1
|
Neumann J, Hesse C, Hofmann B, Gergs U. Zacopride stimulates 5-HT 4 serotonin receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6821-6835. [PMID: 38557827 PMCID: PMC11422277 DOI: 10.1007/s00210-024-03051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Zacopride (4-amino-5-chloro-2-methoxy-N-(quinuclidin-3-yl)-benzamide) is a potent agonist in human 5-HT4 serotonin receptors in vitro and in the gastrointestinal tract. Zacopride was studied as an antiemetic drug and was intended to treat gastric diseases. Zacopride has been speculated to be useful as an antiarrhythmic agent in the human ventricle by inhibiting cardiac potassium channels. It is unknown whether zacopride is an agonist in human cardiac 5-HT4 serotonin receptors. We tested the hypothesis that zacopride stimulates human cardiac atrial 5-HT4 serotonin receptors. Zacopride increased the force of contraction and beating rate in isolated atrial preparations from mice with cardiac-specific overexpression of human 5-HT4 serotonin receptors (5-HT4-TG). However, it was inactive in wild-type mouse hearts (WT). Zacopride was as effective as serotonin in raising the force of contraction and beating rate in atrial preparations of 5-HT4-TG. Zacopride raised the force of contraction in human right atrial preparations (HAP) in the absence and presence of the phosphodiesterase III inhibitor cilostamide (1 µM). The positive inotropic effect of zacopride in HAP was attenuated by either 10 µM tropisetron or 1 µM GR125487, both of which are antagonists at 5-HT4 serotonin receptors. These data suggest that zacopride is also an agonist at 5-HT4 serotonin receptors in the human atrium.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany.
| | - Christin Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst-Grube-Straße 40, D-06097, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| |
Collapse
|
2
|
Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther 2024; 256:108596. [PMID: 38301770 DOI: 10.1016/j.pharmthera.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Inherited cardiac arrhythmias are a group of genetic diseases predisposing to sudden cardiac arrest, mainly resulting from variants in genes encoding cardiac ion channels or proteins involved in their regulation. Currently available therapeutic options (pharmacotherapy, ablative therapy and device-based therapy) can not preclude the occurrence of arrhythmia events and/or provide complete protection. With growing understanding of the genetic background and molecular mechanisms of inherited cardiac arrhythmias, advancing insight of stem cell technology, and development of vectors and delivery strategies, gene therapy and stem cell therapy may be promising approaches for treatment of inherited cardiac arrhythmias. Recent years have witnessed impressive progress in the basic science aspects and there is a clear and urgent need to be translated into the clinical management of arrhythmic events. In this review, we present a succinct overview of gene and cell therapy strategies, and summarize the current status of gene and cell therapy. Finally, we discuss future directions for implementation of gene and cell therapy in the therapy of inherited cardiac arrhythmias.
Collapse
Affiliation(s)
- Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
3
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
4
|
Gibbs CE, Marchianó S, Zhang K, Yang X, Murry CE, Boyle PM. Graft-host coupling changes can lead to engraftment arrhythmia: a computational study. J Physiol 2023; 601:2733-2749. [PMID: 37014103 PMCID: PMC10901678 DOI: 10.1113/jp284244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
After myocardial infarction (MI), a significant portion of heart muscle is replaced with scar tissue, progressively leading to heart failure. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) offer a promising option for improving cardiac function after MI. However, hPSC-CM transplantation can lead to engraftment arrhythmia (EA). EA is a transient phenomenon arising shortly after transplantation then spontaneously resolving after a few weeks. The underlying mechanism of EA is unknown. We hypothesize that EA may be explained partially by time-varying, spatially heterogeneous, graft-host electrical coupling. Here, we created computational slice models derived from histological images that reflect different configuration of grafts in the infarcted ventricle. We ran simulations with varying degrees of connection imposed upon the graft-host perimeter to assess how heterogeneous electrical coupling affected EA with non-conductive scar, slow-conducting scar and scar replaced by host myocardium. We also quantified the effect of variation in intrinsic graft conductivity. Susceptibility to EA initially increased and subsequently decreased with increasing graft-host coupling, suggesting the waxing and waning of EA is regulated by progressive increases in graft-host coupling. Different spatial distributions of graft, host and scar yielded markedly different susceptibility curves. Computationally replacing non-conductive scar with host myocardium or slow-conducting scar, and increasing intrinsic graft conductivity both demonstrated potential means to blunt EA vulnerability. These data show how graft location, especially relative to scar, along with its dynamic electrical coupling to host, can influence EA burden; moreover, they offer a rational base for further studies aimed to define the optimal delivery of hPSC-CM injection. KEY POINTS: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) hold great cardiac regenerative potential but can also cause engraftment arrhythmias (EA). Spatiotemporal evolution in the pattern of electrical coupling between injected hPSC-CMs and surrounding host myocardium may explain the dynamics of EA observed in large animal models. We conducted simulations in histology-derived 2D slice computational models to assess the effects of heterogeneous graft-host electrical coupling on EA propensity, with or without scar tissue. Our findings suggest spatiotemporally heterogeneous graft-host coupling can create an electrophysiological milieu that favours graft-initiated host excitation, a surrogate metric of EA susceptibility. Removing scar from our models reduced but did not abolish the propensity for this phenomenon. Conversely, reduced intra-graft electrical connectedness increased the incidence of graft-initiated host excitation. The computational framework created for this study can be used to generate new hypotheses, targeted delivery of hPSC-CMs.
Collapse
Affiliation(s)
- Chelsea E Gibbs
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Silvia Marchianó
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Kelly Zhang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Marchiano S, Nakamura K, Reinecke H, Neidig L, Lai M, Kadota S, Perbellini F, Yang X, Klaiman JM, Blakely LP, Karbassi E, Fields PA, Fenix AM, Beussman KM, Jayabalu A, Kalucki FA, Potter JC, Futakuchi-Tsuchida A, Weber GJ, Dupras S, Tsuchida H, Pabon L, Wang L, Knollmann BC, Kattman S, Thies RS, Sniadecki N, MacLellan WR, Bertero A, Murry CE. Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy. Cell Stem Cell 2023; 30:396-414.e9. [PMID: 37028405 PMCID: PMC10283080 DOI: 10.1016/j.stem.2023.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.
Collapse
Affiliation(s)
- Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lauren Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Shin Kadota
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | | | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Leslie P Blakely
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Paul A Fields
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Adaptive Biotechnologies, Seattle, WA 98102, USA
| | - Aidan M Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kevin M Beussman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA
| | - Anu Jayabalu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Faith A Kalucki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Jennifer C Potter
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Akiko Futakuchi-Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Gerhard J Weber
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah Dupras
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Hiroshi Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lil Pabon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lili Wang
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Steven Kattman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - R Scott Thies
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Nathan Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - W Robb MacLellan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Seibertz F, Sutanto H, Dülk R, Pronto JRD, Springer R, Rapedius M, Liutkute A, Ritter M, Jung P, Stelzer L, Hüsgen LM, Klopp M, Rubio T, Fakuade FE, Mason FE, Hartmann N, Pabel S, Streckfuss-Bömeke K, Cyganek L, Sossalla S, Heijman J, Voigt N. Electrophysiological and calcium-handling development during long-term culture of human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:14. [PMID: 37020075 PMCID: PMC10076390 DOI: 10.1007/s00395-022-00973-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 04/07/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medicine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over long-term culture (30-80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older cells. We have made this model available through an open source software interface that easily allows users to simulate hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation of the culture-to-characterisation pipeline in the field of hiPSC-CM research.
Collapse
Affiliation(s)
- Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Henry Sutanto
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Rebekka Dülk
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Robin Springer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | | | - Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Melanie Ritter
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Philipp Jung
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lea Stelzer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Luisa M Hüsgen
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Marie Klopp
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Tony Rubio
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Funsho E Fakuade
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Fleur E Mason
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Nico Hartmann
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Katrin Streckfuss-Bömeke
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
Averin AS, Konakov MV, Pimenov OY, Galimova MH, Berezhnov AV, Nenov MN, Dynnik VV. Regulation of Papillary Muscle Contractility by NAD and Ammonia Interplay: Contribution of Ion Channels and Exchangers. MEMBRANES 2022; 12:1239. [PMID: 36557146 PMCID: PMC9785361 DOI: 10.3390/membranes12121239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used β-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM β-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in β-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after β-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating β-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of β-NAD and ammonia on rat papillary muscle contractile activity.
Collapse
Affiliation(s)
- Alexey S. Averin
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V. Konakov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg Y. Pimenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miliausha H. Galimova
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miroslav N. Nenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
8
|
Yang D, Deschênes I, Fu JD. Multilayer control of cardiac electrophysiology by microRNAs. J Mol Cell Cardiol 2022; 166:107-115. [PMID: 35247375 PMCID: PMC9035102 DOI: 10.1016/j.yjmcc.2022.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
The electrophysiological properties of the heart include cardiac automaticity, excitation (i.e., depolarization and repolarization of action potential) of individual cardiomyocytes, and highly coordinated electrical propagation through the whole heart. An abnormality in any of these properties can cause arrhythmias. MicroRNAs (miRs) have been recognized as essential regulators of gene expression through the conventional RNA interference (RNAi) mechanism and are involved in a variety of biological events. Recent evidence has demonstrated that miRs regulate the electrophysiology of the heart through fine regulation by the conventional RNAi mechanism of the expression of ion channels, transporters, intracellular Ca2+-handling proteins, and other relevant factors. Recently, a direct interaction between miRs and ion channels has also been reported in the heart, revealing a biophysical modulation by miRs of cardiac electrophysiology. These advanced discoveries suggest that miR controls cardiac electrophysiology through two distinct mechanisms: immediate action through biophysical modulation and long-term conventional RNAi regulation. Here, we review the recent research progress and summarize the current understanding of how miR manipulates the function of ion channels to maintain the homeostasis of cardiac electrophysiology.
Collapse
Affiliation(s)
- Dandan Yang
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Isabelle Deschênes
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Ji-Dong Fu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Van de Sande DV, Kopljar I, Maaike A, Teisman A, Gallacher DJ, Bart L, Snyders DJ, Leybaert L, Lu HR, Labro AJ. The resting membrane potential of hSC-CM in a syncytium is more hyperpolarised than that of isolated cells. Channels (Austin) 2021; 15:239-252. [PMID: 33465001 PMCID: PMC7817136 DOI: 10.1080/19336950.2021.1871815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 12/31/2020] [Indexed: 01/11/2023] Open
Abstract
Human-induced pluripotent stem cell (hiPSC) and stem cell (hSC) derived cardiomyocytes (CM) are gaining popularity as in vitro model for cardiology and pharmacology studies. A remaining flaw of these cells, as shown by single-cell electrophysiological characterization, is a more depolarized resting membrane potential (RMP) compared to native CM. Most reports attribute this to a lower expression of the Kir2.1 potassium channel that generates the IK1 current. However, most RMP recordings are obtained from isolated hSC/hiPSC-CMs whereas in a more native setting these cells are interconnected with neighboring cells by connexin-based gap junctions, forming a syncytium. Hereby, these cells are electrically connected and the total pool of IK1 increases. Therefore, the input resistance (Ri) of interconnected cells is lower than that of isolated cells. During patch clamp experiments pipettes need to be well attached or sealed to the cell, which is reflected in the seal resistance (Rs), because a nonspecific ionic current can leak through this pipette-cell contact or seal and balance out small currents within the cell such as IK1. By recording the action potential of isolated hSC-CMs and that of hSC-CMs cultured in small monolayers, we show that the RMP of hSC-CMs in monolayer is approximately -20 mV more hyperpolarized compared to isolated cells. Accordingly, adding carbenoxolone, a connexin channel blocker, isolates the cell that is patch clamped from its neighboring cells of the monolayer and depolarizes the RMP. The presented data show that the recorded RMP of hSC-CMs in a syncytium is more negative than that determined from isolated hSC/hiPSC-CMs, most likely because the active pool of Kir2.1 channels increased.
Collapse
Affiliation(s)
| | - Ivan Kopljar
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Alaerts Maaike
- Centre of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - David J. Gallacher
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Loeys Bart
- Centre of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Dirk J. Snyders
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Hua Rong Lu
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Alain J. Labro
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Electrophysiology of hiPSC-Cardiomyocytes Co-Cultured with HEK Cells Expressing the Inward Rectifier Channel. Int J Mol Sci 2021; 22:ijms22126621. [PMID: 34205607 PMCID: PMC8235371 DOI: 10.3390/ijms22126621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
The immature electrophysiology of human-induced pluripotent stem cell-derived cardiomyocytes (hiCMs) complicates their use for therapeutic and pharmacological purposes. An insufficient inward rectifying current (IK1) and the presence of a funny current (if) cause spontaneous electrical activity. This study tests the hypothesis that the co-culturing of hiCMs with a human embryonic kidney (HEK) cell-line expressing the Kir2.1 channel (HEK-IK1) can generate an electrical syncytium with an adult-like cardiac electrophysiology. The mechanical activity of co-cultures using different HEK-IK1:hiCM ratios was compared with co-cultures using wildtype (HEK–WT:hiCM) or hiCM alone on days 3–8 after plating. Only ratios of 1:3 and 1:1 showed a significant reduction in spontaneous rate at days 4 and 6, suggesting that IK1 was influencing the electrophysiology. Detailed analysis at day 4 revealed an increased incidence of quiescent wells or sub-areas. Electrical activity showed a decreased action potential duration (APD) at 20% and 50%, but not at 90%, alongside a reduced amplitude of the aggregate AP signal. A computational model of the 1:1 co-culture replicates the electrophysiological effects of HEK–WT. The addition of the IK1 conductance reduced the spontaneous rate and APD20, 50 and 90, and minor variation in the intercellular conductance caused quiescence. In conclusion, a 1:1 co-culture HEK-IK1:hiCM caused changes in electrophysiology and spontaneous activity consistent with the integration of IK1 into the electrical syncytium. However, the additional electrical effects of the HEK cell at 1:1 increased the possibility of electrical quiescence before sufficient IK1 was integrated into the syncytium.
Collapse
|
11
|
Li Y, Wang K, Li Q, Hancox JC, Zhang H. Reciprocal interaction between IK1 and If in biological pacemakers: A simulation study. PLoS Comput Biol 2021; 17:e1008177. [PMID: 33690622 PMCID: PMC7984617 DOI: 10.1371/journal.pcbi.1008177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/22/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Pacemaking dysfunction (PD) may result in heart rhythm disorders, syncope or even death. Current treatment of PD using implanted electronic pacemakers has some limitations, such as finite battery life and the risk of repeated surgery. As such, the biological pacemaker has been proposed as a potential alternative to the electronic pacemaker for PD treatment. Experimentally and computationally, it has been shown that bio-engineered pacemaker cells can be generated from non-rhythmic ventricular myocytes (VMs) by knocking out genes related to the inward rectifier potassium channel current (IK1) or by overexpressing hyperpolarization-activated cyclic nucleotide gated channel genes responsible for the "funny" current (If). However, it is unclear if a bio-engineered pacemaker based on the modification of IK1- and If-related channels simultaneously would enhance the ability and stability of bio-engineered pacemaking action potentials. In this study, the possible mechanism(s) responsible for VMs to generate spontaneous pacemaking activity by regulating IK1 and If density were investigated by a computational approach. Our results showed that there was a reciprocal interaction between IK1 and If in ventricular pacemaker model. The effect of IK1 depression on generating ventricular pacemaker was mono-phasic while that of If augmentation was bi-phasic. A moderate increase of If promoted pacemaking activity but excessive increase of If resulted in a slowdown in the pacemaking rate and even an unstable pacemaking state. The dedicated interplay between IK1 and If in generating stable pacemaking and dysrhythmias was evaluated. Finally, a theoretical analysis in the IK1/If parameter space for generating pacemaking action potentials in different states was provided. In conclusion, to the best of our knowledge, this study provides a wide theoretical insight into understandings for generating stable and robust pacemaker cells from non-pacemaking VMs by the interplay of IK1 and If, which may be helpful in designing engineered biological pacemakers for application purposes.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- Peng Cheng Laboratory, Shenzhen, China
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Matsuoka T, Yamasaki M, Abe M, Matsuda Y, Morino H, Kawakami H, Sakimura K, Watanabe M, Hashimoto K. Kv11 (ether-à-go-go-related gene) voltage-dependent K + channels promote resonance and oscillation of subthreshold membrane potentials. J Physiol 2020; 599:547-569. [PMID: 33151574 PMCID: PMC7839749 DOI: 10.1113/jp280342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Key points Some ion channels are known to behave as inductors and make up the parallel resonant circuit in the plasma membrane of neurons, which enables neurons to respond to current inputs with a specific frequency (so‐called ‘resonant properties’). Here, we report that heterologous expression of mouse Kv11 voltage‐dependent K+ channels generate resonance and oscillation at depolarized membrane potentials in HEK293 cells; expressions of individual Kv11 subtypes generate resonance and oscillation with different frequency properties. Kv11.3‐expressing HEK293 cells exhibited transient conductance changes that opposed the current changes induced by voltage steps; this probably enables Kv11 channels to behave like an inductor. The resonance and oscillation of inferior olivary neurons were impaired at the resting membrane potential in Kv11.3 knockout mice. This study helps to elucidate basic ion channel properties that are crucial for the frequency responses of neurons.
Abstract The plasma membranes of some neurons preferentially respond to current inputs with a specific frequency, and output as large voltage changes. This property is called resonance, and is thought to be mediated by ion channels that show inductor‐like behaviour. However, details of the candidate ion channels remain unclear. In this study, we mainly focused on the functional roles of Kv11 potassium (K+) channels, encoded by ether‐á‐go‐go‐related genes, in resonance in mouse inferior olivary (IO) neurons. We transfected HEK293 cells with long or short splice variants of Kv11.1 (Merg1a and Merg1b) or Kv11.3, and examined membrane properties using whole‐cell recording. Transfection with Kv11 channels reproduced resonance at membrane potentials depolarized from the resting state. Frequency ranges of Kv11.3‐, Kv11.1(Merg1b)‐ and Kv11.1(Merg1a)‐expressing cells were 2–6 Hz, 2–4 Hz, and 0.6–0.8 Hz, respectively. Responses of Kv11.3 currents to step voltage changes were essentially similar to those of inductor currents in the resistor–inductor–capacitor circuit. Furthermore, Kv11 transfections generated membrane potential oscillations. We also confirmed the contribution of HCN1 channels as a major mediator of resonance at more hyperpolarized potentials by transfection into HEK293 cells. The Kv11 current kinetics and properties of Kv11‐dependent resonance suggested that Kv11.3 mediated resonance in IO neurons. This finding was confirmed by the impairment of resonance and oscillation at –30 to –60 mV in Kcnh7 (Kv11.3) knockout mice. These results suggest that Kv11 channels have important roles in inducing frequency‐dependent responses in a subtype‐dependent manner from resting to depolarized membrane potentials. Some ion channels are known to behave as inductors and make up the parallel resonant circuit in the plasma membrane of neurons, which enables neurons to respond to current inputs with a specific frequency (so‐called ‘resonant properties’). Here, we report that heterologous expression of mouse Kv11 voltage‐dependent K+ channels generate resonance and oscillation at depolarized membrane potentials in HEK293 cells; expressions of individual Kv11 subtypes generate resonance and oscillation with different frequency properties. Kv11.3‐expressing HEK293 cells exhibited transient conductance changes that opposed the current changes induced by voltage steps; this probably enables Kv11 channels to behave like an inductor. The resonance and oscillation of inferior olivary neurons were impaired at the resting membrane potential in Kv11.3 knockout mice. This study helps to elucidate basic ion channel properties that are crucial for the frequency responses of neurons.
Collapse
Affiliation(s)
- Toshinori Matsuoka
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yukiko Matsuda
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Li Y, Wang K, Li Q, Zhang H. Biological pacemaker: from biological experiments to computational simulation. J Zhejiang Univ Sci B 2020; 21:524-536. [PMID: 32633107 DOI: 10.1631/jzus.b1900632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pacemaking dysfunction has become a significant disease that may contribute to heart rhythm disorders, syncope, and even death. Up to now, the best way to treat it is to implant electronic pacemakers. However, these have many disadvantages such as limited battery life, infection, and fixed pacing rate. There is an urgent need for a biological pacemaker (bio-pacemaker). This is expected to replace electronic devices because of its low risk of complications and the ability to respond to emotion. Here we survey the contemporary development of the bio-pacemaker by both experimental and computational approaches. The former mainly includes gene therapy and cell therapy, whilst the latter involves the use of multi-scale computer models of the heart, ranging from the single cell to the tissue slice. Up to now, a bio-pacemaker has been successfully applied in big mammals, but it still has a long way from clinical uses for the treatment of human heart diseases. It is hoped that the use of the computational model of a bio-pacemaker may accelerate this process. Finally, we propose potential research directions for generating a bio-pacemaker based on cardiac computational modeling.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,Peng Cheng Laboratory, Shenzhen 518052, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.,Peng Cheng Laboratory, Shenzhen 518052, China
| |
Collapse
|
14
|
Wong AOT, Wong N, Geng L, Chow MZY, Lee EK, Wu H, Khine M, Kong CW, Costa KD, Keung W, Cheung YF, Li RA. Combinatorial Treatment of Human Cardiac Engineered Tissues With Biomimetic Cues Induces Functional Maturation as Revealed by Optical Mapping of Action Potentials and Calcium Transients. Front Physiol 2020; 11:165. [PMID: 32226389 PMCID: PMC7080659 DOI: 10.3389/fphys.2020.00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 01/16/2023] Open
Abstract
Although biomimetic stimuli, such as microgroove-induced alignment (μ), triiodothyronine (T3) induction, and electrical conditioning (EC), have been reported to promote maturation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), a systematic examination of their combinatorial effects on engineered cardiac tissue constructs and the underlying molecular pathways has not been reported. Herein, human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs) were used to generate a micro-patterned human ventricular cardiac anisotropic sheets (hvCAS) for studying the physiological effects of combinatorial treatments by a range of functional, calcium (Ca2+)-handling, and molecular analyses. High-resolution optical mapping showed that combined μ-T3-EC treatment of hvCAS increased the conduction velocity, anisotropic ratio, and proportion of mature quiescent-yet-excitable preparations by 2. 3-, 1. 8-, and 5-fold (>70%), respectively. Such electrophysiological changes could be attributed to an increase in inward sodium current density and a decrease in funny current densities, which is consistent with the observed up- and downregulated SCN1B and HCN2/4 transcripts, respectively. Furthermore, Ca2+-handling transcripts encoding for phospholamban (PLN) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) were upregulated, and this led to faster upstroke and decay kinetics of Ca2+-transients. RNA-sequencing and pathway mapping of T3-EC-treated hvCAS revealed that the TGF-β signaling was downregulated; the TGF-β receptor agonist and antagonist TGF-β1 and SB431542 partially reversed T3-EC induced quiescence and reduced spontaneous contractions, respectively. Taken together, we concluded that topographical cues alone primed cardiac tissue constructs for augmented electrophysiological and calcium handling by T3-EC. Not only do these studies improve our understanding of hPSC-CM biology, but the orchestration of these pro-maturational factors also improves the use of engineered cardiac tissues for in vitro drug screening and disease modeling.
Collapse
Affiliation(s)
- Andy On-Tik Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nicodemus Wong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Geng
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Maggie Zi-Ying Chow
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Eugene K Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Hongkai Wu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Chi-Wing Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kevin D Costa
- Icahn School of Medicine at Mount Sinai, Manhattan, NY, United States
| | - Wendy Keung
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yiu-Fai Cheung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ronald A Li
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Li Y, Wang K, Li Q, Luo C, Zhang H. Role of I f Density on Electrical Action Potential of Bio-engineered Cardiac Pacemaker: A Simulation Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3995-3998. [PMID: 31946747 DOI: 10.1109/embc.2019.8856350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Due to the inevitable drawbacks of the implantable electrical pacemaker, the biological pacemaker was believed to be an alternative therapy for heart failure. Previous experimental studies have shown that biological pacemaker could be produced by genetically manipulating non-pacemaking cardiac cells by suppressing the inward rectifier potassium current (IK1) and expressing the hyperpolarization- activated current (If). However, the role of If in such bio-engineered pacemaker is not clear. In this study, we simulated the action potential of biological pacemaker cells by manipulating If-IK1 parameters (i.e., inhibiting IK1 as well as incorporating If) to analyze possible mechanisms by which different If densities control pacemaking action potentials. Our simulation results showed different pacing mechanism between the bioengineered pacemaking cells with and without If. In addition, it was shown that a greater If density might result in a slower pacing frequency, and excessive of it might produce an early-afterdepolarizations-like action potential due to a sudden release of calcium from sarcoplasmic reticulum into the cytoplasm. This study indicated that when IK1 was significantly suppressed, incorporating If may not enhance the pacing ability of biological pacemaker, but lead to abnormal dynamics of intracellular ionic concentration, increasing risks of dysrhythmia in the heart.
Collapse
|
16
|
Zhao H, Yang M, Wang F, Yang A, Zhao Q, Wang X, Tang Y, Wang T, Huang C. Overexpression of the medium‑conductance calcium‑activated potassium channel (SK4) and the HCN2 channel to generate a biological pacemaker. Mol Med Rep 2019; 20:3406-3414. [PMID: 31432175 DOI: 10.3892/mmr.2019.10591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/25/2019] [Indexed: 11/06/2022] Open
Abstract
Ion channels serve important roles in the excitation‑contraction coupling of cardiac myocytes. Previous studies have shown that the overexpression or activation of intermediate‑conductance calcium‑activated potassium channel (SK4, encoded by KCNN4) in embryonic stem cell‑derived cardiomyocytes can significantly increase their automaticity. The mechanism underlying this effect is hypothesized to be associated with the activation of hyperpolarization‑activated cyclic nucleotide‑gated channel 2 (HCN2). The aim of the present study was to explore whether a biological pacemaker could be constructed by overexpressing SK4 alone or in combination with HCN2 in a rat model. Ad‑green fluorescent protein (GFP), Ad‑KCNN4 and Ad‑HCN2 recombinant adenoviruses were injected into the left ventricle of Sprague‑Dawley rat hearts. The rats were divided into a GFP group (n=10), an SK4 group (n=10), a HCN2 group (n=10) and an SK4 + HCN2 (SK4/HCN2) group (n=10). The isolated hearts were perfused at 5‑7 days following injection, and a complete heart block model was established. Compared with the GFP group, overexpressing SK4 alone did not significantly increase the heart rate after establishment of a complete heart block model [98.1±8.9 vs. 96.7±7.6 beats per min (BPM)], The heart rates in the SK4/HCN2 (139.9±21.9 BPM) and HCN2 groups (111.7±5.5 BPM) were significantly increased compared with the GFP and SK4 groups, and the heart rates in the SK4/HCN2 group were significantly increased compared with the SK4 or HCN2 groups. In the HCN2 (n=8) and the SK4/HCN2 (n=7) groups, the shape of the spontaneous ventricular rhythm was the same as the pacing‑induced ectopic rhythm in the transgenically altered site. By contrast, these rhythms were different in the SK4 (n=10) and GFP (n=10) groups. There were no significant differences in action potential duration alternans or ventricular arrhythmia inducibility between the four groups (all P>0.05). Western blotting, reverse transcription‑quantitative PCR and immunohistochemistry analyses showed that the expression levels of SK4 and HCN2 were significantly increased at the transgene site. Biological pacemaker activity could be successfully generated by co‑overexpression of SK4 and HCN2 without increasing the risk of ventricular arrhythmias. The overexpression of SK4 alone is insufficient to generate biological pacemaker activity. The present study provided evidence that SK4 and HCN2 combined could construct an ectopic pacemaker, laying the groundwork for the development of improved biological pacing mechanisms in the future.
Collapse
Affiliation(s)
- Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ankang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
17
|
Natriuretic Peptide Receptor-C Protects Against Angiotensin II-Mediated Sinoatrial Node Disease in Mice. JACC Basic Transl Sci 2018; 3:824-843. [PMID: 30623142 PMCID: PMC6314975 DOI: 10.1016/j.jacbts.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022]
Abstract
SAN disease is prevalent in hypertension and heart failure and can be induced by chronic Ang II treatment in mice. Ang II caused SAN disease in mice in association with impaired electrical conduction, reduction in the hyperpolarization-activated current (If) in SAN myocytes, and increased SAN fibrosis. Ang II-induced SAN disease was worsened in mice lacking NPR-C in association with enhanced SAN fibrosis. Mice co-treated with Ang II and an NPR-C agonist (cANF) were protected from SAN disease. NPR-C may represent a new target to protect against Ang II-induced SAN disease.
Sinoatrial node (SAN) disease mechanisms are poorly understood, and therapeutic options are limited. Natriuretic peptide(s) (NP) are cardioprotective hormones whose effects can be mediated partly by the NP receptor C (NPR-C). We investigated the role of NPR-C in angiotensin II (Ang II)-mediated SAN disease in mice. Ang II caused SAN disease due to impaired electrical activity in SAN myocytes and increased SAN fibrosis. Strikingly, Ang II treatment in NPR-C−/− mice worsened SAN disease, whereas co-treatment of wild-type mice with Ang II and a selective NPR-C agonist (cANF) prevented SAN dysfunction. NPR-C may represent a new target to protect against the development of Ang II-induced SAN disease.
Collapse
Key Words
- AP, action potential
- Ang II, angiotensin II
- CV, conduction velocity
- DD, diastolic depolarization
- Gmax, maximum conductance
- HR, heart rate
- ICa,L, L-type calcium current
- ICa,T, T-type calcium current
- INCX, sodium–calcium exchanger current
- IV, current voltage relationship
- If, hyperpolarization-activated current
- NP, natriuretic peptide
- NPR, natriuretic peptide receptor
- NPR-C, natriuretic peptide receptor C
- SAN, sinoatrial node
- SBP, systolic blood pressure
- V1/2(act), voltage for 50% channel activation
- cSNRT, corrected sinoatrial node recovery time
- fibrosis
- hypertension
- ion currents
- natriuretic peptide
- sinoatrial node
Collapse
|
18
|
Chen K, Zuo D, Wang SY, Chen H. Kir2 inward rectification-controlled precise and dynamic balances between Kir2 and HCN currents initiate pacemaking activity. FASEB J 2018; 32:3047-3057. [PMID: 29401592 DOI: 10.1096/fj.201701260r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spontaneous rhythmic action potential or pacemaking activity of pacemaker cells controls rhythmic signaling such as heartbeat. The mechanism underlying the origin of pacemaking activity is not well understood. In this study, we created human embryonic kidney (HEK) 293 cells that show pacemaking activity through heterologous expression of strong inward rectifier K+ subfamily 2 isoform 1 (Kir2.1) channels, hyperpolarization-activated cyclic nucleotide-gated isoform 2 (HCN2) nonselective cation channels, and voltage-gated Na+ subfamily 1 isoform 5 or Ca2+ subfamily 3 isoform 1 (Nav1.5 or Cav3.1) channels. A range of relative levels of Kir2.1 and HCN2 currents dynamically counterbalance, generating spontaneous rhythmic oscillation of resting membrane potential between -64 and -34 mV and determining oscillation rates. Each oscillation cycle begins with an autodepolarization phase, which slowly proceeds to the threshold potential that activates Nav1.5 or Cav3.1 channels and triggers action potential, causing engineered HEK293 cells to exhibit pacemaking activity at a rate of ≤67 beats/min. Engineered HEK293 cells with Kir2.1 and either HCN3 or HCN4 also show the oscillation. Engineered HEK293 cells expressing HCN2 and other Kir2 channels, which lack Kir2.1-like complete inward rectification, do not show the oscillation. Therefore, Kir2.1-like inward rectification-controlled precise and dynamic balances between Kir2 and HCN currents initiate spontaneous rhythmic action potential and form an origin of pacemaking activity; Kir2 and HCN channels play essential roles in pacemaking activity.-Chen, K., Zuo, D., Wang, S.-Y. Chen, H. Kir2 inward rectification-controlled precise and dynamic balances between Kir2 and HCN currents initiate pacemaking activity.
Collapse
Affiliation(s)
- Kuihao Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Dongchuan Zuo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Sho-Ya Wang
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|