1
|
Goelzer M, Howard S, Zavala AG, Conway D, Rubin J, Uzer G. Depletion of SUN1/2 induces heterochromatin accrual in mesenchymal stem cells during adipogenesis. Commun Biol 2025; 8:428. [PMID: 40082539 PMCID: PMC11906923 DOI: 10.1038/s42003-025-07832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
Critical to the mechano-regulation of mesenchymal stem cells (MSC), Linker of the Nucleoskeleton and Cytoskeleton (LINC) complex transduces cytoskeletal forces to the nuclei. The LINC complex contains outer nuclear membrane Nesprin proteins that associate with the cytoskeleton and their inner nuclear membrane couplers, SUN proteins. Here we tested the hypothesis that severing of the LINC complex-mediated cytoskeletal connections may have different effects on chromatin organization and MSC differentiation than those due to ablation of SUN proteins. In cells cultured under adipogenic conditions, interrupting LINC complex function through dominant-negative KASH domain expression (dnKASH) increased adipogesis while heterochromatin H3K27 and H3K9 methylation was unaltered. In contrast, SUN1/2 depletion inhibited adipogenic gene expression and fat droplet formation; as well the anti-adipogenic effect of SUN1/2 depletion was accompanied by increased H3K9me3, which was enriched on Adipoq, silencing this fat locus. We conclude that releasing the nucleus from cytoskeletal constraints via dnKASH accelerates adipogenesis while depletion of SUN1/2 increases heterochromatin accrual on adipogenic genes in a fashion independent of LINC complex function. Therefore, while these two approaches both disable LINC complex functions, their divergent effects on the epigenetic landscape indicate they cannot be used interchangeably to study mechanical regulation of cell differentiation.
Collapse
Affiliation(s)
- Matthew Goelzer
- Boise State University, Boise, ID, USA
- Oral Roberts University, Tulsa, OK, USA
| | | | | | - Daniel Conway
- The Ohio State University University, Columbus, OH, USA
| | - Janet Rubin
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
2
|
Wang Z, Luo W, Wang Q, Liu C, Gong Y, Li B, Zeng X, Lin J, Su Z, Li X, Yu Y, Liu Z, Gao L, Liao L. hUCMSCs Regulate Bile Acid Metabolism to Prevent Heart Failure–Induced Intestinal Injury by Inhibiting the Activation of the STAT3/NF‐κB/MAPK Signaling Pathway via TGR5. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
ABSTRACTThe protective effects of human umbilical cord mesenchymal stem cells (hUCMSCs) on heart failure (HF)‐induced intestinal injury have not been fully understood. Flow cytometry and immunofluorescence analysis revealed that hUCMSCs renewed themselves, grew, and transformed into various cell types. Meanwhile, hUCMSCs safeguarded against intestinal damage, regulated imbalances in the intestinal flora and bile acid metabolism, and enhanced the levels of hyodeoxycholic acid (HDCA) in pigs with HF. HDCA protected against HF‐induced intestinal injury in mice through Takeda G protein–coupled receptor 5 (TGR5). Protein analysis showed that HDCA exerted protective effects on the intestines via the signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa B (NF‐κB)/mitogen‐activated protein kinase (MAPK) signaling pathway. Mouse experiments revealed that HDCA bound to TGR5 to inhibit MAPK and NF‐κB signaling pathway activation, which relies on the STAT3 signaling pathway. Moreover, hUCMSCs protected against intestinal injury in the pig model of HF by suppressing the activation of the STAT3/NF‐κB/MAPK signaling pathway via TGR5.
Collapse
Affiliation(s)
- Zetian Wang
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Wei Luo
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine Tongji University Shanghai China
| | - Qing Wang
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Chunzheng Liu
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yanshan Gong
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Baitian Li
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Xuejiao Zeng
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Jiaqi Lin
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Zehua Su
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Xin Li
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yongze Yu
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Zhongmin Liu
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Research Institute of Heart Failure, Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital Tongji University Shanghai China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Lijun Liao
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| |
Collapse
|
3
|
Zambito M, Viti F, Bosio AG, Ceccherini I, Florio T, Vassalli M. The Impact of Experimental Conditions on Cell Mechanics as Measured with Nanoindentation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1190. [PMID: 37049284 PMCID: PMC10097320 DOI: 10.3390/nano13071190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The evaluation of cell elasticity is becoming increasingly significant, since it is now known that it impacts physiological mechanisms, such as stem cell differentiation and embryogenesis, as well as pathological processes, such as cancer invasiveness and endothelial senescence. However, the results of single-cell mechanical measurements vary considerably, not only due to systematic instrumental errors but also due to the dynamic and non-homogenous nature of the sample. In this work, relying on Chiaro nanoindenter (Optics11Life), we characterized in depth the nanoindentation experimental procedure, in order to highlight whether and how experimental conditions could affect measurements of living cell stiffness. We demonstrated that the procedure can be quite insensitive to technical replicates and that several biological conditions, such as cell confluency, starvation and passage, significantly impact the results. Experiments should be designed to maximally avoid inhomogeneous scenarios to avoid divergences in the measured phenotype.
Collapse
Affiliation(s)
- Martina Zambito
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV 2, 16132 Genova, Italy
| | - Federica Viti
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Alessia G Bosio
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV 2, 16132 Genova, Italy
| | | | - Tullio Florio
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV 2, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Kayal C, Tamayo-Elizalde M, Adam C, Ye H, Jerusalem A. Voltage-Driven Alterations to Neuron Viscoelasticity. Bioelectricity 2022; 4:31-38. [PMID: 39372227 PMCID: PMC11450331 DOI: 10.1089/bioe.2021.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The consideration of neurons as coupled mechanical-electrophysiological systems is supported by a growing body of experimental evidence, including observations that cell membranes mechanically deform during the propagation of an action potential. However, the short-term (seconds to minutes) influence of membrane voltage on the mechanical properties of a neuron at the single-cell level remains unknown. Materials and Methods Here, we use microscale dynamic mechanical analysis to demonstrate that changes in membrane potential induce changes in the mechanical properties of individual neurons. We simultaneously measured the membrane potential and mechanical properties of individual neurons through a multiphysics single-cell setup. Membrane voltage of a single neuron was measured through whole-cell patch clamp. The mechanical properties of the same neuron were measured through a nanoindenter, which applied a dynamic indentation to the neuron at different frequencies. Results Neuronal storage and loss moduli were lower for positive voltages than negative voltages. Conclusion The observed effects of membrane voltage on neuron mechanics could be due to piezoelectric or flexoelectric effects and altered ion distributions under the applied voltage. Such effects could change cell mechanics by changing the intermolecular interactions between ions and the various biomolecules within the membrane and cytoskeleton.
Collapse
Affiliation(s)
- Celine Kayal
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Casey Adam
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Meng H, Chowdhury TT, Gavara N. The Mechanical Interplay Between Differentiating Mesenchymal Stem Cells and Gelatin-Based Substrates Measured by Atomic Force Microscopy. Front Cell Dev Biol 2021; 9:697525. [PMID: 34235158 PMCID: PMC8255986 DOI: 10.3389/fcell.2021.697525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Traditional methods to assess hMSCs differentiation typically require long-term culture until cells show marked expression of histological markers such as lipid accumulation inside the cytoplasm or mineral deposition onto the surrounding matrix. In parallel, stem cell differentiation has been shown to involve the reorganization of the cell’s cytoskeleton shortly after differentiation induced by soluble factors. Given the cytoskeleton’s role in determining the mechanical properties of adherent cells, the mechanical characterization of stem cells could thus be a potential tool to assess cellular commitment at much earlier time points. In this study, we measured the mechanical properties of hMSCs cultured on soft gelatin-based hydrogels at multiple time points after differentiation induction toward adipogenic or osteogenic lineages. Our results show that the mechanical properties of cells (stiffness and viscosity) and the organization of the actin cytoskeleton are highly correlated with lineage commitment. Most importantly, we also found that the mechanical properties and the topography of the gelatin substrate in the vicinity of the cells are also altered as differentiation progresses toward the osteogenic lineage, but not on the adipogenic case. Together, these results confirm the biophysical changes associated with stem cell differentiation and suggest a mechanical interplay between the differentiating stem cells and their surrounding extracellular matrix.
Collapse
Affiliation(s)
- Hongxu Meng
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Tina T Chowdhury
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.,Unit of Biophysics and Bioengineering, Medical School, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Liebman C, McColloch A, Rabiei M, Bowling A, Cho M. Mechanics of the cell: Interaction mechanisms and mechanobiological models. CURRENT TOPICS IN MEMBRANES 2020; 86:143-184. [PMID: 33837692 DOI: 10.1016/bs.ctm.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of cell mechanics has long been recognized for the cell development and function. Biomechanics plays an important role in cell metabolism, regulation of mechanotransduction pathways and also modulation of nuclear response. The mechanical properties of the cell are likely determined by, among many others, the cytoskeleton elasticity, membrane tension and cell-substrate adhesion. This coordinated but complex mechanical interplay is required however, for the cell to respond to and influence in a reciprocal manner the chemical and mechanical signals from the extracellular matrix (ECM). In an effort to better and more fully understand the cell mechanics, the role of nuclear mechanics has emerged as an important contributor to the overall cellular mechanics. It is not too difficult to appreciate the physical connection between the nucleus and the cytoskeleton network that may be connected to the ECM through the cell membrane. Transmission of forces from ECM through this connection is essential for a wide range of cellular behaviors and functions such as cytoskeletal reorganization, nuclear movement, cell migration and differentiation. Unlike the cellular mechanics that can be measured using a number of biophysical techniques that were developed in the past few decades, it still remains a daunting challenge to probe the nuclear mechanics directly. In this paper, we therefore aim to provide informative description of the cell membrane and cytoskeleton mechanics, followed by unique computational modeling efforts to elucidate the nucleus-cytoskeleton coupling. Advances in our knowledge of complete cellular biomechanics and mechanotransduction may lead to clinical relevance and applications in mechano-diseases such as atherosclerosis, stem cell-based therapies, and the development of tissue engineered products.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Manoochehr Rabiei
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan Bowling
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States.
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
7
|
Davidson PM, Fedorchak GR, Mondésert-Deveraux S, Bell ES, Isermann P, Aubry D, Allena R, Lammerding J. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells. LAB ON A CHIP 2019; 19:3652-3663. [PMID: 31559980 PMCID: PMC6810812 DOI: 10.1039/c9lc00444k] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through tissues and across endothelial cell layers, and changes to the mechanical properties of the nucleus can serve as novel biomarkers in processes such as cancer progression and stem cell differentiation. However, current techniques to measure the viscoelastic nuclear mechanical properties are often time consuming, limited to probing one cell at a time, or require expensive, highly specialized equipment. Furthermore, many current assays do not measure time-dependent properties, which are characteristic of viscoelastic materials. Here, we present an easy-to-use microfluidic device that applies the well-established approach of micropipette aspiration, adapted to measure many cells in parallel. The device design allows rapid loading and purging of cells for measurements, and minimizes clogging by large particles or clusters of cells. Combined with a semi-automated image analysis pipeline, the microfluidic device approach enables significantly increased experimental throughput. We validated the experimental platform by comparing computational models of the fluid mechanics in the device with experimental measurements of fluid flow. In addition, we conducted experiments on cells lacking the nuclear envelope protein lamin A/C and wild-type controls, which have well-characterized nuclear mechanical properties. Fitting time-dependent nuclear deformation data to power law and different viscoelastic models revealed that loss of lamin A/C significantly altered the elastic and viscous properties of the nucleus, resulting in substantially increased nuclear deformability. Lastly, to demonstrate the versatility of the devices, we characterized the viscoelastic nuclear mechanical properties in a variety of cell lines and experimental model systems, including human skin fibroblasts from an individual with a mutation in the lamin gene associated with dilated cardiomyopathy, healthy control fibroblasts, induced pluripotent stem cells (iPSCs), and human tumor cells. Taken together, these experiments demonstrate the ability of the microfluidic device and automated image analysis platform to provide robust, high throughput measurements of nuclear mechanical properties, including time-dependent elastic and viscous behavior, in a broad range of applications.
Collapse
Affiliation(s)
- Patricia M Davidson
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA. and Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Paris Science et Lettres, Sorbonne Université, France
| | - Gregory R Fedorchak
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA.
| | | | - Emily S Bell
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA.
| | - Philipp Isermann
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA.
| | - Denis Aubry
- Laboratoire MSSMat UMR CNRS 8579, CentraleSupelec, Université Paris-Saclay, France
| | - Rachele Allena
- Arts et Metiers ParisTech, LBM/Institut de Biomécanique Humaine Georges Charpak, France
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, USA.
| |
Collapse
|
8
|
Farzamfar S, Nazeri N, Salehi M, Valizadeh A, Marashi SM, Savari Kouzehkonan G, Ghanbari H. Will Nanotechnology Bring New Hope for Stem Cell Therapy? Cells Tissues Organs 2019; 206:229-241. [PMID: 31288229 DOI: 10.1159/000500517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/21/2019] [Indexed: 01/05/2025] Open
Abstract
The potential of stem cell therapy has been shown in preclinical trials for the treatment of damage and replacement of organs and degenerative diseases. After many years of research, its clinical application is limited. Currently there is not a single stem cell therapy product or procedure. Nanotechnology is an emerging field in medicine and has huge potential due to its unique characteristics such as its size, surface effects, tunnel effects, and quantum size effect. The importance of application of nanotechnology in stem cell technology and cell-based therapies has been recognized. In particular, the effects of nanotopography on stem cell differentiation, proliferation, and adhesion have become an area of intense research in tissue engineering and regenerative medicine. Despite the many opportunities that nanotechnology can create to change the fate of stem cell technology and cell therapies, it poses several risks since some nanomaterials are cytotoxic and can affect the differentiation program of stem cells and their viability. Here we review some of the advances and the prospects of nanotechnology in stem cell research and cell-based therapies and discuss the issues, obstacles, applications, and approaches with the aim of opening new avenues for further research.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Nazeri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Majid Salehi
- Tissue Engineering and Stem Cell Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Valizadeh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Savari Kouzehkonan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zyuz'kov GN, Udut EV, Miroshnichenko LA, Polyakova TY, Simanina EV, Stavrova LA, Prosekin GA, Minakova MY, Borodulina EV, Mareev IV, Gurto RV, Zhdanov VV, Udut VV. Role of JAK/STAT3 Signaling in Functional Stimulation of Mesenchymal Progenitor Cells by Fibroblast Growth Factor. Bull Exp Biol Med 2018; 165:18-21. [PMID: 29797128 DOI: 10.1007/s10517-018-4089-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 10/16/2022]
Abstract
JAK/STAT signaling pathway was examined during functional stimulation of mesenchymal progenitor cells with fibroblast growth factor. The differences were observed in the realizations of the proliferation-differentiation potential of CFU-fibroblasts under blockade of JAKs or during selective inactivation of STAT3. The study revealed stimulating influences of JAKs and STAT3 on mitotic activity of progenitor cells and individual roles of these proteins in the control of their maturation. Blockade of JAKs diminished the level of fibroblast colony formation and the score of actively proliferating CFU-fibroblasts at the background increase of the differentiation rate of progenitor cells. In contrast, STAT3 inhibitor resulted in a coordinated decrease of all examined parameters.
Collapse
Affiliation(s)
- G N Zyuz'kov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia. .,National Research Tomsk State University, Tomsk, Russia.
| | - E V Udut
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - L A Miroshnichenko
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - T Yu Polyakova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - E V Simanina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - L A Stavrova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - G A Prosekin
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - M Yu Minakova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - E V Borodulina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - I V Mareev
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - R V Gurto
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - V V Zhdanov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia
| | - V V Udut
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Tomsk, Russia.,National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
10
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Chen L, Jiang F, Qiao Y, Li H, Wei Z, Huang T, Lan J, Xia Y, Li J. Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C. J Cell Physiol 2018; 233:5112-5118. [PMID: 29215717 DOI: 10.1002/jcp.26336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
Stem cell-based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear-cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation.
Collapse
Affiliation(s)
- Liujing Chen
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Fulin Jiang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Yini Qiao
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Hong Li
- Hangzhou Dental Hospital, School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhangming Wei
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Tu Huang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Jingxiang Lan
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Yue Xia
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Juan Li
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Szczesny SE, Mauck RL. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. J Biomech Eng 2017; 139:2592356. [PMID: 27918797 DOI: 10.1115/1.4035350] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104;Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
13
|
Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization. Sci Rep 2017; 7:5219. [PMID: 28701767 PMCID: PMC5507932 DOI: 10.1038/s41598-017-05467-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/31/2017] [Indexed: 01/07/2023] Open
Abstract
The regulation of nuclear state by the cytoskeleton is an important part of cellular function. Actomyosin stress fibres, microtubules and intermediate filaments have distinct and complementary roles in integrating the nucleus into its environment and influencing its mechanical state. However, the interconnectedness of cytoskeletal networks makes it difficult to dissect their individual effects on the nucleus. We use simple image analysis approaches to characterize nuclear state, estimating nuclear volume, Poisson's ratio, apparent elastic modulus and chromatin condensation. By combining them with cytoskeletal quantification, we assess how cytoskeletal organization regulates nuclear state. We report for a number of cell types that nuclei display auxetic properties. Furthermore, stress fibres and intermediate filaments modulate the mechanical properties of the nucleus and also chromatin condensation. Conversely, nuclear volume and its gross morphology are regulated by intracellular outward pulling forces exerted by myosin. The modulation exerted by the cytoskeleton onto the nucleus results in changes that are of similar magnitude to those observed when the nucleus is altered intrinsically, inducing chromatin decondensation or cell differentiation. Our approach allows pinpointing the contribution of distinct cytoskeletal proteins to nuclear mechanical state in physio- and pathological conditions, furthering our understanding of a key aspect of cellular behaviour.
Collapse
|
14
|
Liu L, Luo Q, Sun J, Song G. Nucleus and nucleus-cytoskeleton connections in 3D cell migration. Exp Cell Res 2016; 348:56-65. [DOI: 10.1016/j.yexcr.2016.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 12/21/2022]
|
15
|
Wallrath LL, Bohnekamp J, Magin TM. Cross talk between the cytoplasm and nucleus during development and disease. Curr Opin Genet Dev 2016; 37:129-136. [PMID: 27110666 DOI: 10.1016/j.gde.2016.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
Mechanotransduction is a process whereby mechanical stimuli outside the cell are sensed by components of the plasma membrane and transmitted as signals through the cytoplasm that terminate in the nucleus. The nucleus responds to these signals by altering gene expression. During mechanotransduction, complex networks of proteins are responsible for cross talk between the cytoplasm and the nucleus. These proteins include cell membrane receptors, cytoplasmic filaments, LINC complex members that bridge the nucleus and cytoplasm, and nuclear envelope proteins that connect to the chromatin. Mechanotransduction also plays a critical role in development. Furthermore, it is possible that disrupted mechanotransduction leads to changes in gene expression that underlie the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Lori L Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Jens Bohnekamp
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, D-04103 Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|