Various parts of Dillenia pentagyna are used in traditional medicine in India for treatment of various disorders including cancers, but detailed mechanisms are still unknown. Dried leaves of D. pentagyna were extracted with ethanol and termed as an ethanolic extract of leaves of D. pentagyna (EELDP). Our aim was to elucidate the role of EELDP in in-vitro cell migration and apoptosis in highly metastatic human lung adenocarcinoma A549 cells. We measured cell viability and in-vitro cell migration in three different human cancer cells A549, HeLa and U2OS treated with EELDP (0-0.6 mg/mL). However, A549 cells showed higher sensitivity to EELDP treatment. Hence we studied several key markers of metastasis and apoptosis pathway in A549 cells treated with EELDP. EELDP treatment significantly reduced in-vitro cell migration, wound healing, expression and activity of MMP-2, MMP-9 via reduction of nuclear factor kappa Beta (NF-κβ). EELDP also reduced vimentin, N-cadherin and increased claudin-1. The intrinsic pathway of apoptosis was triggered by EELDP via the NF-κβ pathway through the increase of the Bax to Bcl2 ratio, leading to the fall of mitochondrial membrane potential and subsequently induced release of cytochrome c, activation of caspase-3 followed by nuclear fragmentation in A549 cells. Furthermore, we observed change of a few markers of metastasis and apoptosis in other two cell types HeLa and U2OS treated with EELDP. These data implicate that the effect of EELDP is not cell-specific. Since only 0.1 mg/mL EELDP significantly reduces in-vitro cell migration and increases apoptosis, the active compound(s) present in EELDP is very much potent to control highly metastatic cancer.
Collapse
Affiliation(s)
- Debapriya De
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Priyanka Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Sujogya K Panda
- Department of Zoology, North Orissa University, Baripada, Odisha, India
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Utpal Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
12
|
Reduction of metastatic potential by inhibiting EGFR/Akt/p38/ERK signaling pathway and epithelial-mesenchymal transition after carbon ion exposure is potentiated by PARP-1 inhibition in non-small-cell lung cancer. BMC Cancer 2019; 19:829. [PMID: 31438892 PMCID: PMC6704719 DOI: 10.1186/s12885-019-6015-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Carbon ion (12C) radiotherapy is becoming very promising to kill highly metastatic cancer cells keeping adjacent normal cells least affected. Our previous study shows that combined PARP-1 inhibition with 12C ion reduces MMP-2,-9 synergistically in HeLa cells but detailed mechanism are not clear. To understand this mechanism and the rationale of using PARP-1 inhibitor with 12C ion radiotherapy for better outcome in controlling metastasis, we investigated metastatic potential in two non-small cell lung cancer (NSCLC) A549 and H1299 (p53-deficient) cells exposed with 12C ion in presence and absence of PARP-1 inhibition using siRNA or olaparib. METHODS We monitored cell proliferation, in-vitro cell migration, wound healing, expression and activity of MMP-2, - 9 in A549 and p53-deficient H1299 cell lines exposed with 12C ion with and without PARP-1 inhibitor olaparib/DPQ. Expression and phosphorylation of NF-kB, EGFR, Akt, p38, ERK was also observed in A549 and H1299 cells exposed with 12C ion with and without PARP-1 inhibition using siRNA or olaparib. We also checked expression of few marker genes involved in epithelial-mesenchymal transition (EMT) pathways like N-cadherin, vimentin, anillin, claudin-1, - 2 in both NSCLC. To determine the generalized effect of 12C ion and olaparib in inhibition of cell's metastatic potential, wound healing and activity of MMP-2, - 9 was also studied in HeLa and MCF7 cell lines after 12C ion exposure and in combination with PARP-1 inhibitor olaparib. RESULTS Our experiments show that 12C ion and PARP-1 inhibition separately reduces cell proliferation, cell migration, wound healing, phosphorylation of EGFR, Akt, p38, ERK resulting inactivation of NF-kB. Combined treatment abolishes NF-kB expression and hence synergistically reduces MMP-2, - 9 expressions. Each single treatment reduces N-cadherin, vimentin, anillin but increases claudin-1, - 2 leading to suppression of EMT process. However, combined treatment synergistically alters these proteins to suppress EMT pathways significantly. CONCLUSION The activation pathways of transcription of MMP-2,-9 via NF-kB and key marker proteins in EMT pathways are targeted by both 12C ion and olaparib/siRNA. Hence, 12C ion radiotherapy could potentially be combined with olaparib as chemotherapeutic agent for better control of cancer metastasis.
Collapse
|
13
|
Marión RM, Montero JJ, López de Silanes I, Graña-Castro O, Martínez P, Schoeftner S, Palacios-Fábrega JA, Blasco MA. TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2. eLife 2019; 8:44656. [PMID: 31426913 PMCID: PMC6701927 DOI: 10.7554/elife.44656] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that regulate pluripotency are still largely unknown. Here, we show that Telomere Repeat Binding Factor 1 (TRF1), a component of the shelterin complex, regulates the genome-wide binding of polycomb and polycomb H3K27me3 repressive marks to pluripotency genes, thereby exerting vast epigenetic changes that contribute to the maintenance of mouse ES cells in a naïve state. We further show that TRF1 mediates these effects by regulating TERRA, the lncRNAs transcribed from telomeres. We find that TERRAs are enriched at polycomb and stem cell genes in pluripotent cells and that TRF1 abrogation results in increased TERRA levels and in higher TERRA binding to those genes, coincidental with the induction of cell-fate programs and the loss of the naïve state. These results are consistent with a model in which TRF1-dependent changes in TERRA levels modulate polycomb recruitment to pluripotency and differentiation genes. These unprecedented findings explain why TRF1 is essential for the induction and maintenance of pluripotency.
Collapse
Affiliation(s)
- Rosa María Marión
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Juan J Montero
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Isabel López de Silanes
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Stefan Schoeftner
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
14
|
Sengupta A, Ganguly A, Chowdhury S. Promise of G-Quadruplex Structure Binding Ligands as Epigenetic Modifiers with Anti-Cancer Effects. Molecules 2019; 24:E582. [PMID: 30736345 PMCID: PMC6384772 DOI: 10.3390/molecules24030582] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics-in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory regions. In this context, G4 structure-binding ligands attain significance as molecules with potential to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4 structure-binding ligands in epigenetic therapy.
Collapse
Affiliation(s)
- Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
- GNR Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| |
Collapse
|