1
|
Lu W, Yan L, Peng L, Wang X, Tang X, Du J, Lin J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cell therapy in acute on chronic liver failure: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res Ther 2025; 16:197. [PMID: 40254564 PMCID: PMC12010635 DOI: 10.1186/s13287-025-04303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Acute-on-chronic liver failure has become a serious global health burden, which is characterized by an acute deterioration of liver function, rapidly evolving organ failure, and high short-term mortality in patients with chronic liver disease. The pathogenesis includes extensive hepatic necrosis, which is related to intense systemic inflammation and subsequently causes the inflammatory cytokine storm, resulting in portal hypertension, organ dysfunction, and organ failure. Mesenchymal stem cells can function as seed cells to remodel and repair damaged liver tissues, thus showing potential therapeutic alternatives for patients with chronic liver disease. However, standard treatment protocols for mesenchymal stem cells in acute-on-chronic liver failure patients have not been established. METHODS We conducted a detailed search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library to find randomized controlled trials published before October 23, 2021. We formulated criteria for the literature screening according to the PICOS principle (Population, Intervention, Comparison, Outcome, Study design). Subsequently, the bias risk assessment tool was used to assess the quality of all enrolled studies. Finally, outcome measurements including the model of end-stage liver disease score, albumin, total bilirubin, coagulation function, and aminotransferase were extracted for statistical analysis. RESULTS A total of 7 clinical trials were included. The results of enrolled studies indicated that patients with acute-on-chronic liver failure who received mesenchymal stem cells inoculation showed a decreased MELD score in 4 weeks and 24 weeks, compared with counterparts who received conventional treatment. Reciprocally, mesenchymal stem cells inoculation improved the ALB levels in 4 weeks and 24 weeks. For secondary indicators, mesenchymal stem cells treatment significantly reduced INR levels and ALT levels, compared with the control group. Our results showed no significant differences in the incidence of adverse reactions or serious adverse events monitored in patients after mesenchymal stem cells inoculation. CONCLUSION This meta-analysis indicated that mesenchymal stem cell infusion is effective and safe in the treatment of patients with acute-on-chronic liver failure. Without increasing the incidence of adverse events or serious adverse events, MSC treatment improved liver function including a decrease in MELD score and an increase in ALB levels in patients with acute-on-chronic liver failure. However, large-cohort randomized controlled trials with longer follow-up periods are required to further confirm our conclusions.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Lulu Peng
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Jing Lin
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China.
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
- Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
2
|
Xu M, Chen Y. New perspectives in the definition and classification of acute-on-chronic liver failure. Chin Med J (Engl) 2024; 137:2521-2525. [PMID: 39313770 PMCID: PMC11557039 DOI: 10.1097/cm9.0000000000003289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Indexed: 09/25/2024] Open
Affiliation(s)
- Manman Xu
- Fourth Department of Liver Disease, Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing You’an Hospital, Capital Medical University, Beijing 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing You’an Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Lin S, Gao H, Ma H, Liao Z, Zhang D, Pan J, Zhu Y. A comprehensive meta-analysis of stem cell therapy for liver failure: Assessing treatment efficacy and modality. Ann Hepatol 2024; 30:101586. [PMID: 39293783 DOI: 10.1016/j.aohep.2024.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION AND OBJECTIVES This meta-analysis aims to evaluate the efficacy of stem cell therapy (SCT) for liver failure. MATERIALS AND METHODS The study adhered to the recommended guidelines of the PRISMA statement. Eligible studies published prior to May 13, 2023, were comprehensively searched in databases including PubMed, Web of Science, and Embase. Quality assessment was conducted using the Cochrane risk-of-bias tool, and the standard mean differences were calculated for the clinical parameters. The hazard ratios were determined by extracting individual patient data from the Kaplan-Meier curve. RESULTS A total of 2,937 articles were retrieved, and eight studies were included in the final analysis. Most of the studies focused on HBV-related liver failure and were randomized controlled trials. All studies utilized mesenchymal stem cells (MSCs), with the majority (62.5%) being allogeneic. The analysis revealed that combining stem cell therapy with standard medical treatment or plasma exchange significantly enhanced patient survival and reduced MELD scores. Specifically, allogeneic stem cells showed superior efficacy in improving survival outcomes compared to autologous stem cells. Furthermore, deep vessel injection plus a single injection demonstrated better effectiveness than peripheral vessel injection plus multiple injections in reducing MELD scores. CONCLUSIONS This comprehensive analysis underscores the potential of MSC therapy in significantly improving survival and clinical outcomes in patients with liver failure, highlighting the superior benefits of allogeneic MSCs and deep vessel plus single injection administration.
Collapse
Affiliation(s)
- Shenglong Lin
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China; Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350005, China
| | - Haibing Gao
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Huaxi Ma
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Ziyuan Liao
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Dongqing Zhang
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Jinshui Pan
- Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350005, China; Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian Province 350005, China
| | - Yueyong Zhu
- Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350005, China; Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian Province 350005, China.
| |
Collapse
|
4
|
Pharoun J, Berro J, Sobh J, Abou-Younes MM, Nasr L, Majed A, Khalil A, Joseph, Stephan, Faour WH. Mesenchymal stem cells biological and biotechnological advances: Implications for clinical applications. Eur J Pharmacol 2024; 977:176719. [PMID: 38849038 DOI: 10.1016/j.ejphar.2024.176719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into multiple lineages including bone, cartilage, muscle and fat. They hold immunomodulatory properties and therapeutic ability to treat multiple diseases, including autoimmune and chronic degenerative diseases. In this article, we reviewed the different biological properties, applications and clinical trials of MSCs. Also, we discussed the basics of manufacturing conditions, quality control, and challenges facing MSCs in the clinical setting. METHODS Extensive review of the literature was conducted through the databases PubMed, Google Scholar, and Cochrane. Papers published since 2015 and covering the clinical applications and research of MSC therapy were considered. Furthermore, older papers were considered when referring to pioneering studies in the field. RESULTS The most widely studied stem cells in cell therapy and tissue repair are bone marrow-derived mesenchymal stem cells. Adipose tissue-derived stem cells became more common and to a lesser extent other stem cell sources e.g., foreskin derived MSCs. MSCs therapy were also studied in the setting of COVID-19 infections, ischemic strokes, autoimmune diseases, tumor development and graft rejection. Multiple obstacles, still face the standardization and optimization of MSC therapy such as the survival and the immunophenotype and the efficiency of transplanted cells. MSCs used in clinical settings displayed heterogeneity in their function despite their extraction from healthy donors and expression of similar surface markers. CONCLUSION Mesenchymal stem cells offer a rising therapeutic promise in various diseases. However, their potential use in clinical applications requires further investigation.
Collapse
Affiliation(s)
- Jana Pharoun
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jana Berro
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jeanine Sobh
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | | | - Leah Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Ali Majed
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Joseph
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Stephan
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
5
|
Wang Y, Li M, Yang T, Xie Y, Wang FS, Hu J, Shi M. Human umbilical cord mesenchymal stem cell transplantation for the treatment of acute-on-chronic liver failure: protocol for a multicentre random double-blind placebo-controlled trial. BMJ Open 2024; 14:e084237. [PMID: 38925694 PMCID: PMC11202670 DOI: 10.1136/bmjopen-2024-084237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Acute-on-chronic liver failure (ACLF) is a prevalent and life-threatening liver disease with high short-term mortality. Although recent clinical trials on the use of mesenchymal stem cells (MSCs) for ACLF treatment have shown promising results, multicentre randomised controlled phase II clinical trials remain uncommon. The primary aim of this trial is to assess the safety and efficacy of different MSCs treatment courses for ACLF. METHODS AND ANALYSIS This is a multicentre, double-blind, two-stage, randomised and placebo-controlled clinical trial. In the first stage, 150 patients with ACLF will be enrolled and randomly assigned to either a control group (50 cases) or an MSCs treatment group (100 cases). They will receive either a placebo or umbilical cord-derived MSCs (UC-MSCs) treatment three times (at weeks 0, 1 and 2). In the second stage, 28 days after the first UC-MSCs infusion, surviving patients in the MSCs treatment group will be further randomly divided into MSCs-short and MSCs-prolonged groups at a 1:1 ratio. They will receive two additional rounds of placebo or UC-MSCs treatment at weeks 4 and 5. The primary endpoints are the transplant-free survival rate and the incidence of treatment-related adverse events. Secondary endpoints include international normalised ratio, total bilirubin, serum albumin, blood urea nitrogen, model for end-stage liver disease score and Child-Turcotte-Pugh score. ETHICS AND DISSEMINATION Ethical approval of this study has been obtained from the Fifth Medical Center of the Chinese PLA General Hospital (KY-2023-3-19-1). All results of the study will be submitted to international journals and international conferences for publication on completion of the study. TRIAL REGISTRATION NUMBER NCT05985863.
Collapse
Affiliation(s)
- Yanhu Wang
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Mengyao Li
- Peking University 302 Clinical Medical School, Beijing, China
| | - Tao Yang
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yunbo Xie
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jinhua Hu
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
6
|
Li M, Zhang J, Fang J, Xin Y, Zhu H, Ding X. Pre-administration of human umbilical cord mesenchymal stem cells has better therapeutic efficacy in rats with D-galactosamine-induced acute liver failure. Int Immunopharmacol 2024; 130:111672. [PMID: 38377851 DOI: 10.1016/j.intimp.2024.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Acute liver failure (ALF) is characterized by an intense systemic inflammatory response, single or multiple organ system failure and high mortality. However, specific and effective treatments for ALF patients are still lacking. According to the current investigation, human umbilical cord mesenchymal stem cells (hUCMSCs) have shown remarkable potential to enhance the functional recovery of injured livers. We aimed to investigate the therapeutic effects of time-differentiated hUCMSCs administration regimens on ALF. METHODS The rat model of ALF was induced by D-galactosamine (D-gal), and hUCMSCs were administered via the tail vein 12 h before or 2 h after induction. The potential mechanisms of hUCMSCs in treatment of ALF, regulation cell subset and secretion of inflammatory factors, were verified by co-culturing with PBMCs in vitro. Liver function indicators were detected by an automatic biochemistry analyzer and inflammatory factors were obtained by ELISA detection. The distribution of hUCMSCs in rats after administration was followed by quantitative real-time fluorescence PCR. RESULTS The findings of the study discovered that administration of hUCMSCs 12 h prior to surgery could significantly improve the survival rate of rats, stabilize various liver function indicators in serum levels of ALT, AST, T-BIL, or ALB diminish inflammatory infiltration in liver tissue, and inhibit the secretion of inflammatory factors. CONCLUSION Our data showed that pre-transplantation of hUCMSCs had a better therapeutic effect on ALF rats, providing empirical evidence for preclinical studies. Thus, the timing of hUCMSCs transplantation is necessary for the optimal clinical treatment effect.
Collapse
Affiliation(s)
- Min Li
- Sinoneural Cell Engineering Group Holdings., Co, Ltd, No.1188, Lianhang Road, Shanghai 201100, PR China
| | - Jigang Zhang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China; Shanghai Engineering Research Center of Translational Medicine of Cell Therapy, Shanghai 200080, PR China
| | - Jingmeng Fang
- Sinoneural Cell Engineering Group Holdings., Co, Ltd, No.1188, Lianhang Road, Shanghai 201100, PR China
| | - Yuan Xin
- Sinoneural Cell Engineering Group Holdings., Co, Ltd, No.1188, Lianhang Road, Shanghai 201100, PR China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Holdings., Co, Ltd, No.1188, Lianhang Road, Shanghai 201100, PR China.
| | - Xueying Ding
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China; Shanghai Engineering Research Center of Translational Medicine of Cell Therapy, Shanghai 200080, PR China.
| |
Collapse
|
7
|
Cuadra B, Silva V, Huang YL, Diaz Y, Rivas C, Molina C, Simon V, Bono MR, Morales B, Rosemblatt M, Silva S, Acuña R, Ezquer F, Ezquer M. The Immunoregulatory and Regenerative Potential of Activated Human Stem Cell Secretome Mitigates Acute-on-Chronic Liver Failure in a Rat Model. Int J Mol Sci 2024; 25:2073. [PMID: 38396750 PMCID: PMC10889754 DOI: 10.3390/ijms25042073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome marked by sudden liver function decline and multiorgan failure, predominantly acute kidney injury (AKY), in patients with chronic liver disease. Unregulated inflammation is a hallmark of ACLF; however, the key drivers of ACLF are not fully understood. This study explores the therapeutic properties of human mesenchymal stem cell (MSC) secretome, particularly focusing on its enhanced anti-inflammatory and pro-regenerative properties after the in vitro preconditioning of the cells. We evaluated the efficacy of the systemic administration of MSC secretome in preventing liver failure and AKI in a rat ACLF model where chronic liver disease was induced using by the administration of porcine serum, followed by D-galN/LPS administration to induce acute failure. After ACLF induction, animals were treated with saline (ACLF group) or MSC-derived secretome (ACLF-secretome group). The study revealed that MSC-secretome administration strongly reduced liver histological damage in the ACLF group, which was correlated with higher hepatocyte proliferation, increased hepatic and systemic anti-inflammatory molecule levels, and reduced neutrophil and macrophage infiltration. Additionally, renal examination revealed that MSC-secretome treatment mitigated tubular injuries, reduced apoptosis, and downregulated injury markers. These improvements were linked to increased survival rates in the ACLF-secretome group, endorsing MSC secretomes as a promising therapy for multiorgan failure in ACLF.
Collapse
Affiliation(s)
- Barbara Cuadra
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Veronica Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Yael Diaz
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Claudio Rivas
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Cristobal Molina
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Valeska Simon
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Maria Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Bernardo Morales
- Facultad de Ciencias de la Salud, Universidad del Alba, Atrys Chile, Guardia Vieja 339, Providencia, Santiago 7510249, Chile;
| | - Mario Rosemblatt
- Centro de Ciencia & Vida, Av. Del Valle Norte 725, Huechuraba, Santiago 8580702, Chile;
| | - Sebastian Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Rodrigo Acuña
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| |
Collapse
|
8
|
Xie Q, Gu J. Therapeutic and Safety Promise of Mesenchymal Stem Cells for Liver Failure: From Preclinical Experiment to Clinical Application. Curr Stem Cell Res Ther 2024; 19:1351-1368. [PMID: 37807649 DOI: 10.2174/011574888x260690230921174343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Liver failure (LF) is serious liver damage caused by multiple factors, resulting in severe impairment or decompensation of liver synthesis, detoxification, metabolism, and biotransformation. The general prognosis of LF is poor with high mortality in non-transplant patients. The clinical treatments for LF are mainly internal medicine comprehensive care, artificial liver support system, and liver transplantation. However, none of the above treatment strategies can solve the problems of all liver failure patients and has its own limitations. Mesenchymal stem cells (MSCs) are a kind of stem cells with multidirectional differentiation potential and paracrine function, which play an important role in immune regulation and tissue regeneration. In recent years, MSCs have shown multiple advantages in the treatment of LF in pre-clinical experiments and clinical trials. In this work, we reviewed the biological characteristics of MSCs, the possible molecular mechanisms of MSCs in the treatment of liver failure, animal experiments, and clinical application, and also discussed the existing problems of MSCs in the treatment of liver failure.
Collapse
Affiliation(s)
- Qiong Xie
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Jundong Gu
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| |
Collapse
|
9
|
Lu N, Wei J, Gong X, Tang X, Zhang X, Xiang W, Liu S, Luo C, Wang X. Preventive Effect of Arctium lappa Polysaccharides on Acute Lung Injury through Anti-Inflammatory and Antioxidant Activities. Nutrients 2023; 15:4946. [PMID: 38068804 PMCID: PMC10708090 DOI: 10.3390/nu15234946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of this study was to investigate the preventive effects of polysaccharides extracted from the roots of Arctium lappa (ALP) against acute lung injury (ALI) models induced by lipopolysaccharide (LPS). The polysaccharides were extracted and characterized, and their anti-inflammatory and antioxidant capacities were assessed. The findings demonstrated that ALP could mitigate the infiltration of inflammatory cells and reduce alveolar collapse in LPS-induced ALI in mice. The expression levels of the pro-inflammatory factor TNF-α decreased, while the anti-inflammatory factor IL-10 increased. Furthermore, the administration of ALP improved the activities of lung antioxidant enzymes, including SOD, GSH, and CAT, and lowered MDA levels. These results suggest that ALP exhibits a preventive effect on ALI and has potential as an alternative treatment for lung injury.
Collapse
Affiliation(s)
- Naiyan Lu
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China; (N.L.); (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214126, China
| | - Jiayi Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
| | - Xuelei Gong
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China; (N.L.); (X.G.)
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214126, China
| | - Xuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
| | - Wen Xiang
- School of Medicine, Nankai University, Tianjin 300350, China;
| | - Samuel Liu
- Shenzhen Buddy Technology Development Co., Ltd., Shenzhen 518000, China; (S.L.); (C.L.)
| | - Cherry Luo
- Shenzhen Buddy Technology Development Co., Ltd., Shenzhen 518000, China; (S.L.); (C.L.)
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China; (N.L.); (X.G.)
| |
Collapse
|
10
|
Chen L, Zhang N, Huang Y, Zhang Q, Fang Y, Fu J, Yuan Y, Chen L, Chen X, Xu Z, Li Y, Izawa H, Xiang C. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev Rep 2023; 19:2192-2224. [PMID: 37498509 DOI: 10.1007/s12015-023-10583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Xin Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, People's Republic of China
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Hiromi Izawa
- Jingugaien Woman Life Clinic, Jingu-Gaien 3-39-5 2F, Shibuya-Ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
11
|
Yang H, Chen J, Li J. Isolation, culture, and delivery considerations for the use of mesenchymal stem cells in potential therapies for acute liver failure. Front Immunol 2023; 14:1243220. [PMID: 37744328 PMCID: PMC10513107 DOI: 10.3389/fimmu.2023.1243220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Acute liver failure (ALF) is a high-mortality syndrome for which liver transplantation is considered the only effective treatment option. A shortage of donor organs, high costs and surgical complications associated with immune rejection constrain the therapeutic effects of liver transplantation. Recently, mesenchymal stem cell (MSC) therapy was recognized as an alternative strategy for liver transplantation. Bone marrow mesenchymal stem cells (BMSCs) have been used in clinical trials of several liver diseases due to their ease of acquisition, strong proliferation ability, multipotent differentiation, homing to the lesion site, low immunogenicity and anti-inflammatory and antifibrotic effects. In this review, we comprehensively summarized the harvest and culture expansion strategies for BMSCs, the development of animal models of ALF of different aetiologies, the critical mechanisms of BMSC therapy for ALF and the challenge of clinical application.
Collapse
Affiliation(s)
| | | | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Yu S, Yu S, Liu H, Liao N, Liu X. Enhancing mesenchymal stem cell survival and homing capability to improve cell engraftment efficacy for liver diseases. Stem Cell Res Ther 2023; 14:235. [PMID: 37667383 PMCID: PMC10478247 DOI: 10.1186/s13287-023-03476-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
Although mesenchymal stem cell (MSC) transplantation provides an alternative strategy for end-stage liver disease (ESLD), further widespread application of MSC therapy is limited owing to low cell engraftment efficiency. Improving cell engraftment efficiency plays a critical role in enhancing MSC therapy for liver diseases. In this review, we summarize the current status and challenges of MSC transplantation for ESLD. We also outline the complicated cell-homing process and highlight how low cell engraftment efficiency is closely related to huge differences in extracellular conditions involved in MSC homing journeys ranging from constant, controlled conditions in vitro to variable and challenging conditions in vivo. Improving cell survival and homing capabilities enhances MSC engraftment efficacy. Therefore, we summarize the current strategies, including hypoxic priming, drug pretreatment, gene modification, and cytokine pretreatment, as well as splenectomy and local irradiation, used to improve MSC survival and homing capability, and enhance cell engraftment and therapeutic efficiency of MSC therapy. We hope that this review will provide new insights into enhancing the efficiency of MSC engraftment in liver diseases.
Collapse
Affiliation(s)
- Shaoxiong Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
13
|
Swaroop S, Arora U, Biswas S, Vaishnav M, Pathak P, Agarwal A, Golla R, Thakur B, Coshic P, Andriyas V, Gupta K, Elhence A, Nayak B, Kumar R, Shalimar. Therapeutic plasma-exchange improves short-term, but not long-term, outcomes in patients with acute-on-chronic liver failure: A propensity score-matched analysis. J Clin Apher 2023; 38:376-389. [PMID: 36408827 DOI: 10.1002/jca.22033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 08/09/2024]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is associated with a high short-term mortality rate in the absence of liver transplantation. The role of therapeutic plasma exchange (TPE) in improving the outcomes of ACLF and acute decompensation (AD) is unclear. In this retrospective analysis, we aimed to determine the impact of TPE on mortality in patients with ACLF. METHODS ACLF patients receiving TPE with standard medical treatment (SMT) were propensity score matched (PSM) with those receiving SMT alone (1:1) for sex, grades of ACLF, CLIF C ACLF scores, and the presence of hepatic encephalopathy. The primary outcomes assessed were mortality at 30 and 90 days. Survival analysis was performed using Kaplan Meier survival curves. RESULTS A total of 1151 patients (ACLF n = 864 [75%], AD [without organ failure] n = 287 [25%]) were included. Of the patients with ACLF (n = 864), grade 1, 2, and 3 ACLF was present in 167 (19.3%), 325 (37.6%), and 372 (43.0%) patients, respectively. Thirty-nine patients received TPE and SMT, and 1112 patients received only SMT. On PSM analysis, there were 38 patients in each group (SMT plus TPE vs SMT alone). In the matched cohort, the 30-days mortality was lower in the TPE arm compared to SMT (21% vs 50%, P = .008), however, the 90-day mortality was not significantly different between the two groups (36.8% vs 52.6%, P = .166); HR, 0.82 (0.44-1.52), P = .549. CONCLUSION TPE improves short-term survival in patients with ACLF, but has no significant impact on long-term outcomes. Randomized control trials are needed to obtain a robust conclusion in this regard.
Collapse
Affiliation(s)
- Shekhar Swaroop
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Umang Arora
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Sagnik Biswas
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Manas Vaishnav
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Piyush Pathak
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Agarwal
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Rithvik Golla
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Bhaskar Thakur
- Department of Biostatistics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Poonam Coshic
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay Andriyas
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kamini Gupta
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anshuman Elhence
- Department of Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Baibaswat Nayak
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Devi A, Pahuja I, Singh SP, Verma A, Bhattacharya D, Bhaskar A, Dwivedi VP, Das G. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. Cell Mol Immunol 2023; 20:600-612. [PMID: 37173422 PMCID: PMC10176304 DOI: 10.1038/s41423-023-01028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play diverse roles ranging from regeneration and wound healing to immune signaling. Recent investigations have indicated the crucial role of these multipotent stem cells in regulating various aspects of the immune system. MSCs express unique signaling molecules and secrete various soluble factors that play critical roles in modulating and shaping immune responses, and in some other cases, MSCs can also exert direct antimicrobial effects, thereby helping with the eradication of invading organisms. Recently, it has been demonstrated that MSCs are recruited at the periphery of the granuloma containing Mycobacterium tuberculosis and exert "Janus"-like functions by harboring pathogens and mediating host protective immune responses. This leads to the establishment of a dynamic balance between the host and the pathogen. MSCs function through various immunomodulatory factors such as nitric oxide (NO), IDO, and immunosuppressive cytokines. Recently, our group has shown that M.tb uses MSCs as a niche to evade host protective immune surveillance mechanisms and establish dormancy. MSCs also express a large number of ABC efflux pumps; therefore, dormant M.tb residing in MSCs are exposed to a suboptimal dose of drugs. Therefore, it is highly likely that drug resistance is coupled with dormancy and originates within MSCs. In this review, we discussed various immunomodulatory properties of MSCs, their interactions with important immune cells, and soluble factors. We also discussed the possible roles of MSCs in the outcome of multiple infections and in shaping the immune system, which may provide insight into therapeutic approaches using these cells in different infection models.
Collapse
Affiliation(s)
- Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
15
|
Zhang J, Gao J, Li X, Lin D, Li Z, Wang J, Chen J, Gao Z, Lin B. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote liver regeneration via miR-20a-5p/PTEN. Front Pharmacol 2023; 14:1168545. [PMID: 37305542 PMCID: PMC10248071 DOI: 10.3389/fphar.2023.1168545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Balancing hepatocyte death and proliferation is key to non-transplantation treatments for acute liver failure (ALF), which has a high short-term mortality rate. Small extracellular vesicles (sEVs) may act as mediators in the repair of damaged liver tissue by mesenchymal stem cells (MSCs). We aimed to investigate the efficacy of human bone marrow MSC-derived sEVs (BMSC-sEVs) in treating mice with ALF and the molecular mechanisms involved in regulating hepatocyte proliferation and apoptosis. Small EVs and sEV-free BMSC concentrated medium were injected into mice with LPS/D-GalN-induced ALF to assess survival, changes in serology, liver pathology, and apoptosis and proliferation in different phases. The results were further verified in vitro in L-02 cells with hydrogen peroxide injury. BMSC-sEV-treated mice with ALF had higher 24 h survival rates and more significant reductions in liver injury than mice treated with sEV-free concentrated medium. BMSC-sEVs reduced hepatocyte apoptosis and promoted cell proliferation by upregulating miR-20a-5p, which targeted the PTEN/AKT signaling pathway. Additionally, BMSC-sEVs upregulated the mir-20a precursor in hepatocytes. The application of BMSC-sEVs showed a positive impact by preventing the development of ALF, and may serve as a promising strategy for promoting ALF liver regeneration. miR-20a-5p plays an important role in liver protection from ALF by BMSC-sEVs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juan Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianlong Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dengna Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihui Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jialei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junfeng Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingliang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Khandelwal V, Sharma T, Gupta S, Singh S, Sharma MK, Parashar D, Kashyap VK. Stem cell therapy: a novel approach against emerging and re-emerging viral infections with special reference to SARS-CoV-2. Mol Biol Rep 2023; 50:2663-2683. [PMID: 36536185 PMCID: PMC9762873 DOI: 10.1007/s11033-022-07957-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/17/2022] [Indexed: 12/23/2022]
Abstract
The past several decades have witnessed the emergence and re-emergence of many infectious viral agents, flaviviruses, influenza, filoviruses, alphaviruses, and coronaviruses since the advent of human deficiency virus (HIV). Some of them even become serious threats to public health and have raised major global health concerns. Several different medicinal compounds such as anti-viral, anti-malarial, and anti-inflammatory agents, are under investigation for the treatment of these viral diseases. These therapies are effective improving recovery rates and overall survival of patients but are unable to heal lung damage caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, there is a critical need to identify effective treatments to combat this unmet clinical need. Due to its antioxidant and immunomodulatory properties, stem cell therapy is considered a novel approach to regenerate damaged lungs and reduce inflammation. Stem cell therapy uses a heterogeneous subset of regenerative cells that can be harvested from various adult tissue types and is gaining popularity due to its prodigious regenerative potential as well as immunomodulatory and anti-inflammatory properties. These cells retain expression of cluster of differentiation markers (CD markers), interferon-stimulated gene (ISG), reduce expression of pro-inflammatory cytokines and, show a rapid proliferation rate, which makes them an attractive tool for cellular therapies and to treat various inflammatory and viral-induced injuries. By examining various clinical studies, this review demonstrates positive considerations for the implications of stem cell therapy and presents a necessary approach for treating virally induced infections in patients.
Collapse
Affiliation(s)
- Vishal Khandelwal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Tarubala Sharma
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Shoorvir Singh
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Manish Kumar Sharma
- Department of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, 224001, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA. .,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| |
Collapse
|
17
|
Therapeutic Efficiency of Nasal Mucosa-Derived Ectodermal Mesenchymal Stem Cells in Rats with Acute Hepatic Failure. Stem Cells Int 2023; 2023:6890299. [PMID: 36655034 PMCID: PMC9842420 DOI: 10.1155/2023/6890299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background Liver transplantation is limited by the insufficiency of liver organ donors when treating end-stage liver disease or acute liver failure (ALF). Ectodermal mesenchymal stem cells (EMSCs) derived from nasal mucosa have emerged as an alternative cell-based therapy. However, the role of EMSCs in acute liver failure remains unclear. Methods EMSCs were obtained from the nasal mucosa tissue of rats. First, EMSCs were seeded on the gelatin-chitosan scaffolds, and the biocompatibility was evaluated. Next, the protective effects of EMSCs were investigated in carbon tetrachloride- (CCl4-) induced ALF rats. Finally, we applied an indirect coculture system to analyze the paracrine effects of EMSCs on damaged hepatocytes. A three-step nontransgenic technique was performed to transform EMSCs into hepatocyte-like cells (HLCs) in vitro. Results EMSCs exhibited a similar phenotype to other mesenchymal stem cells along with self-renewal and multilineage differentiation capabilities. EMSC-seeded gelatin-chitosan scaffolds can increase survival rates and ameliorate liver function and pathology of ALF rat models. Moreover, transplanted EMSCs can secrete paracrine factors to promote hepatocyte regeneration, targeted migration, and transdifferentiate into HLCs in response to the liver's microenvironment, which will then repair or replace the damaged hepatocytes. Similar to mature hepatocytes, HLCs generated from EMSCs possess functions of expressing specific hepatic markers, storing glycogen, and producing urea. Conclusions These results confirmed the feasibility of EMSCs in acute hepatic failure treatment. To our knowledge, this is the first time that EMSCs are used in the therapy of liver diseases. EMSCs are expected to be a novel and promising cell source in liver tissue engineering.
Collapse
|
18
|
Li TT, Wang ZR, Yao WQ, Linghu EQ, Wang FS, Shi L. Stem Cell Therapies for Chronic Liver Diseases: Progress and Challenges. Stem Cells Transl Med 2022; 11:900-911. [PMID: 35993521 PMCID: PMC9492280 DOI: 10.1093/stcltm/szac053] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic liver diseases have become a significant health issue worldwide and urgently require the development of novel therapeutic approaches, in addition to liver transplantation. Recent clinical and preclinical studies have shown that cell-based therapeutic strategies may contribute to the improvement of chronic liver diseases and offer new therapeutic options to restore liver function through their roles in tissue impairment and immunomodulation. In this review, we summarize the current progress and analyze the challenges for different types of cell therapies used in the treatment of chronic liver diseases currently explored in clinical trials and preclinical studies in animal models. We also discuss some critical issues regarding the use of mesenchymal stem cells (MSCs, the most extensive cell source of stem cells), including therapeutic dosage, transfusion routine, and pharmacokinetics/pharmacodynamics (PK/PD) of transfused MSCs.
Collapse
Affiliation(s)
- Tian-Tian Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Wei-Qi Yao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- National Industrial Base for Stem Cell Engineering Products, Tianjin, People’s Republic of China
| | - En-Qiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Lei Shi
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
20
|
Maheshwari D, Kumar D, Jagdish RK, Nautiyal N, Hidam A, Kumari R, Sehgal R, Trehanpati N, Baweja S, Kumar G, Sinha S, Bajpai M, Pamecha V, Bihari C, Maiwall R, Sarin SK, Kumar A. Bioenergetic Failure Drives Functional Exhaustion of Monocytes in Acute-on-Chronic Liver Failure. Front Immunol 2022; 13:856587. [PMID: 35747140 PMCID: PMC9210982 DOI: 10.3389/fimmu.2022.856587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The monocyte–macrophage system is central to the host’s innate immune defense and in resolving injury. It is reported to be dysfunctional in acute-on-chronic liver failure (ACLF). The disease-associated alterations in ACLF monocytes are not fully understood. We investigated the mechanism of monocytes’ functional exhaustion and the role of umbilical cord mesenchymal stem cells (ucMSCs) in re-energizing monocytes in ACLF. Design Monocytes were isolated from the peripheral blood of ACLF patients (n = 34) and matched healthy controls (n = 7) and patients with compensated cirrhosis (n = 7); phagocytic function, oxidative burst, and bioenergetics were analyzed. In the ACLF mouse model, ucMSCs were infused intravenously, and animals were sacrificed at 24 h and day 11 to assess changes in monocyte function, liver injury, and regeneration. Results Patients with ACLF (alcohol 64%) compared with healthy controls and those with compensated cirrhosis had an increased number of peripheral blood monocytes (p < 0.0001) which displayed significant defects in phagocytic (p < 0.0001) and oxidative burst capacity (p < 0.0001). ACLF patients also showed a significant increase in the number of liver macrophages as compared with healthy controls (p < 0.001). Bioenergetic analysis showed markedly reduced oxidative phosphorylation (p < 0.0001) and glycolysis (p < 0.001) in ACLF monocytes. Patients with monocytes having maximum mitochondrial respiration of <37.9 pmol/min [AUC = 0.822, hazard ratio (HR) = 4.5] and baseline glycolysis of ≤42.7 mpH/min (AUC = 0.901, HR = 9.1) showed increased 28-day mortality (p < 0.001). Co-culturing ACLF monocytes with ucMSC showed improved mitochondrial respiration (p < 0.01) and phagocytosis (p < 0.0001). Furthermore, ucMSC therapy increased monocyte energy (p < 0.01) and phagocytosis (p < 0.001), reduced hepatic injury, and enhanced hepatocyte regeneration in ACLF animals. Conclusion Bioenergetic failure drives the functional exhaustion of monocytes in ACLF. ucMSCs resuscitate monocyte energy and prevent its exhaustion. Restoring monocyte function can ameliorate hepatic injury and promote liver regeneration in the animal model of ACLF.
Collapse
Affiliation(s)
- Deepanshu Maheshwari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Dhananjay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakesh Kumar Jagdish
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nidhi Nautiyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ashinikumar Hidam
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rekha Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rashi Sehgal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Guresh Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Swati Sinha
- Department of Obstetrics and Gynaecology, Sitaram Bhartia Institute of Science and Research, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Viniyendra Pamecha
- Department of Hepato-Pancreato-Biliary (HPB) Surgery and Liver Transplant, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
- *Correspondence: Anupam Kumar, ; Shiv Kumar Sarin,
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
- *Correspondence: Anupam Kumar, ; Shiv Kumar Sarin,
| |
Collapse
|
21
|
Tang Y, Wu P, Li L, Xu W, Jiang J. Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Front Immunol 2022; 13:880523. [PMID: 35603168 PMCID: PMC9121380 DOI: 10.3389/fimmu.2022.880523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell small extracellular vesicles (MSC-sEVs) are a priority for researchers because of their role in tissue regeneration. sEVs act as paracrine factors and carry various cargos, revealing the state of the parent cells and contributing to cell–cell communication during both physiological and pathological circumstances. Hepatic diseases are mainly characterized by inflammatory cell infiltration and hepatocyte necrosis and fibrosis, bringing the focus onto immune regulation and other regulatory mechanisms of MSCs/MSC-sEVs. Increasing evidence suggests that MSCs and their sEVs protect against acute and chronic liver injury by inducing macrophages (MΦ) to transform into the M2 subtype, accelerating regulatory T/B (Treg/Breg) cell activation and promoting immunosuppression. MSCs/MSC-sEVs also prevent the proliferation and differentiation of T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells. This review summarizes the potential roles for MSCs/MSC-sEVs, including immunomodulation and tissue regeneration, in various liver diseases. There is also a specific focus on the use of MSC-sEVs for targeted drug delivery to treat hepatitis.
Collapse
Affiliation(s)
- Yuting Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Linli Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| |
Collapse
|
22
|
Wang S, Lei B, Zhang E, Gong P, Gu J, He L, Han L, Yuan Z. Targeted Therapy for Inflammatory Diseases with Mesenchymal Stem Cells and Their Derived Exosomes: From Basic to Clinics. Int J Nanomedicine 2022; 17:1757-1781. [PMID: 35469174 PMCID: PMC9034888 DOI: 10.2147/ijn.s355366] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a beneficial and physiological process, but there are a number of inflammatory diseases which have detrimental effects on the body. In addition, the drugs used to treat inflammation have toxic side effects when used over a long period of time. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can be isolated from a variety of tissues and can be differentiate into diverse cell types under appropriate conditions. They also exhibit noteworthy anti-inflammatory properties, providing new options for the treatment of inflammatory diseases. The therapeutic potential of MSCs is currently being investigated for various inflammatory diseases, such as kidney injury, lung injury, osteoarthritis (OA), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSCs can perform multiple functions, including immunomodulation, homing, and differentiation, to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment under severe inflammatory conditions. In addition, accumulated evidence indicates that exosomes from extracellular vesicles of MSCs (MSC-Exos) play an extraordinary role, mainly by transferring their components to recipient cells. In this review, we summarize the mechanism and clinical trials of MSCs and MSC-Exos in various inflammatory diseases in detail, with a view to contributing to the treatment of MSCs and MSC-Exos in inflammatory diseases.
Collapse
Affiliation(s)
- Shuo Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Biyu Lei
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - E Zhang
- Department of Basic Sciences, Officers College of People’s Armed Police, Chengdu, Sichuan, 610213, People’s Republic of China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| |
Collapse
|
23
|
Extraembryonic Mesenchymal Stromal/Stem Cells in Liver Diseases: A Critical Revision of Promising Advanced Therapy Medicinal Products. Cells 2022; 11:cells11071074. [PMID: 35406638 PMCID: PMC8997603 DOI: 10.3390/cells11071074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Liver disorders have been increasing globally in recent years. These diseases are associated with high morbidity and mortality rates and impose high care costs on the health system. Acute liver failure, chronic and congenital liver diseases, as well as hepatocellular carcinoma have been limitedly treated by whole organ transplantation so far. But novel treatments for liver disorders using cell-based approaches have emerged in recent years. Extra-embryonic tissues, including umbilical cord, amnion membrane, and chorion plate, contain multipotent stem cells. The pre-sent manuscript discusses potential application of extraembryonic mesenchymal stromal/stem cells, focusing on the management of liver diseases. Extra-embryonic MSC are characterized by robust and constitutive anti-inflammatory and anti-fibrotic properties, indicating as therapeutic agents for inflammatory conditions such as liver fibrosis or advanced cirrhosis, as well as chronic inflammatory settings or deranged immune responses.
Collapse
|
24
|
Jindal A, Jagdish RK, Kumar A. Hepatic Regeneration in Cirrhosis. J Clin Exp Hepatol 2022; 12:603-616. [PMID: 35535091 PMCID: PMC9077225 DOI: 10.1016/j.jceh.2021.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023] Open
Abstract
End-stage liver disease is characterized by massive hepatocyte death resulting in clinical decompensation and organ failures. Clinical consequences in cirrhosis are the results of the loss of functional hepatocytes and excessive scarring. The only curative therapy in advanced cirrhosis is orthotropic liver transplantation, but the clinical demand outweighs the availability of acceptable donor organs. Moreover, this also necessitates lifelong immunosuppression and carries associated risks. The liver has a huge capability for regeneration. Self-replication of quiescent differentiated hepatocytes and cholangiocytes occurs in patients with acute liver injury. Due to limited hepatocyte self-renewal capacity in advanced cirrhosis, great interest has therefore been shown in characterizing the possible role of hepatic progenitor cells and bone marrow-derived stem cells to therapeutically aid this process. Transplantation of cells from various sources that can be properly differentiated into functional liver cells or use of growth factors for ex-vivo expansion of progenitor cells is needed at utmost priority. Multiple researches over the last two decades have aided researchers in refining proliferation, differentiation, and storage techniques and understand the functionality of these cells for use in clinical practice. However, these cell-based therapies are still experimental and have to be used in trial settings.
Collapse
Key Words
- Ang2, angiopoietin 2
- BM, Bone marrow
- BM-MNCs, bone marrow mononuclear cells
- BMSC, bone marrow stem cells
- DAMPs, Damage associated molecular patterns
- EPCs, endothelial progenitor cells
- ESRP2, epithelial splicing regulatory protein 2
- GCSF
- HGF, hepatocyte growth factor
- HPC, Hepatocyte progenitor cells
- HSCs, hematopoietic stem cells
- Hh, Hedgehog
- HybHP, hybrid periportal hepatocytes
- MMP, matrix metalloprotease
- MSCs, mesenchymal stromal cells
- OLT, Orthotropic liver transplantation
- PAMPs, Pathogen associated molecular patterns
- SAH, severe alcoholic hepatitis
- SDF1, stromal-derived factor 1
- TNFSF12, tumor necrosis factor ligand superfamily member 12
- Terthigh, high Telomerase reverse transcriptase
- [Hnf4a], Hepatocyte Nuclear Factor 4 Alpha
- [Mfsd2a], Major Facilitator Superfamily Domain containing 2A
- acute liver failure
- chronic liver diseases
- hepatocyte transplant
- liver regeneration
Collapse
Affiliation(s)
- Ankur Jindal
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | | | - Anupam Kumar
- Department of Research, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
25
|
New Perspectives to Improve Mesenchymal Stem Cell Therapies for Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23052669. [PMID: 35269830 PMCID: PMC8910533 DOI: 10.3390/ijms23052669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. Many factors may contribute to the susceptibility of patients to this condition, making DILI a global medical problem that has an impact on public health and the pharmaceutical industry. The use of mesenchymal stem cells (MSCs) has been at the forefront of regenerative medicine therapies for many years, including MSCs for the treatment of liver diseases. However, there is currently a huge gap between these experimental approaches and their application in clinical practice. In this concise review, we focus on the pathophysiology of DILI and highlight new experimental approaches conceived to improve cell-based therapy by the in vitro preconditioning of MSCs and/or the use of cell-free products as treatment for this liver condition. Finally, we discuss the advantages of new approaches, but also the current challenges that must be addressed in order to develop safer and more effective procedures that will allow cell-based therapies to reach clinical practice, enhancing the quality of life and prolonging the survival time of patients with DILI.
Collapse
|
26
|
Sukowati CHC, Tiribelli C. Adult Stem Cell Therapy as Regenerative Medicine for End-Stage Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:57-72. [DOI: 10.1007/5584_2022_719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Adugna DG. Current Clinical Application of Mesenchymal Stem Cells in the Treatment of Severe COVID-19 Patients: Review. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:71-80. [PMID: 34785907 PMCID: PMC8590837 DOI: 10.2147/sccaa.s333800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus-2019 disease is a newly diagnosed infectious disease, which is caused by the severe acute respiratory syndrome corona virus-2. It spreads quickly and has become a major public health problem throughout the world. When the viral structural spike protein binds to the angiotensin-converting enzyme-2 receptor of the host cell membrane, the virus enters into host cells. The virus primarily affects lung epithelial cells or other target cells that express angiotensin-converting enzyme-2 receptors in COVID-19 patients. Chemokines released by the host cells stimulate the recruitment of different immune cells. A cytokine storm occurs when a high amount of pro-inflammatory cytokines are produced as a result of the accumulation of immune cells. In COVID-19 patients, cytokine storms are the leading cause of severe acute respiratory distress syndrome. Mesenchymal stem cells are multipotent and self-renewing adult stem cells, which are obtained from a variety of tissues including bone marrow, adipose tissue, Warthon's jelly tissue, and amniotic fluid. Mesenchymal stem cells primarily exert their important therapeutic effects through 2 mechanisms: immunoregulatory effects and differentiation capacity. Mesenchymal stem cells can release several cytokines via paracrine mechanism or by direct interaction with white blood cells such as natural killer cells, T-lymphocytes, B-lymphocytes, natural killer cells, and macrophages, resulting in immune system regulation. Mesenchymal stem cells may help to restore the lung microenvironment, preserve alveolar epithelial cells, prevent lung fibrosis, and treat pulmonary dysfunction that is caused by COVID-19 associated pneumonia. Mesenchymal stem cells therapy may suppress aggressive inflammatory reactions and increase endogenous restoration by improving the pulmonary microenvironment. Furthermore, clinical evidence suggests that intravenous injection of mesenchymal stem cells may radically reduce lung tissue damage in COVID-19 patients. With the advancement of research involving mesenchymal stem cells for the treatment of COVID-19, mesenchymal stem cells therapy may be the main strategy for reducing the recent pandemic.
Collapse
Affiliation(s)
- Dagnew Getnet Adugna
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| |
Collapse
|
28
|
Abstract
Liver failure in the context of acute (ALF) and acute on chronic liver failure (ACLF) is associated with high mortality in the absence of a liver transplant. For decades, therapeutic plasma exchange (TPE) is performed for the management of immune-mediated diseases. TPE has emerged as an attractive extracorporeal blood purification technique in patients with ALF and ACLF. The basic premise of using TPE is to remove the toxic substances which would allow recovery of native liver functions by facilitating liver regeneration. In recent years, encouraging data have emerged, suggesting the benefits of TPE in patients with liver failure. TPE has emerged as an attractive liver support device for the failing liver until liver transplantation or clinical recovery. The data in patients with ALF suggest routine use of high-volume TPE, while the data for such a strategy are less robust for patients with ACLF.
Collapse
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
29
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Umbilical cord mesenchymal stem/stromal cells potential to treat organ disorders; an emerging strategy. Curr Stem Cell Res Ther 2021; 17:126-146. [PMID: 34493190 DOI: 10.2174/1574888x16666210907164046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Currently, mesenchymal stem/stromal cells (MSCs) have attracted growing attention in the context of cell-based therapy in regenerative medicine. Following the first successful procurement of human MSCs from bone marrow (BM), these cells isolation has been conducted from various origins, in particular, the umbilical cord (UC). Umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs) can be acquired by a non-invasive plan and simply cultured, and thereby signifies their superiority over MSCs derived from other sources for medical purposes. Due to their unique attributes, including self-renewal, multipotency, and accessibility concomitant with their immunosuppressive competence and lower ethical concerns, UC-MSCs therapy is described as encouraging therapeutic options in cell-based therapies. Regardless of their unique aptitude to adjust inflammatory response during tissue recovery and delivering solid milieu for tissue restoration, UC-MSCs can be differentiated into a diverse spectrum of adult cells (e.g., osteoblast, chondrocyte, type II alveolar, hepatocyte, and cardiomyocyte). Interestingly, they demonstrate a prolonged survival and longer telomeres compared with MSCs derived from other sources, suggesting that UC-MSCs are desired source to use in regenerative medicine. In the present review, we deliver a brief review of UC-MSCs isolation, expansion concomitantly with immunosuppressive activities, and try to collect and discuss recent pre-clinical and clinical researches based on the use of UC-MSCs in regenerative medicine, focusing on with special focus on in vivo researches.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran. Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| |
Collapse
|
30
|
Bone Marrow Mesenchymal Stem Cells in Acute-on-Chronic Liver Failure Grades 2 and 3: A Phase I-II Randomized Clinical Trial. Can J Gastroenterol Hepatol 2021; 2021:3662776. [PMID: 34395335 PMCID: PMC8357501 DOI: 10.1155/2021/3662776] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/24/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Acute-on-chronic liver failure (ACLF) is an acute liver decompensation in cirrhotic patients, which leads to organ failures and high short-term mortality. The treatment is based on the management of complications and, in severe cases, liver transplantation. Since specific treatment is unavailable, we aimed to evaluate the safety and initial efficacy of bone marrow mesenchymal stem cells (BM-MSC) in patients with ACLF Grades 2 and 3, a population excluded from previous clinical trials. METHODS This is a randomized placebo-controlled phase I-II single center study, which enrolled 9 cirrhotic patients from 2018 to 2020, regardless of the etiology. The control group (n = 5) was treated with standard medical therapy (SMT) and placebo infusion of saline. The intervention group (n = 4) received SMT plus 5 infusions of 1 × 106 cells/kg of BM-MSC for 3 weeks. Both groups were monitored for 90 days. A Chi-square test was used for qualitative variables, and the t-test and Mann-Whitney U test for quantitative variables. The Kaplan-Meier estimator was used to build survival curves. In this study, we followed the intention-to-treat analysis, with a significance of 5%. RESULTS Nine patients with a mean Child-Pugh (CP) of 12.3, MELD of 38.4, and CLIF-C score of 50.7 were recruited. Hepatitis C and alcohol were the main etiologies. The average infusion per patient was 2.9 and only 3 patients (2 in control and 1 in the BM-MSC group) received all the protocol infusions. There were no infusion-related side effects, although one patient in the intervention group presented hypernatremia and a gastric ulcer, after the third and fifth infusions, respectively. The survival rate after 90 days was 20% (1/5) for placebo versus 25% (1/4) for the BM-MSC. The patient who completed the entire MSC protocol showed a significant improvement in CP (C-14 to B-9), MELD (32 to 22), and ACLF (grade 3 to 0). CONCLUSION BM-MSC infusion is safe and feasible in patients with ACLF Grades 2 and 3.
Collapse
|
31
|
He Y, Guo X, Lan T, Xia J, Wang J, Li B, Peng C, Chen Y, Hu X, Meng Z. Human umbilical cord-derived mesenchymal stem cells improve the function of liver in rats with acute-on-chronic liver failure via downregulating Notch and Stat1/Stat3 signaling. Stem Cell Res Ther 2021; 12:396. [PMID: 34256837 PMCID: PMC8278604 DOI: 10.1186/s13287-021-02468-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Effective treatments for acute-on-chronic liver failure (ACLF) are lacking. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been applied in tissue regeneration and repair, acting through paracrine effects, cell fusion, and actual transdifferentiation. The present study was designed to investigate the therapeutic potential of hUC-MSCs in acute-on-chronic liver injury (ACLI) and ACLF rat models. METHODS Wistar rats aged 6 weeks were intraperitoneally administered porcine serum (PS) at a dose of 0.5 mL twice per week for 11 weeks to generate an immune liver fibrosis model. After 11 weeks, rats with immune liver fibrosis were injected intravenously with lipopolysaccharide (LPS) to induce an ACLI model or combined LPS and D-galactosamine (D-GalN) to induce an ACLF model. The rats with ACLI or ACLF were injected intravenously with 2×106 hUC-MSCs, 4×106 hUC-MSCs, or 0.9% sodium chloride as a control. The rats were sacrificed at 1, 2, 4, and 6 weeks (ACLI rats) or 4, 12, and 24 h (ACLF rats). The blood and liver tissues were collected for biochemical and histological investigation. RESULTS The application of hUC-MSCs in rats with ACLI and ACLF led to a significant decrease in the serum levels of ALT, AST, TBil, DBil, ALP, ammonia, and PT, with ALB gradually returned to normal levels. Inflammatory cell infiltration and collagen fiber deposition in liver tissues were significantly attenuated in ACLI rats that received hUC-MSCs. Inflammatory cell infiltration and apoptosis in liver tissues of ACLF rats that received hUC-MSCs were significantly attenuated. Compared with those in the rats that received 0.9% sodium chloride, a significant reduction in proinflammatory cytokine levels and elevated serum levels of hepatocyte growth factor (HGF) were found in ACLF rats that received hUC-MSCs. Furthermore, Notch, IFN-γ/Stat1, and IL-6/Stat3 signaling were inhibited in ACLI/ACLF rats that received hUC-MSCs. CONCLUSIONS hUC-MSC transplantation can improve liver function, the degree of fibrosis, and liver damage and promote liver repair in rats with ACLI or ACLF, mediated most likely by inhibiting Notch signaling and reversing the imbalance of the Stat1/Stat3 pathway.
Collapse
Affiliation(s)
- Yulin He
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Xingrong Guo
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Tingyu Lan
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei, China
| | - Jinsong Wang
- Shenzhen Beike Biotechnology Research Institute, Nanshan District, Shenzhen, 518057, China
| | - Bei Li
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Chunyan Peng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Yue Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiang Hu
- Shenzhen Beike Biotechnology Research Institute, Nanshan District, Shenzhen, 518057, China.
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China.
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
32
|
Zhang J, Gao J, Lin D, Xiong J, Wang J, Chen J, Lin B, Gao Z. Potential Networks Regulated by MSCs in Acute-On-Chronic Liver Failure: Exosomal miRNAs and Intracellular Target Genes. Front Genet 2021; 12:650536. [PMID: 33968135 PMCID: PMC8102832 DOI: 10.3389/fgene.2021.650536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a severe syndrome associated with high mortality. Alterations in the liver microenvironment are one of the vital causes of immune damage and liver dysfunction. Human bone marrow mesenchymal stem cells (hBMSCs) have been reported to alleviate liver injury via exosome-mediated signaling; of note, miRNAs are one of the most important cargoes in exosomes. Importantly, the miRNAs within exosomes in the hepatic microenvironment may mediate the mesenchymal stem cell (MSC)-derived regulation of liver function. This study investigated the hepatocyte exosomal miRNAs which are regulated by MSCs and the target genes which have potential in the treatment of liver failure. Briefly, ACLF was induced in mice using carbon tetrachloride and primary hepatocytes were isolated and co-cultured (or not) with MSCs under serum-free conditions. Exosomes were then collected, and the expression of exosomal miRNAs was assessed using next-generation sequencing; a comparison was performed between liver cells from healthy versus ACLF animals. Additionally, to identify the intracellular targets of exosomal miRNAs in humans, we focused on previously published data, i.e., microarray data and mass spectrometry data in liver samples from ACLF patients. The biological functions and signaling pathways associated with differentially expressed genes were predicted using gene ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses; hub genes were also screened based on pathway analysis and the prediction of protein-protein interaction networks. Finally, we constructed the hub gene-miRNA network and performed correlation analysis and qPCR validation. Importantly, our data revealed that MSCs could regulate the miRNA content within exosomes in the hepatic microenvironment. MiR-20a-5p was down-regulated in ACLF hepatocytes and their exosomes, while the levels of chemokine C-X-C Motif Chemokine Ligand 8 (CXCL8; interleukin 8) were increased in hepatocytes. Importantly, co-culture with hBMSCs resulted in up-regulated expression of miR-20a-5p in exosomes and hepatocytes, and down-regulated expression of CXCL8 in hepatocytes. Altogether, our data suggest that the exosomal miR-20a-5p/intracellular CXCL8 axis may play an important role in the reduction of liver inflammation in ACLF in the context of MSC-based therapies and highlights CXCL8 as a potential target for alleviating liver injury.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Gao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dengna Lin
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Xiong
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jialei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Chen
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingliang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Harrell CR, Popovska Jovicic B, Djonov V, Volarevic V. Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Treatment of Viral Diseases. Pathogens 2021; 10:pathogens10040409. [PMID: 33915728 PMCID: PMC8066286 DOI: 10.3390/pathogens10040409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult, immunomodulatory stem cells which reside in almost all postnatal tissues. Viral antigens and damage-associated molecular patterns released from injured and infected cells activate MSCs, which elicit strong antiviral immune response. MSC-sourced interferons and inflammatory cytokines modulate the cytotoxicity of NK cells and CTLs, enhance the antigen-presentation properties of DCs and macrophages, regulate cytokine synthesis in CD4+ T helper cells and promote antibody production in B cells. After the elimination of viral pathogens, MSCs produce immunoregulatory cytokines and trophic factors, prevent the over-activation of immune cells and promote tissue repair and regeneration. In this review article, we summarize the current knowledge on the molecular mechanisms that are responsible for the MSC-dependent elimination of virus-infected cells, and we emphasize the therapeutic potential of MSCs and their secretomes in the treatment of viral diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL 34684, USA;
| | - Biljana Popovska Jovicic
- Department of Infectious Diseases, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Correspondence: (B.P.J.); (V.V.); Tel./Fax: +381-34306800 (V.V.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Correspondence: (B.P.J.); (V.V.); Tel./Fax: +381-34306800 (V.V.)
| |
Collapse
|
34
|
Rocha JLM, de Oliveira WCF, Noronha NC, Dos Santos NCD, Covas DT, Picanço-Castro V, Swiech K, Malmegrim KCR. Mesenchymal Stromal Cells in Viral Infections: Implications for COVID-19. Stem Cell Rev Rep 2021; 17:71-93. [PMID: 32895900 PMCID: PMC7476649 DOI: 10.1007/s12015-020-10032-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) constitute a heterogeneous population of stromal cells with immunomodulatory and regenerative properties that support their therapeutic use. MSCs isolated from many tissue sources replicate vigorously in vitro and maintain their main biological properties allowing their widespread clinical application. To date, most MSC-based preclinical and clinical trials targeted immune-mediated and inflammatory diseases. Nevertheless, MSCs have antiviral properties and have been used in the treatment of various viral infections in the last years. Here, we revised in detail the biological properties of MSCs and their preclinical and clinical applications in viral diseases, including the disease caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection (COVID-19). Notably, rapidly increasing numbers of MSC-based therapies for COVID-19 have recently been reported. MSCs are theoretically capable of reducing inflammation and promote lung regeneration in severe COVID-19 patients. We critically discuss the rationale, advantages and disadvantages of MSC-based therapies for viral infections and also specifically for COVID-19 and point out some directions in this field. Finally, we argue that MSC-based therapy may be a promising therapeutic strategy for severe COVID-19 and other emergent respiratory tract viral infections, beyond the viral infection diseases in which MSCs have already been clinically applied. Graphical Abstract ![]()
Collapse
Affiliation(s)
- José Lucas Martins Rocha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Waldir César Ferreira de Oliveira
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Bioscience and Biotecnology Program, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nádia Cássia Noronha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Bioscience and Biotecnology Program, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natalia Cristine Dias Dos Santos
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Bioscience and Biotecnology Program, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Virgínia Picanço-Castro
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, São Paulo, Brazil.
| |
Collapse
|
35
|
Gholizadeh-Ghaleh Aziz S, Alipour S, Ranjbarvan P, Azari A, Babaei G, Golchin A. Critical roles of TLRs on the polarization of mesenchymal stem cells for cell therapy of viral infections: a notice for COVID-19 treatment. COMPARATIVE CLINICAL PATHOLOGY 2021; 30:119-128. [PMID: 33551714 PMCID: PMC7846495 DOI: 10.1007/s00580-021-03209-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs), as one of the leading cell-based therapy, have provided a strong link between clinical investigation and basic research. MSCs have been successfully employed in treating graft versus host disease (GvHD), autoimmune disease, and several other diseases, particularly with high immune activity. Recently, MSCs have attracted attention to treating untreatable viral infections such as severe coronavirus disease 2019 (COVID-19). Given that the Toll-like receptors (TLRs) are directly able to detect internal and external hazard signals, and their stimulation has an intense effect on the ability to grow, differentiate, migrate, and maintain MSCs, it seems stimulation of these receptors can have a direct impact on the interaction of MSCs and immune cells, altering the ability to modify immune system responses. Hence, this mini-review focused on TLRs' critical roles in the polarization of MSCs for developing MSC-based therapy in viral infections. Consequently, according to the literature review, a polarization process, mediated by TLRs concerning anti-inflammatory and proinflammatory phenotype, may be considered for MSC-therapy against viral infections.
Collapse
Affiliation(s)
- Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahriar Alipour
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Arezo Azari
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
36
|
Mahmood A, Seetharaman R, Kshatriya P, Patel D, Srivastava AS. Stem Cell Transplant for Advanced Stage Liver Disorders: Current Scenario and Future Prospects. Curr Med Chem 2021; 27:6276-6293. [PMID: 31584360 DOI: 10.2174/0929867326666191004161802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic Liver Disorders (CLD), caused by the lifestyle patterns like alcoholism or by non-alcoholic fatty liver disease or because of virus-mediated hepatitis, affect a large population fraction across the world. CLD progresses into end-stage diseases with a high mortality rate. Liver transplant is the only approved treatment available for such end-stage disease patients. However, the number of liver transplants is limited due to the limited availability of suitable donors and the extremely high cost of performing the procedure. Under such circumstances, Stem Cell (SC) mediated liver regeneration has emerged as a potential therapeutic alternative approach. OBJECTIVE This review aims to critically analyze the current status and future prospects of stem cellbased interventions for end-stage liver diseases. The clinical studies undertaken, the mechanism underlying therapeutic effects and future directions have been examined. METHOD The clinical trial databases were searched at https://clinicaltrials.gov.in and http://www.isrctn.com to identify randomized, non-randomized and controlled studies undertaken with keywords such as "liver disorder and Mesenchymal Stem Cells (MSCs)", "liver cirrhosis and MSCs" and "liver disorder and SCs". Furthermore, https://www.ncbi.nlm.nih.gov/pubmed/ database was also explored with similar keywords for finding the available reports and their critical analyses. RESULTS The search results yielded a significant number of studies that used bone marrow-derived stem cells, MSCs and hepatocytes. The studies clearly indicated that SCs play a key role in the hepatoprotection process by some mechanisms involving anti-inflammation, auto-immune-suppression, angiogenesis and anti-apoptosis. Further, studies indicated that SCs derived paracrine factors promote angiogenesis, reduce inflammation and inhibit hepatocyte apoptosis. CONCLUSION The SC-based interventions provide a significant improvement in patients with CLD; however, there is a need for randomized, controlled studies with the analysis of a long-term follow-up.
Collapse
Affiliation(s)
| | | | | | | | - Anand S Srivastava
- Global Institute of Stem Cell Therapy and Research, 4660 La Jolla Village Drive, San Diego, CA 92122, United States
| |
Collapse
|
37
|
Zhu B, You S, Rong Y, Yu Q, Lv S, Song F, Liu H, Wang H, Zhao J, Li D, Liu W, Xin S. A novel stem cell therapy for hepatitis B virus-related acute-on-chronic liver failure. ACTA ACUST UNITED AC 2020; 53:e9728. [PMID: 33053116 PMCID: PMC7552894 DOI: 10.1590/1414-431x20209728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to propose a stem cell therapy for hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF) based on plasma exchange (PE) for peripheral blood stem cell (PBSC) collection and examine its safety and efficacy. Sixty patients (n=20 in each group) were randomized to PE (PE alone), granulocyte colony-stimulating factor (G-CSF) (PE after G-CSF treatment), and PBSC transplantation (PBSCT) (G-CSF, PE, PBSC collection and hepatic artery injection) groups. Patients were followed-up for 24 weeks. Liver function and adverse events were recorded. Survival analysis was performed. PBSCT improved blood ammonia levels at 1 week (P<0.05). The level of total bilirubin, international normalized ratio, and creatinine showed significant differences in the 4th week of treatment (P<0.05). The survival rates of the PE, G-CSF, and PBSCT groups were 50, 65, and 85% at 90 days (P=0.034). There was a significant difference in 90-day survival between the PE and PBSCT groups (P=0.021). The preliminary results suggested that PBSCT was safe, with a possibility of improved 90-day survival in patients with HBV-ACLF.
Collapse
Affiliation(s)
- Bing Zhu
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yihui Rong
- Department of Infection and Liver Diseases, Peking University International Hospital, Beijing, China
| | - Qiang Yu
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sa Lv
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fangjiao Song
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongling Liu
- Liver Transplantation Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huaming Wang
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongze Li
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wanshu Liu
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaojie Xin
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
38
|
Rovegno M, Vera M, Ruiz A, Benítez C. Current concepts in acute liver failure. Ann Hepatol 2020; 18:543-552. [PMID: 31126880 DOI: 10.1016/j.aohep.2019.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
Abstract
Acute liver failure (ALF) is a severe condition secondary to a myriad of causes associated with poor outcomes. The prompt diagnosis and identification of the aetiology allow the administration of specific treatments plus supportive strategies and to define the overall prognosis, the probability of developing complications and the need for liver transplantation. Pivotal issues are adequate monitoring and the institution of prophylactic strategies to reduce the risk of complications, such as progressive liver failure, cerebral oedema, renal failure, coagulopathies or infections. In this article, we review the main aspects of ALF, including the definition, diagnosis and complications. Also, we describe the standard-of-care strategies and recent advances in the treatment of ALF. Finally, we include our experience of care patients with ALF.
Collapse
Affiliation(s)
- Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Magdalena Vera
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alex Ruiz
- Unidad de Gastroenterología, Instituto de Medicina, Escuela de Medicina, Universidad Austral de Chile, Chile
| | - Carlos Benítez
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
39
|
Pareja E, Gómez-Lechón MJ, Tolosa L. Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:566. [PMID: 32775367 PMCID: PMC7347783 DOI: 10.21037/atm.2020.02.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The only curative treatment for severe end-stage liver disease (ESLD) is liver transplantation (LT) but it is limited by the shortage of organ donors. The increase of the incidence of liver disease has led to develop new therapeutic approaches such as liver cell transplantation. Current challenges that limit a wider application of this therapy include a limited cell source and the poor engraftment in the host liver of cryopreserved hepatocytes after thawing. Induced pluripotent stem cells (iPSCs) that can be differentiated into hepatocyte-like cells (HLCs) are being widely explored as an alternative to human hepatocytes because of their unlimited proliferation capacity and their potential ability to avoid the immune system. Their large-scale production could provide a new tool to produce enough HLCs for treating patients with metabolic diseases, acute liver failure (ALF), those with ESLD or patients not considered for organ transplantation. In this review we discuss current challenges for generating differentiated cells compatible with human application as well as in-depth safety evaluation. This analysis highlights the uncertainties and deficiencies that should be addressed before their clinical use but also points out the potential benefits that will produce a great impact in the field of hepatology.
Collapse
Affiliation(s)
- Eugenia Pareja
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Hepatobiliopancreáctica, Hospital Universitario Doctor Peset, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,CIBERehd, ISCIII, Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
40
|
Tao YC, Chen EQ. Clinical application of stem cell in patients with end-stage liver disease: progress and challenges. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:564. [PMID: 32775365 PMCID: PMC7347777 DOI: 10.21037/atm.2020.03.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/11/2020] [Indexed: 02/05/2023]
Abstract
End-stage liver disease (ESLD) is life-threatening disease worldwide, and patients with ESLD should be referred to liver transplantation (LT). However, the use of LT is limited by the lacking liver source, high cost and organ rejection. Thus, other alternative options have been explored. Stem cell therapy may be a potential alternative for ESLD treatment. With the potential of self-renewal and differentiation, both hepatic and extrahepatic stem cells have attracted a lot of attention. Among them, multipotent stem cells are most widely studies owing to their characteristics. Multipotent stem cells mainly consist of two subpopulations: hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Accumulating evidences have proved that either bone marrow (BM)-derived HSCs mobilized by granulocyte colony-stimulating factor or MSCs transplantation can improve the biochemical indicators of patients with ESLD. However, there are some challenges to be resolved before stem cells widely used in clinic, including the best stem cell source, the optimal route for stem cells transplantation, and the dose and frequency of stem cell injected. The purpose of this review is to discuss the potential of stem cell in liver diseases, particularly, the clinical progress and challenges of multipotent stem cells in the field of ESLD.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Tan EXX, Wang MX, Pang J, Lee GH. Plasma exchange in patients with acute and acute-on-chronic liver failure: A systematic review. World J Gastroenterol 2020; 26:219-245. [PMID: 31988586 PMCID: PMC6962432 DOI: 10.3748/wjg.v26.i2.219] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/21/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) and acute-on-chronic liver (ACLF) carry high short-term mortality rate, and may result from a wide variety of causes. Plasma exchange has been shown in a randomized control trial to improve survival in ALF especially in patients who did not receive a liver transplant. Other cohort studies demonstrated potential improvement in survival in patients with ACLF.
AIM To assess utility of plasma exchange in liver failure and its effect on mortality in patients who do not undergo liver transplantation.
METHODS Databases MEDLINE via PubMed, and EMBASE were searched and relevant publications up to 30 March, 2019 were assessed. Studies were included if they involved human participants diagnosed with liver failure who underwent plasma exchange, with or without another alternative non-bioartificial liver assist device.
RESULTS Three hundred twenty four records were reviewed, of which 62 studies were found to be duplicates. Of the 262 records screened, 211 studies were excluded. Fifty-one articles were assessed for eligibility, for which 7 were excluded. Twenty-nine studies were included for ALF only, and 9 studies for ACLF only. Six studies included both ALF and ACLF patients. A total of 44 publications were included. Of the included publications, 2 were randomized controlled trials, 14 cohort studies, 12 case series, 16 case reports. All of three ALF studies which looked at survival rate or survival days reported improvement in outcome with plasma exchange. In two out of four studies where plasma exchange-based liver support systems were compared to standard medical treatment (SMT) for ACLF, a biochemical improvement was seen. Survival in the non-transplanted patients was improved in all four studies in patients with ACLF comparing plasma exchange vs SMT. Using the aforementioned studies, plasma exchange based therapy in ACLF compared to SMT improved survival in non-transplanted patients at 30 and 90-d with a pooled OR of 0.60 (95%CI 0.46-0.77, P < 0.01).
CONCLUSION The level of evidence for use of high volume plasma exchange in selected ALF cases is high. Plasma exchange in ACLF improves survival at 30-and 90-d in non-transplanted patients. Further well-designed randomized control trials will need to be carried out to ascertain the optimal duration and amount of plasma exchange required and assess if the use of high volume plasma exchange can be extrapolated to patients with ACLF.
Collapse
Affiliation(s)
| | - Min-Xian Wang
- Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore
| | - Junxiong Pang
- Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore
| | - Guan-Huei Lee
- National University Health System, Singapore 119228, Singapore
- National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
42
|
Wan YM, Li ZQ, Zhou Q, Liu C, Wang MJ, Wu HX, Mu YZ, He YF, Zhang Y, Wu XN, Li YH, Xu ZY, Wu HM, Xu Y, Yang JH, Wang XF. Mesenchymal stem cells alleviate liver injury induced by chronic-binge ethanol feeding in mice via release of TSG6 and suppression of STAT3 activation. Stem Cell Res Ther 2020; 11:24. [PMID: 31931878 PMCID: PMC6958598 DOI: 10.1186/s13287-019-1547-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are a population of pluripotent cells that might be used for treatment of liver disease. However, the efficacy of MSCs for mice with alcoholic hepatitis (AH) and its underlying mechanism remains unclear. Methods MSCs were isolated from the bone marrow (BM) of 4–6-week-old male C57BL/6 N mice. AH was induced in female mice by chronic-binge ethanol feeding for 10 days. The mice were given intraperitoneal injections of MSCs with or without transfection or AG490, recombinant mouse tumor necrosis factor (TNF)-α-stimulated gene/protein 6 (rmTSG-6), or saline at day 10. Blood samples and hepatic tissues were collected at day 11. Various assays such as biochemistry, histology, and flow cytometry were performed. Results MSCs reduced AH in mice, decreasing liver/body weight ratio, liver injury, blood and hepatic lipids, malondialdehyde, interleukin (IL)-6, and TNF-ɑ, but increasing glutathione, IL-10, and TSG-6, compared to control mice. Few MSCs engrafted into the inflamed liver. Knockdown of TSG-6 in MSCs significantly attenuated their effects, and injection of rmTSG-6 achieved similar effects to MSCs. The signal transducer and activator of transcription 3 (STAT3) was activated in mice with AH, and MSCs and rmTSG-6 inhibited the STAT3 activation. Injection of MSCs plus AG490 obtained more alleviation of liver injury than MSCs alone. Conclusions BM-MSCs injected into mice with AH do not engraft the liver, but they secrete TSG-6 to reduce liver injury and to inhibit STAT3 activation.
Collapse
Affiliation(s)
- Yue-Meng Wan
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China.,Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Zhi-Qiang Li
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Qiong Zhou
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Chang Liu
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Men-Jie Wang
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Hui-Xin Wu
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Yun-Zhen Mu
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Yue-Feng He
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Yuan Zhang
- The Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xi-Nan Wu
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China.
| | - Yu-Hua Li
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Zhi-Yuan Xu
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Hua-Mei Wu
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Ying Xu
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Jin-Hui Yang
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Xiao-Fang Wang
- Department of Pathology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 65010, Yunnan Province, China
| |
Collapse
|
43
|
Feng Y, Wang AT, Jia HH, Zhao M, Yu H. A Brief Analysis of Mesenchymal Stem Cells as Biological Drugs for the Treatment of Acute-on-Chronic Liver Failure (ACLF): Safety and Potency. Curr Stem Cell Res Ther 2020; 15:202-210. [PMID: 31893994 DOI: 10.2174/1574888x15666200101124317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
Acute-on-Chronic Liver Failure (ACLF) is characterized by acute exacerbation of chronic hepatitis, organ failure, high mortality, and poor prognosis. At present, the clinical methods of treatment include comprehensive treatment with medicines, artificial liver system, and Orthotopic Liver Transplantation (OLT), and of these, OLT is considered the most effective treatment for ACLF. However, it is difficult for ACLF patients to benefit from OLT due to the shortage of liver donors, high cost, unpredictable postoperative complications, and long-term use of immunosuppressive drugs; therefore, it is important to explore a new treatment option. With the development of stem cell transplantation technology in recent years, several studies have shown that treatment of ACLF with Mesenchymal Stem Cells (MSCs) leads to higher survival rates, and has good tolerance and safety rates, thereby improving the liver function and quality of life of patients; it has also become one of the popular research topics in clinical trials. This paper summarizes the current clinical interventions and treatments of ACLF, including the clinical trials, therapeutic mechanisms, and research progress on MSC application in the treatment of ACLF. The problems and challenges of the development of MSC-based therapy in the future are also discussed.
Collapse
Affiliation(s)
- Ying Feng
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Ai-Tong Wang
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Hong-Hong Jia
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Meng Zhao
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Hao Yu
- Cell Products of National Engineering Research Center, Tianjin 300457, China.,National Stem Cell Engineering Research Center, Tianjin 300457, China
| |
Collapse
|
44
|
Generation of functional hepatocyte-like cells from human bone marrow mesenchymal stem cells by overexpression of transcription factor HNF4α and FOXA2. Hepatobiliary Pancreat Dis Int 2019; 18:546-556. [PMID: 31230960 DOI: 10.1016/j.hbpd.2019.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/05/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Our previous study showed that overexpression of hepatocyte nuclear factor 4α (HNF4α) could directly promote mesenchymal stem cells (MSCs) to differentiate into hepatocyte-like cells. However, the efficiency of hepatic differentiation remains low. The purpose of our study was to establish an MSC cell line that overexpressed HNF4α and FOXA2 genes to obtain an increased hepatic differentiation efficiency and hepatocyte-like cells with more mature hepatocyte functions. METHODS Successful establishment of high-level HNF4α and FOXA2 co-overexpression in human induced hepatocyte-like cells (hiHep cells) was verified by flow cytometry, immunofluorescence and RT-PCR. Measurements of albumin (ALB), urea, glucose, indocyanine green (ICG) uptake and release, cytochrome P450 (CYP) activity and gene expression were used to analyze mature hepatic functions of hiHep cells. RESULTS hiHep cells efficiently express HNF4α and FOXA2 genes and proteins, exhibit typical epithelial morphology and acquire mature hepatocyte-like cell functions, including ALB secretion, urea production, ICG uptake and release, and glycogen storage. hiHep cells can be activated by CYP inducers. The percentage of both ALB and α-1-antitrypsin (AAT)-positive cells was approximately 72.6%. The expression levels of hepatocyte-specific genes (ALB, AAT, and CYP1A1) and liver drug transport-related genes (ABCB1, ABCG2, and SLC22A18) in hiHep cells were significantly higher than those in MSCs-Vector cells. The hiHep cells did not form tumors after subcutaneous xenograft in BALB/c nude mice after 2 months. CONCLUSION This study provides an accessible, feasible and efficient strategy to generate hiHep cells from MSCs.
Collapse
|
45
|
Exploring the Most Promising Stem Cell Therapy in Liver Failure: A Systematic Review. Stem Cells Int 2019; 2019:2782548. [PMID: 31871465 PMCID: PMC6913162 DOI: 10.1155/2019/2782548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background Alternative approaches to transplantation for liver failure are needed. One of the alternative approaches is stem cell therapy. However, stem cell therapy in liver failure is not standardized yet, as every centre have their own methods. This systematic review is aimed at compiling and analyzing the various studies that use stem cells to treat liver failure, to get an insight into potential protocols in terms of safety and efficacy by comparing them to controls. Methods This systematic review was done according to PRISMA guidelines and submitted for registration in PROSPERO (registration number CRD42018106119). All published studies in PubMed/MEDLINE and Cochrane Library, using key words: “human” and “stem cell” AND “liver failure” on 16th June 2018, without time restriction. In addition, relevant articles that are found during full-text search were added. Inclusion criteria included all original articles on stem cell use in humans with liver failure. Data collected included study type, treatment and control number, severity of disease, concomitant therapy, type and source of cells, passage of cells, dose, administration route, repeats, and interval between repeats, outcomes, and adverse events compared to controls. Data were analyzed descriptively to determine the possible causes of adverse reactions, and which protocols gave a satisfactory outcome, in terms of safety and efficacy. Results There were 25 original articles, i.e., eight case studies and 17 studies with controls. Conclusion Among the various adult stem cells that were used in human studies, MSCs from the bone marrow or umbilical cord performed better compared to other types of adult stem cells, though no study showed a complete and sustainable performance in the outcome measures. Intravenous (IV) route was equal to invasive route. Fresh or cryopreserved, and autologous or allogeneic MSCs were equally beneficial; and giving too many cells via intraportal or the hepatic artery might be counterproductive.
Collapse
|
46
|
Chen H, Tang S, Liao J, Liu M, Lin Y. Therapeutic effect of human umbilical cord blood mesenchymal stem cells combined with G-CSF on rats with acute liver failure. Biochem Biophys Res Commun 2019; 517:670-676. [PMID: 31400854 DOI: 10.1016/j.bbrc.2019.07.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023]
Abstract
Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) have been used to facilitate healing in animal models of liver injury, while granulocyte colony-stimulating factor (G-CSF) has been shown to stimulate stem cell mobilization and these cells may contribute to liver repair. hUCB-MSCs were characterized by flow cytometry, and transplanted into rats with d-galactosamine (D-GalN)/lipopolysaccharides (LPS)-induced acute liver failure (ALF) together with granulocyte colony-stimulating factor (G-CSF). Liver function, oxidative stress and pro-inflammatory cytokines expressions were examined using enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to observe the morphological changes. Apoptosis was investigated by terminal dUTP nick end labeling (TUNEL) staining. Bromodeoxyuridine (BrdU) cell proliferation assay was analyzed by immunofluorescence and immunohistochemistry. In the results, cultured hUCB-MSCs displayed proliferation and adipogenic and osteogenic differentiation potentials. hUCB-MSCs in combination with G-CSF significantly attenuated ALF-induced liver function injury. Furthermore, hUCB-MSCs and G-CSF treatment remarkably suppressed the secretions of pro-inflammatory cytokines and MDA activation induced by ALF. In addition, inflammation, lesions and cell apoptosis in liver tissues were obviously ameliorated by application of hUCB-MSCs and G-CSF. In conclusion, hUCB-MSCs, alone or co-treatment with G-CSF could ameliorate ALF in rats by inhibiting liver function injury, production of pro-inflammatory cytokines, oxidative stress, and liver cell apoptosis.
Collapse
Affiliation(s)
- Haiou Chen
- Department of Infectious Diseases, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Shigang Tang
- Department of Infectious Diseases, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Jinmao Liao
- Department of Hepatopathy, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Meng Liu
- Department of Infectious Diseases, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yihe Lin
- Department of Infectious Diseases, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
47
|
Combination Treatments of Plasma Exchange and Umbilical Cord-Derived Mesenchymal Stem Cell Transplantation for Patients with Hepatitis B Virus-Related Acute-on-Chronic Liver Failure: A Clinical Trial in China. Stem Cells Int 2019; 2019:4130757. [PMID: 30863450 PMCID: PMC6378797 DOI: 10.1155/2019/4130757] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022] Open
Abstract
Background Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a common type of liver failure with a high mortality. This study aimed at investigating the safety and efficacy of the combination treatment of plasma exchange (PE) and umbilical cord-derived mesenchymal stem cell (UC-MSCs) transplantation for HBV-ACLF patients. Methods A total of 110 HBV-ACLF patients treated in our hospital from January 2012 to September 2017 were enrolled into this trial and divided into the control group (n = 30), UC-MSC group (n = 30), PE group (n = 30), and UC-MSC + PE group (n = 20) based on their treatments. The hepatic function, coagulation, and virological and immunological markers were assessed at baseline and 30, 60, 90, 180, and 360 days. The endpoint outcomes were death and unfavorable outcome (need for liver transplantation or death). Results The UC-MSC + PE group had the lowest rates of death and unfavorable outcome at 30 days, 60 days, and 90 days posttreatment among the four groups, but the difference did not reach significances. The multivariate logistic regression analysis demonstrated that hemoglobin, prothrombin activity, and MELD (model for end-stage liver disease) score were the independent factors associated with the unfavorable outcome (all P < 0.05). The levels of total bilirubin, alanine aminotransferase, aspartate transaminase, and MELD score were significantly decreased during treatments (all P < 0.05). Conclusion UC-MSCs combined with PE treatment had good safety but cannot significantly improve the short-term prognosis of HBV-ACLF patients with as compared with the single treatment. The long-term efficacy should be further evaluated. This trial is registered with registration no. NCT01724398.
Collapse
|
48
|
Gustot T, Moreau R. Acute-on-chronic liver failure vs. traditional acute decompensation of cirrhosis. J Hepatol 2018; 69:1384-1393. [PMID: 30195459 DOI: 10.1016/j.jhep.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Thierry Gustot
- Dept. Gastroenterology and Hepato-Pancreatology, C.U.B. Erasme Hospital, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium; Inserm Unité 1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; UMR S_1149, Université Paris Diderot, Paris, France; The EASL-CLIF Consortium, European Foundation-CLIF, Barcelona, Spain.
| | - Richard Moreau
- Inserm Unité 1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; UMR S_1149, Université Paris Diderot, Paris, France; The EASL-CLIF Consortium, European Foundation-CLIF, Barcelona, Spain; Départment Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, AP-HP, Clichy, France; Laboratoire d'Excellence (Labex) Inflamex, CUE Sorbonne Paris Cité, Paris, France
| |
Collapse
|
49
|
Chen B, Wang YH, Qian JQ, Wu DB, Chen EQ, Tang H. Human mesenchymal stem cells for hepatitis B virus-related acute-on-chronic liver failure: a systematic review with meta-analysis. Eur J Gastroenterol Hepatol 2018; 30:1224-1229. [PMID: 29727380 DOI: 10.1097/meg.0000000000001156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Acute-on-chronic liver failure (ACLF) is a condition with high mortality. New strategies are urgently required. The present review aims to provide a comprehensive understanding of the efficacy and safety of mesenchymal stem cells (MSC) treatment in patients with ACLF associated with hepatitis B virus infection. MATERIALS AND METHODS The MEDLINE, Embase, and Cochrane Library databases were searched for the relevant publications. If appropriate, a meta-analysis was carried out for the following outcomes: survival rate, model for end-stage liver disease score, and liver function. RESULTS Three studies were eligible for the present systematic review. A total of 198 hepatitis B virus-ACLF patients were enrolled for this review. Ninety-one patients were treated with MSC and 107 patients were treated with standard medical therapy (SMT) as controls. Pooled results showed that MSC treatment could significantly reduce the mortality rate at week 12 [risk ratio: 0.50; 95% confidence interval (CI): 0.33, 0.76; P=0.00009] and the mortality rate at the final follow-up (risk ratio: 0.54; 95%CI: 0.37, 0.78; P=0.001) compared with the SMT group. Furthermore, pooled estimates showed that MSC treatment could significantly reduce the total bilirubin level at week 4 (mean difference: 58.89; 95%CI: 14.47, 103.32; P=0.009) compared with the SMT group. No severe complication associated with MSC treatment was observed. CONCLUSION Our pooled results suggested that MSC treatment could significantly reduce the mortality rate, without increasing the incidence of severe complications.
Collapse
Affiliation(s)
- Bin Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Xue R, Meng Q, Li J, Wu J, Yao Q, Yu H, Zhu Y. The assessment of multipotent cell transplantation in acute-on-chronic liver failure: a systematic review and meta-analysis. Transl Res 2018; 200:65-80. [PMID: 30016629 DOI: 10.1016/j.trsl.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a serious life-threatening disease with high prevalence. Liver transplantation is the only efficient clinical treatment for ACLF. Because of the rapid progression and lack of liver donors, it is urgent to find an effective and safe therapeutic approach to ACLF. Recent studies showed that multipotent cell transplantation could improve the patients' liver function and enhance their preoperative condition. Cells such as mesenchymal stem cells, bone marrow mononuclear cells and autologous peripheral blood stem cells, which addressed in this study have all been used in multipotent cell transplantation for liver diseases. However, its clinical efficiency is still debatable. This systematic review and meta-analysis explored the clinical efficiency of multipotent cell transplantation as a therapeutic approach for patients with ACLF. A detailed search of the Cochrane Library, MEDLINE, and Embase databases was conducted from inception to November 2017. The outcome measures were serum albumin, prothrombin time, alanine aminotransferase, total bilirubin, platelets, hemoglobin, white blood cells, and survival time. The quality of evidence was assessed using GRADEpro and Jaded scores. A literature search resulted in 537 citations. Of these, 9 articles met the inclusion criteria. It was found that multipotent cell transplantation was able to alleviate liver damage and improve liver function. Multipotent cell transplantation can also enhance the short-term and medium-term survival rates of ACLF. All 9 research articles included in this analysis reported no statistically significant adverse events, side effects, or complications. In conclusions, this study suggested that multipotent cell transplantation could be recommended as a potential therapeutic supplementary tool in clinical practice. However, clinical trials in large-volume centers still needed.
Collapse
Affiliation(s)
- Ran Xue
- Department of Critical Care Medicine of Liver Disease, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You'an Hospital, Capital Medical University, Beijing, China.
| | - Juan Li
- Department of Critical Care Medicine of Liver Disease, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Jing Wu
- Department of Critical Care Medicine of Liver Disease, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Qinwei Yao
- Department of Critical Care Medicine of Liver Disease, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hongwei Yu
- Department of Critical Care Medicine of Liver Disease, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yueke Zhu
- Department of Critical Care Medicine of Liver Disease, Beijing You'an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|