1
|
Bhartiya D, Dutta S, Tripathi A, Tripathi A. Misconceptions Thrive in the Field of Cancer as Technological Advances Continue to Confuse Stem Cell Biology. Stem Cell Rev Rep 2025:10.1007/s12015-025-10880-1. [PMID: 40238074 DOI: 10.1007/s12015-025-10880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Despite the huge thrust on targeted therapies, cancer survival rates have not improved and both cancer incidence and fatalities continue to rise globally. There is no consensus on how cancer initiates and two contrasting views were published in 2024 regarding cancer initiation. Based on the premise that no stem cells exist in tissues like liver, lungs, and pancreas but they are still affected by cancer; it was suggested that somatic cells dedifferentiate and undergo 'paligenosis' to initiate cancer. The second view discussed that tissue-resident, very small embryonic-like stem cells (VSELs) are vulnerable to extrinsic/intrinsic insults and their dysfunctions initiate cancer. The present article examines the underlying technical reasons that have led to these conflicting views. Scientists have struggled to detect quiescent cancer stem cells (CSCs) that survive chemotherapy, and radiotherapy and escape immunotherapy, cause recurrence and eventually therapeutic resistance leading to death. Lineage tracing studies fail to detect quiescent, acyclic stem cells and instead, the role of actively dividing LGR5+ cells was highlighted for tumor initiation, growth, and metastasis. Similarly, technologies like flow cytometry, and single-cell RNAseq, widely used to comprehend cancer biology, provide insights into cell populations present in abundance. Our article reviews why VSELs/CSCs in the pancreas have remained elusive despite employing advanced technologies, and the critique can be generalized to multiple other organs. This understanding is crucial as it will help to develop better therapeutic strategies for cancer, offer early detection when cancer is a weak disease, and pave the path for prevention over treatment.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India.
| | - Shruti Dutta
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India
- TZAR Labs, 23Ikigai Pte Ltd., 30 Cecil Street, #21-08 Prudential Tower, Singapore, 049712, Singapore
| |
Collapse
|
2
|
Carlo AQ, Pathak D, Choudhary RK, Singh O, Bansal N. Analysis of OCT4 and PGP9.5 gene expression in prenatal and postnatal buffalo ( Bubalus bubalis) testes. Anim Biotechnol 2024; 35:2285509. [PMID: 38006579 DOI: 10.1080/10495398.2023.2285509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
This study aimed to investigate and characterize the spermatogonial stem cells (SSCs) in buffaloes at different stages of development, including prenatal, neonatal, prepubertal, and adult testes. We sought a comprehensive understanding of these cells through a combination of histological, immunohistochemical, and ultrastructural analyses. Specifically, we examined changes in the expression of two potential SSC markers, OCT4 and PGP9.5, using immunohistochemistry. Additionally, we conducted a real-time quantitative polymerase chain reaction (RT-qPCR) to assess the relative gene expression of OCT4 and PGP9.5. The relative expression of the OCT4 gene was down-regulated in the adult testes compared to its expression during prepubertal and neonatal life. The relative expression of the PGP9.5 gene was up-regulated in the neonatal testes and down-regulated in the prepubertal and adult testes. The spermatogonia were round, oval-to-ellipsoidal cells lying over the basement membrane (BM) with a round-to-oval nucleus. Based on the immunoexpression of the putative SSC markers, OCT4 and PGP9.5, we concluded that the proportion of stem cells was highest during the neonatal stage, followed by the prepubertal and prenatal stages. This finding sheds light on the dynamics of spermatogonial stem cells in buffalo testes at different developmental stages, providing valuable insights into these cells' regulation and potential applications.
Collapse
Affiliation(s)
- Ashritha Q Carlo
- Department of Veterinary Anatomy, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Ratan K Choudhary
- Animal Stem Cells Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Opinder Singh
- Department of Veterinary Anatomy, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Neelam Bansal
- Department of Veterinary Anatomy, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
3
|
Krętowska-Grunwald A, Sawicka-Żukowska M, Starosz A, Krawczuk-Rybak M, Moniuszko M, Grubczak K. Selected stem cell populations in pediatric acute lymphoblastic leukemia. Front Immunol 2024; 15:1446687. [PMID: 39386216 PMCID: PMC11461207 DOI: 10.3389/fimmu.2024.1446687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Acute lymphoblastic leukemia is characterized by a disturbed maturation of hematopoietic stem cells (HSCs) resulting in development of a malignant clone. Despite relatively positive outcome, there are still instances of disease relapse occurring due to ineffective disease eradication or primary leukemic clone alterations. Unclear significance of stem cells in the course of ALL led us to investigate and establish crucial changes in two stem cell populations - very small embryonic-like stem cells (VSELs) and HSCs during the induction phase of treatment. Methods In a retrospective study selected stem cells in peripheral blood and bone marrow of 60 pediatric ALL subjects and 48 healthy controls were subjected to flow cytometric analysis at 4 different time points. Results Both VSELs and HSCs were elevated at the moment of ALL diagnosis compared to healthy controls, but profoundly decline until day 15. Further observations revealed an increase in HSCs with a concomitant depletion of VSELs until week 12. ALL patients with high HSCs showed positive correlation with bone marrow blasts at diagnosis. Patients with lower VSELs or HSCs at diagnosis had slightly improved response to applied therapy. We observed higher initial bone marrow lymphoblast values in patients with lower VSELs or higher HSCs in the high-risk group. The significance of VSELs in predicting treatment outcome can be illustrated by lower day 15 MRD level of patients with lower VSELs at diagnosis. Discussion We found HSCs and VSELs to be valid participants in pediatric ALL with possible contribution in the neoplastic process and prediction of initial treatment outcome.
Collapse
Affiliation(s)
- Anna Krętowska-Grunwald
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Bialystok, Poland
| | | | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Clinical Department of Allergic and Internal Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Sun B, Cheng X, Wu Q. The Endometrial Stem/Progenitor Cells and Their Niches. Stem Cell Rev Rep 2024; 20:1273-1284. [PMID: 38635126 DOI: 10.1007/s12015-024-10725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Endometrial stem/progenitor cells are a type of stem cells with the ability to self-renew and differentiate into multiple cell types. They exist in the endometrium and form niches with their neighbor cells and extracellular matrix. The interaction between endometrial stem/progenitor cells and niches plays an important role in maintaining, repairing, and regenerating the endometrial structure and function. This review will discuss the characteristics and functions of endometrial stem/progenitor cells and their niches, the mechanisms of their interaction, and their roles in endometrial regeneration and diseases. Finally, the prospects for their applications will also be explored.
Collapse
Affiliation(s)
- Baolan Sun
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, China.
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiang Wu
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
5
|
Bhartiya D, Raouf S, Pansare K, Tripathi A, Tripathi A. Initiation of Cancer: The Journey From Mutations in Somatic Cells to Epigenetic Changes in Tissue-resident VSELs. Stem Cell Rev Rep 2024; 20:857-880. [PMID: 38457060 DOI: 10.1007/s12015-024-10694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India.
| | | | - Kshama Pansare
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
- 23Ikigai Pte Ltd, 30 Cecil Street, #21-08 Prudentsial Tower, Singapore, 049712, Singapore
| |
Collapse
|
6
|
Singh P, Metkari SM, Tripathi A, Bhartiya D. Reversing Uteropathies Including Cancer-Like Changes in Mice by Transplanting Mesenchymal Stromal Cells or XAR Treatment. Stem Cell Rev Rep 2024; 20:258-282. [PMID: 37779174 DOI: 10.1007/s12015-023-10632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Pluripotent, very small embryonic-like stem cells (VSELs) and tissue-committed 'progenitors' termed endometrial stem cells (EnSCs) are reported in mouse uterus. They express gonadal and gonadotropin hormone receptors and thus are vulnerable to early-life endocrine insults. Neonatal exposure of mouse pups to endocrine disruption cause stem/progenitor cells to undergo epigenetic changes, excessive self-renewal, and blocked differentiation that results in various uteropathies including non-receptive endometrium, hyperplasia, endometriosis, adenomyosis, and cancer-like changes in adult life. Present study investigated reversal of these uteropathies, by normalizing functions of VSELs and EnSCs. Two strategies were evaluated including (i) transplanting mesenchymal stromal cells (provide paracrine support) on D60 or (ii) oral administration of XAR (epigenetic regulator) daily from days 60-100 and effects were studied later in 100 days old mice. Results show normalization of stem/progenitor cells (Oct-4, Oct-4A, Sox-2, Nanog) and Wnt signalling (Wnt-4, β-catenin, Axin-2) specific transcripts. Flow cytometry results showed reduced numbers of 2-6 µm, LIN-CD45-SCA-1 + VSELs. Hyperplasia (Ki67) of epithelial (Pax-8, Foxa-2) and myometrial (α-Sma, Tgf-β) cells was reduced, adenogenesis (differentiation of glands) was restored, endometrial receptivity and differentiation (LIF, c-KIT, SOX-9, NUMB) and stromal cells niche (CD90, VIMENTIN, Pdgfra, Vimentin) were improved, cancer stem cells markers (OCT-4, CD166) were reduced while tumor suppressor genes (PTEN, P53) and epigenetic regulators (Ezh-2, Sirt-1) were increased. To conclude, normalizing VSELs/EnSCs to manage uteropathies provides a novel basis for initiating clinical studies. The study falls under the umbrella of United Nations Sustainable Development Goal 3 to ensure healthy lives and well-being for all of all ages.
Collapse
Affiliation(s)
- Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - S M Metkari
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Lower Parel, Mumbai, 400 013, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
- Epigeneres Biotech Pvt Ltd, Lower Parel, Mumbai, 400 013, India.
| |
Collapse
|
7
|
Kaushik A, Metkari SM, Ali S, Bhartiya D. Preventing/Reversing Adverse Effects of Endocrine Disruption on Mouse Testes by Normalizing Tissue Resident VSELs. Stem Cell Rev Rep 2023; 19:2525-2540. [PMID: 37561284 DOI: 10.1007/s12015-023-10601-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/11/2023]
Abstract
Reproductive health of men is declining in today's world due to increased developmental exposure to endocrine-disrupting chemicals (EDCs). We earlier reported that neonatal exposure to endocrine disruption resulted in reduced numbers of seminiferous tubules in Stage VIII, decreased sperm count, and infertility along with testicular tumors in 65% of diethylstilbestrol (DES) treated mice. Epigenetic changes due to EDCs, pushed the VSELs out of a quiescent state to enter cell cycle and undergo excessive self-renewal while transition of c-KIT- stem cells into c-KIT + germ cells was blocked due to altered MMR axis (Np95, Pcna, Dnmts), global hypomethylation (reduced expression of 5-methylcytosine) and loss of imprinting at Igf2-H19 and Dlk1-Meg3 loci. The present study was undertaken to firstly show similar defects in FACS sorted VSELs from DES treated testis and to further explore the reversal of these testicular pathologies by (i) oral administration of XAR (a nano-formulation of resveratrol) or (ii) inter-tubular transplantation of mesenchymal stromal cells (MSCs). Similar defects as reported earlier in the testes were evident, based on RNAseq data, on FACS sorted VSELs from DES treated mice. Both strategies were found effective, improved spermatogenesis, increased number of tubules in Stage VIII, normalized numbers of VSELs and c-KIT + cells, improved epigenetic status of VSELs to restore quiescent state, and reduced cancer incidence from 65% after DES to 13.33% and 20% after XAR treatment or MSCs transplantation respectively. Results provide a basis for initiating clinical studies and the study falls under the umbrella of United Nations Sustainable Development Goal 3 to ensure healthy lives and well-being for all of all ages.
Collapse
Affiliation(s)
- Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - S M Metkari
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Subhan Ali
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
- Epigeneres Biotech Pvt Ltd, Lower Parel, Mumbai, 400 013, India.
| |
Collapse
|
8
|
Salem M, Khadivi F, Javanbakht P, Mojaverrostami S, Abbasi M, Feizollahi N, Abbasi Y, Heidarian E, Rezaei Yazdi F. Advances of three-dimensional (3D) culture systems for in vitro spermatogenesis. Stem Cell Res Ther 2023; 14:262. [PMID: 37735437 PMCID: PMC10512562 DOI: 10.1186/s13287-023-03466-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
The loss of germ cells and spermatogenic failure in non-obstructive azoospermia are believed to be the main causes of male infertility. Laboratory studies have used in vitro testicular models and different 3-dimensional (3D) culture systems for preservation, proliferation and differentiation of spermatogonial stem cells (SSCs) in recent decades. The establishment of testis-like structures would facilitate the study of drug and toxicity screening, pathological mechanisms and in vitro differentiation of SSCs which resulted in possible treatment of male infertility. The different culture systems using cellular aggregation with self-assembling capability, the use of different natural and synthetic biomaterials and various methods for scaffold fabrication provided a suitable 3D niche for testicular cells development. Recently, 3D culture models have noticeably used in research for their architectural and functional similarities to native microenvironment. In this review article, we briefly investigated the recent 3D culture systems that provided a suitable platform for male fertility preservation through organ culture of testis fragments, proliferation and differentiation of SSCs.
Collapse
Affiliation(s)
- Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farnaz Khadivi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Yasaman Abbasi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Heidarian
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farzane Rezaei Yazdi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Odroniec A, Olszewska M, Kurpisz M. Epigenetic markers in the embryonal germ cell development and spermatogenesis. Basic Clin Androl 2023; 33:6. [PMID: 36814207 PMCID: PMC9948345 DOI: 10.1186/s12610-022-00179-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/25/2022] [Indexed: 02/24/2023] Open
Abstract
Spermatogenesis is the process of generation of male reproductive cells from spermatogonial stem cells in the seminiferous epithelium of the testis. During spermatogenesis, key spermatogenic events such as stem cell self-renewal and commitment to meiosis, meiotic recombination, meiotic sex chromosome inactivation, followed by cellular and chromatin remodeling of elongating spermatids occur, leading to sperm cell production. All the mentioned events are at least partially controlled by the epigenetic modifications of DNA and histones. Additionally, during embryonal development in primordial germ cells, global epigenetic reprogramming of DNA occurs. In this review, we summarized the most important epigenetic modifications in the particular stages of germ cell development, in DNA and histone proteins, starting from primordial germ cells, during embryonal development, and ending with histone-to-protamine transition during spermiogenesis.
Collapse
Affiliation(s)
- Amadeusz Odroniec
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| |
Collapse
|
10
|
Li H, Gu J, Sun X, Zuo Q, Li B, Gu X. Isolation of Swine Bone Marrow Lin-/CD45-/CD133 + Cells and Cardio-protective Effects of its Exosomes. Stem Cell Rev Rep 2023; 19:213-229. [PMID: 35925437 PMCID: PMC9822881 DOI: 10.1007/s12015-022-10432-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The identification in murine bone marrow (BM) of CD133 + /Lin-/CD45- cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the swine BM. Heart failure is the terminal stage of many cardiovascular diseases, and its key pathological basis is cardiac fibrosis (CF). Research showed that stem cell derived exosomes may play a critical role in cardiac fibrosis. The effect of exosomes (Exos) on CF has remained unclear. OBJECTIVE To establish an isolation and amplification method of CD133 + /Lin-/CD45- cells from newbron swine BM in vitro, explore an highly efficient method to enrich swine bone marrow derived CD133 + /Lin-/CD45- cells and probe into their biological characteristics further. Furher more, to extract exosomes from it and explore its effect on CF. METHODS The mononuclear cells isolated from swine bone marrow by red blood cell (RBC) lysing buffer were coated by adding FcR blocking solution and coupled with CD133 antibody immunomagnetic beads, obtaining CD133 + cell group via Magnetic Activated Cell Sorting (MACS). In steps, the CD133 + /Lin-/CD45- cells were collected by fluorescence-activated cell sorting (FACS) labeled with CD133, Lin and CD45 antibodies, which were cultured and amplified in vitro. The biological features of CD133 + /Lin-/CD45- cells were studied in different aspects, including morphological trait observed with inverted microscope, ultrastructural characteristics observed under transmission electron microscope, expression of pluripotent markersidentified by immunofluorescent staining and Alkaline phosphatase staining. The Exos were extracted using a sequential centrifugation approach and its effects on CF were analyzed in Angiotensin II (Ang-II) induced-cardiac fibrosis in vivo. Rats in each group were treated for 4 weeks, and 2D echocardiography was adopted to evaluate the heart function. The degree of cardiac fibrosis was assessed by Hematoxylin-Eosin (HE) and Masson's trichrome staining. RESULTS The CD133 + /Lin-/CD45- cells accounted for about 0.2%-0.5% of the total mononuclear cells isolated from swine bone marrow. The combination of MACS and FACS to extract CD133 + /Lin-/CD45- cells could improved efficiency and reduced cell apoptosis. The CD133 + /Lin-/CD45- cells featured typical traits of pluripotent stem cells, the nucleus is large, mainly composed of euchromatin, with less cytoplasm and larger nucleoplasmic ratio, which expressed pluripotent markers (SSEA-1, Oct-4, Nanog and Sox-2) and alkaline phosphatase staining was positive.Animal experiment indicated that the cardiac injury related indexes (BNP、cTnI、CK-MB and TNF-α), the expression of key gene Smad3 and the degree of cardiac fibrosis in Exo treatment group were significantly reduced compared with the control group. 4 weeks after the treatment, cardiac ejection fraction (EF) value in the model group showed a remarkable decrease, indicating the induction of HF model. While Exo elevated the EF values, demonstrating cardio-protective effects. CONCLUSION The CD133 + /Lin-/CD45- cells derived from swine bone marrow were successfully isolated and amplified, laying a good foundation for further research on this promising therapeutic cell. The Exos may be a promising potential treatment strategy for CF.
Collapse
Affiliation(s)
- Hongxiao Li
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Jianjun Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Xiaolin Sun
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xiang Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
11
|
Chhabria S, Takle V, Sharma N, Kharkar P, Pansare K, Tripathi A, Tripathi A, Bhartiya D. Extremely Active Nano-formulation of Resveratrol (XAR™) attenuates and reverses chemotherapy-induced damage in mice ovaries and testes. J Ovarian Res 2022; 15:115. [PMID: 36271409 PMCID: PMC9585716 DOI: 10.1186/s13048-022-01043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/23/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fertility preservation and restoration in cancer patients/survivors is the need of present times when increased numbers of patients get cured of cancer but face infertility as a serious side effect. Resveratrol has beneficial effects on chemoablated ovaries and testes in mice but has failed to enter the clinics because of extremely poor bioavailability. The present study was undertaken to evaluate the protective and curative effects of Extremely active Resveratrol (XAR™)- a nano-formulation of resveratrol with significantly improved bioavailability- on mouse ovary and testis after chemotherapy. Effects of XAR™ and FSH were compared on stimulation of follicle growth in adult mice ovaries. XAR™ (25 mg/kg) was administered for two days prior to chemotherapy to study the protective effects on the mouse gonads. XAR™ was also administered for 14 days post chemoablation to study the regenerative effects. Besides effect on numbers of primordial and growing follicles and spermatogenesis, the effect of XAR™ was also evaluated on the transcripts specific for ovarian/testicular stem/progenitor/germ cells, their proliferation, differentiation, meiosis, and the antioxidant indices. RESULTS Similar to FSH, XAR™ increased the numbers of primordial follicles (PF) as well as growing follicles. It protected the gonads from the adverse effects of chemotherapy and showed the ability to regenerate non-functional, chemoablated gonads. Besides stimulating follicle growth in adult ovaries similar to FSH, XAR™ also protected the testes from the adverse effects of chemotherapy and improved spermatogenesis. This was accompanied by improved anti-oxidant indices. CONCLUSIONS The results of the present study potentiate the use of XAR™ in pilot clinical studies to protect gonadal function during oncotherapy and also regenerate non-functional gonads in cancer survivors by improving antioxidant indices and stem cell-based tissue regeneration.
Collapse
Affiliation(s)
- Sagar Chhabria
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Vaishnavi Takle
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Nripen Sharma
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Prashant Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle (West), Mumbai, 400 056, India
| | - Kshama Pansare
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Deepa Bhartiya
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India.
| |
Collapse
|
12
|
Kaushik A, Bhartiya D. Testicular cancer in mice: interplay between stem cells and endocrine insults. Stem Cell Res Ther 2022; 13:243. [PMID: 35676718 PMCID: PMC9175365 DOI: 10.1186/s13287-022-02784-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Incidence of type II germ cell tumors (T2GCT) has increased in young men possibly due to fetal/perinatal exposure to estrogenic compounds. Three-fold increased incidence of T2GCT was reported in men exposed in utero to diethylstilbestrol (DES). T2GCT is a development-related disease arising due to blocked differentiation of gonocytes into spermatogonia in fetal testes which survive as germ cell neoplasia in situ (GCNIS) and initiate T2GCT. In our earlier study, T2GCT-like features were observed in 9 out of 10 adult, 100-day-old mice testes upon neonatal exposure to DES (2 μg/pup/day on days 1-5). Neonatal DES exposure affected testicular very small embryonic-like stem cells (VSELs) and spermatogonial stem cells and resulted in infertility, reduced sperm counts and tumor-like changes leading to our postulate that testicular dysgenesis syndrome possibly has a stem cell basis. The present study was undertaken to further characterize testicular tumor in mice testes. METHODS DES-exposed mice pups (n = 70) were studied on D100 and after 12 months to understand how T2GCT progresses. Besides histological studies, a carefully selected panel of markers were studied by immuno-fluorescence and qRT-PCR. RESULTS DES resulted in either atrophied or highly vascularized, big-sized testes and extra-testicular growth was also observed. GCNIS-like cells with big, vacuolated cytoplasm and increased expression of OCT-4, SSEA-1, SCA-1 and CD166 (cancer stem cells marker) along with reduced c-KIT, MVH and PTEN were evident. Global hypomethylation was found associated with altered expression of Dnmts, Igf2-H19 and Dlk-Meg3 imprinted genes along with reduced expression of Ezh2, cell cycle regulator p57KIP2 and Meg3; however, Pten remained unaltered. Increased expression of PCNA and Ki67 was observed in concert with complete lack of SOX-9 suggesting Sertoli cells independent proliferation. CONCLUSIONS Mouse model for T2GCT is described which will have immense potential to understand cancer initiation, cancer stem cells and also to develop effective therapies in future. T2GCT initiates from tissue-resident, pluripotent VSELs due to their altered epigenome. Neonatal exposure to DES blocks differentiation (spermatogenesis) and VSELs get transformed into CD166 positive cancer stem cells that undergo excessive self-renewal and initiate cancer in adult life challenging existing concept of fetal origin of T2GCT.
Collapse
Affiliation(s)
- Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
13
|
Bhartiya D, Mohammad SA, Singh P, Sharma D, Kaushik A. GFP Tagged VSELs Help Delineate Novel Stem Cells Biology in Multiple Adult Tissues. Stem Cell Rev Rep 2022; 18:1603-1613. [PMID: 35641711 DOI: 10.1007/s12015-022-10401-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
Abstract
Various types of stem cells are being researched upon to exploit their potential for regenerative medicine including pluripotent human embryonic stem (hES) cells derived from spare human embryos, induced pluripotent stem (iPS) cells by reprogramming somatic cells to a pluripotent state and multipotent mesenchymal stem/stromal cells (MSCs) obtained in vitro from multiple tissues. More than 50 independent groups have reported another novel population of pluripotent stem cells in adult tissues termed very small embryonic-like stem cells (VSELs). VSELs are developmentally linked to primordial germ cells, which rather than giving rise to the germ cells and later ceasing to exist, survive throughout life in multiple organs along with tissue-specific adult stem cells better described as lineage-restricted, tissue-committed progenitors with limited plasticity. VSELs survive total body irradiation in bone marrow, oncotherapy in the gonads, bilateral ovariectomy in the uterus and partial pancreatectomy in the pancreas of mice and participate in the regeneration of multiple organs under normal physiological conditions. VSELs and tissue-specific progenitor cells work together in a subtle manner, maintain life-long tissue homeostasis and their dysfunction leads to various pathologies including cancer. However, due to their quiescent state, VSELs have invariably eluded lineage-tracing studies reported so far. Present article reviews novel insights into VSELs biology and how VSELs enriched from GFP (green fluorescent protein) mice have enabled to delineate their role in various biological processes in vivo. VSELs biology needs to be understood in-depth as this alone will help evolve the field of regenerative medicine and win the war against cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
- Epigeneres Biotech Pvt Ltd, Lower Parel, Mumbai, 400013, India.
| | - Subhan Ali Mohammad
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| |
Collapse
|
14
|
Singh P, Metkari S, Bhartiya D. Additional evidence to support OCT-4 positive VSELs and EnSCs as the elusive tissue-resident stem/progenitor cells in adult mice uterus. Stem Cell Res Ther 2022; 13:60. [PMID: 35123545 PMCID: PMC8818151 DOI: 10.1186/s13287-022-02703-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE True identity and specific set of markers to enrich endometrial stem cells still remains elusive. Present study was undertaken to further substantiate that very small embryonic-like stem cells (VSELs) are the true and elusive stem cells in adult mice endometrium. METHODS This was achieved by undertaking three sets of experiments. Firstly, SSEA-1+ and Oct-4 + positive VSELs, sorted from GFP mice, were transplanted into the uterine horns of wild-type Swiss mice and GFP uptake was studied within the same estrus cycle. Secondly, uterine lumen was scratched surgically and OCT-4 expressing stem/progenitor cells were studied at the site of injury after 24-72 h. Thirdly, OCT-4 expression was studied in the endometrium and myometrium of adult mice after neonatal exposure to estradiol (20 µg/pup/day on days 5-7 after birth). RESULTS GFP + ve VSELs expressing SSEA-1 and Oct-4 engrafted and differentiated into the epithelial cells lining the lumen as well as the glands during the estrus stage when maximum remodeling occurs. Mechanical scratching activated tissue-resident, nuclear OCT-4 positive VSELs and slightly bigger 'progenitors' endometrial stem cells (EnSCs, cytoplasmic OCT-4) which underwent clonal expansion and further differentiated into luminal and glandular epithelial cells. Neonatal exposure to endocrine disruption resulted in increased numbers of OCT-4 positive VSELs/EnSCs in adult endometrium. DISCUSSION Results support the presence of functionally active VSELs in adult endometrium. VSELs self-renew and give rise to EnSCs that further differentiate into epithelial cells under normal physiological conditions. Also, VSELs are vulnerable to endocrine insults. To conclude VSELs are true and elusive uterine stem cells that maintain life-long uterine homeostasis and their dysregulation may result in various pathologies.
Collapse
Affiliation(s)
- Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Siddhanath Metkari
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
15
|
Bhartiya D, Patel H, Kaushik A, Singh P, Sharma D. Endogenous, tissue-resident stem/progenitor cells in gonads and bone marrow express FSHR and respond to FSH via FSHR-3. J Ovarian Res 2021; 14:145. [PMID: 34717703 PMCID: PMC8556987 DOI: 10.1186/s13048-021-00883-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Follicle stimulating hormone (FSH) is secreted by the anterior pituitary and acts on the germ cells indirectly through Granulosa cells in ovaries and Sertoli cells in the testes. Extragonadal action of FSH has been reported but is still debated. Adult tissues harbor two populations of stem cells including a reserve population of primitive, small-sized, pluripotent very small embryonic-like stem cells (VSELs) and slightly bigger, tissue-specific progenitors which include ovarian stem cells (OSCs) in ovaries, spermatogonial stem cells (SSCs) in testes, endometrial stem cells (EnSCs) in uterus and hematopoietic stem cells (HSCs) in the bone marrow. Data has accumulated in animal models showing FSHR expression on both VSELs and progenitors in ovaries, testes, uterus and bone marrow and eventually gets lost as the cells differentiate further. FSH exerts a direct action on the stem/progenitor cells via alternatively spliced FSHR-3 rather than the canonical FSHR-1. FSH stimulates VSELs to undergo asymmetrical cell divisions to self-renew and give rise to the progenitors that in turn undergo symmetrical cell divisions and clonal expansions followed by differentiation into specific cell types. Excessive self-renewal of VSELs results in cancer and this explains ubiquitous expression of embryonic markers including nuclear OCT-4 along with FSHR in cancerous tissues. Focus of this review is to compile published data to support this concept. FSHR expression in stem/progenitor cells was confirmed by immuno-fluorescence, Western blotting, in situ hybridization and by quantitative RT-PCR. Two different commercially available antibodies (Abcam, Santacruz) were used to confirm specificity of FSHR expression along with omission of primary antibody and pre-incubation of antibody with immunizing peptide as negative controls. Western blotting allowed detection of alternatively spliced FSHR isoforms. Oligoprobes and primers specific for Fshr-1 and Fshr-3 were used to study these alternately-sliced isoforms by in situ hybridization and their differential expression upon FSH treatment by qRT-PCR. To conclude, stem/progenitor cells in adult tissues express FSHR and directly respond to FSH via FSHR-3. These findings change the field of FSH-FSHR biology, call for paradigm shift, explain FSHR expression on cancer cells in multiple organs and provide straightforward explanations for various existing conundrums including extragonadal expression of FSHR.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Hiren Patel
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
- Present address: Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
16
|
Stem Cells in Adult Mice Ovaries Form Germ Cell Nests, Undergo Meiosis, Neo-oogenesis and Follicle Assembly on Regular Basis During Estrus Cycle. Stem Cell Rev Rep 2021; 17:1695-1711. [PMID: 34455541 DOI: 10.1007/s12015-021-10237-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Very small embryonic-like (VSELs) and ovarian (OSCs) stem cells are located in adult mammalian ovary surface epithelium (OSE). OSCs can expand long-term and differentiate into oocyte-like structures in vitro and have resulted in birth of fertile pups. Lineage tracing studies have provided evidence to suggest OSCs differentiation into oocytes in vivo. But how these stem cells function under normal physiological conditions has not yet been well worked out. Besides studying STRA-8 and SCP-3 expression in enzymatically isolated OSE cells smears, mice were injected BrdU to track mitosis, meiosis and follicle assembly. H&E stained OSE cells during late diestrus and proestrus showed VSELs undergoing asymmetrical cell divisions to give rise to slightly bigger OSCs which in turn underwent symmetrical cell divisions followed by clonal expansion (rapid expansion with incomplete cytokinesis) during early estrus to form germ cell nests (GCN). OCT-4, SSEA-1, MVH and DAZL positive cells in GCN expressed Erα, Erβ and FSHR, were interconnected by ring canals (TEX-14), showed mitochondrial aggregation (Cytochrome C) and Balbiani Body (TRAL). Apoptosis in 'nurse' cells was marked by PARP and putative oocytes were clearly visualized. BrdU was detected in cells undergoing mitosis/meiosis and also in an oocyte of secondary follicle. FACS sorted, green fluorescent protein (GFP) positive VSELs upon transplantation resulted in GFP positive GCN suggesting crucial role for VSELs in adult ovaries. Results suggest that various events described during oogenesis and follicle assembly in fetal ovaries are recapitulated on regular basis in adult ovary and result in the formation of follicles.
Collapse
|
17
|
Bhartiya D, Singh P, Sharma D, Kaushik A. Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues. Stem Cell Rev Rep 2021; 18:1718-1727. [PMID: 34410593 DOI: 10.1007/s12015-021-10243-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Compared to embryonic and induced pluripotent stem cells, mesenchymal stem/stromal cells (MSCs) have made their presence felt with good therapeutic promise and safety profile. Transplanting MSCs has successfully helped to reverse infertility and resulted in live births in animal models and also in humans. But the underlying mechanism for their therapeutic potential is not yet clear. MSCs are not pluripotent and hence lack plasticity to differentiate into multiple adult cell types. They rather act as 'paracrine providers' to the tissue-resident stem cells since similar beneficial effects are also observed when their secretome (microvesicles or exosomes) is transplanted. Cytokines, growth factors, signaling lipids, mRNAs, and miRNAs secreted by MSCs enables tissue-resident stem cells to undergo differentiation into specific cell types. Tissue-resident stem cells include pluripotent, very small embryonic-like stem cells (VSELs) and progenitors [spermatogonial (SSCs), ovarian (OSCs) and endometrial (EnSCs) stem cells in testes, ovary and uterus respectively] which function in a subtle manner to maintain life-long tissue homeostasis and regenerate damaged (non-functional) reproductive tissues by differentiating into sperm, oocytes and endometrial epithelial cells respectively. Similar to restoring spermatogenesis, primordial follicles numbers are increased upon transplanting MSCs. Published literature suggests that MSCs do not differentiate into epithelial cells in the endometrium. Nuclear OCT-4 positive VSELs and cytoplasmic OCT-4, AXIN2 and KERATIN-19 positive epithelial progenitors have a greater role during endometrial regeneration. We propose, transplantation of MSCs simply provides growth factors/cytokines essential for the tissue-resident stem/progenitor cells to undergo differentiation into sperm, eggs and endometrial epithelial cells in the reproductive tissues.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| |
Collapse
|
18
|
Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells. Stem Cell Rev Rep 2021; 17:1905-1916. [PMID: 34115315 DOI: 10.1007/s12015-021-10197-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly evident that selecting an optimal source of mesenchymal stromal cells (MSCs) is crucial for the successful outcome of MSC-based therapies. During the search for cells with potent regenerative properties, Sertoli cells (SCs) have been proven to modulate immune response in both in vitro and in vivo models. Based on morphological properties and expression of surface markers, it has been suggested that SCs could be a kind of MSCs, however, this hypothesis has not been fully confirmed. Therefore, we compared several parameters of MSCs and SCs, with the aim to evaluate the therapeutic potential of SCs in regenerative medicine. We showed that SCs successfully underwent osteogenic, chondrogenic and adipogenic differentiation and determined the expression profile of canonical MSC markers on the SC surface. Besides, SCs rescued T helper (Th) cells from undergoing apoptosis, promoted the anti-inflammatory phenotype of these cells, but did not regulate Th cell proliferation. MSCs impaired the Th17-mediated response; on the other hand, SCs suppressed the inflammatory polarisation in general. SCs induced M2 macrophage polarisation more effectively than MSCs. For the first time, we demonstrated here the ability of SCs to transfer mitochondria to immune cells. Our results indicate that SCs are a type of MSCs and modulate the reactivity of the immune system. Therefore, we suggest that SCs are promising candidates for application in regenerative medicine due to their anti-inflammatory and protective effects, especially in the therapies for diseases associated with testicular tissue inflammation.
Collapse
|
19
|
Altered Biology of Testicular VSELs and SSCs by Neonatal Endocrine Disruption Results in Defective Spermatogenesis, Reduced Fertility and Tumor Initiation in Adult Mice. Stem Cell Rev Rep 2021; 16:893-908. [PMID: 32592162 DOI: 10.1007/s12015-020-09996-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Reproductive health of men has declined in recent past with reduced sperm count and increased incidence of infertility and testicular cancers mainly attributed to endocrine disruption in early life. Present study aims to evaluate whether testicular stem cells including very small embryonic-like stem cells (VSELs) and spermatogonial stem cells (SSCs) get affected by endocrine disruption and result in pathologies in adult life. Effect of treatment on mice pups with estradiol (20 μg on days 5-7) and diethylstilbestrol (DES, 2 μg on days 1-5) was studied on VSELs, SSCs and spermatogonial cells in adult life. Treatment affected spermatogenesis, tubules in Stage VIII & sperm count were reduced along with reduction of meiotic (4n) cells and markers (Prohibitin, Scp3, Protamine). Enumeration of VSELs by flow cytometry (2-6 μm, 7AAD-, LIN-CD45-SCA-1+) and qRT-PCR using specific transcripts for VSELs (Oct-4a, Sox-2, Nanog, Stella, Fragilis), SSCs (tOct-4, Gfra-1, Gpr-125) and early germ cells (Mvh, Dazl) showed several-fold increase but transition from c-Kit negative to c-Kit positive spermatogonial cells was blocked on D100 after treatment. Transcripts specific for apoptosis (Bcl2, Bax) remained unaffected but tumor suppressor (p53) and epigenetic regulator (NP95) transcripts showed marked disruption. 9 of 10 mice exposed to DES showed tumor-like changes. To conclude, endocrine disruption resulted in a tilt towards excessive self-renewal of VSELs (leading to testicular cancer after DES treatment) and blocked differentiation (reduced numbers of c-Kit positive cells, meiosis, sperm count and fertility). Understanding the underlying basis for infertility and cancer initiation from endogenous stem cells through murine modelling will hopefully improve human therapies in future.
Collapse
|
20
|
Tripathi V, Bhartiya D, Vaid A, Chhabria S, Sharma N, Chand B, Takle V, Palahe P, Tripathi A. Quest for Pan-Cancer Diagnosis/Prognosis Ends with HrC Test Measuring Oct4A in Peripheral Blood. Stem Cell Rev Rep 2021; 17:1827-1839. [PMID: 33954878 DOI: 10.1007/s12015-021-10167-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a devastating disease whose incidence has increased in recent times and early detection can lead to effective treatment. Existing detection tools suffer from low sensitivity and specificity, and are high cost, invasive and painful procedures. Cancers affecting different tissues, ubiquitously express embryonic markers including Oct-4A, whose expression levels have also been correlated to staging different types of cancer. Cancer stem cells (CSCs) that initiate cancer are possibly the 'transformed' and pluripotent very small embryonic-like stem cells (VSELs) that also express OCT-4A. Excessive self-renewal of otherwise quiescent, pluripotent VSELs in normal tissues possibly initiates cancer. In an initial study on 120 known cancer patients, it was observed that Oct-4A expression in peripheral blood correlated well with the stage of cancer. Based on these results, we developed a proprietary HrC scale wherein fold change of OCT-4A was linked to patient status - it is a numerical scoring system ranging from non-cancer (0-2), inflammation (>2-6), high-risk (>6-10), stage I (>10-20), stage II (>20-30), stage III (>30-40), and stage IV (>40) cancers. Later the scale was validated on 1000 subjects including 500 non-cancer and 500 cancer patients. Ten case studies are described and show (i) HrC scale can detect cancer, predict and monitor treatment outcome (ii) is superior to evaluating circulating tumor cells and (iii) can also serve as an early biomarker. HrC method is a novel breakthrough, non-invasive, blood-based diagnostic tool that can detect as well as classify solid tumors, hematological malignancies and sarcomas, based on their stage.
Collapse
Affiliation(s)
- VinayKumar Tripathi
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Deepa Bhartiya
- ICMR - National Institute for Research in Reproductive Health, J Merwanji Street, Parel East, Parel, Mumbai, Maharashtra, 400012, India
| | - Ashok Vaid
- Medanta Hospital, CH Baktawar Singh Road, Sector 38, Gurugram, Haryana, 122001, India
| | - Sagar Chhabria
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Nripen Sharma
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Bipin Chand
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Vaishnavi Takle
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Pratiksha Palahe
- National Facility for Biopharmaceuticals, Road Number 32, Matunga, Mumbai, 400019, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India. .,23Ikigai Pte Ltd., 30 Cecil Street, #21-08 Prudential Tower, Singapore, 049712, Singapore.
| |
Collapse
|
21
|
Testicular Stem Cells Survive Oncotherapy. Reprod Sci 2021; 28:1785-1787. [PMID: 33709376 DOI: 10.1007/s43032-021-00522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
|
22
|
Bhartiya D, Flora Y, Sharma D, Mohammad SA. Two Stem Cell Populations Including VSELs and CSCs Detected in the Pericardium of Adult Mouse Heart. Stem Cell Rev Rep 2021; 17:685-693. [PMID: 33492626 DOI: 10.1007/s12015-021-10119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Adult mammalian heart is considered to be one of the least regenerative organs as it is not able to initiate endogenous regeneration in response to injury unlike in lower vertebrates and neonatal mammals. Evidence is now accumulating to suggest normal renewal and replacement of cardiomyocytes occurs even in middle-aged and old individuals. But underlying mechanisms leading to this are not yet clear. Do tissue-resident stem cells exist or somatic cells dedifferentiate leading to regeneration? Lot of attention is currently being focused on epicardium as it is involved in cardiac development, lodges multipotent progenitors and is a source of growth factors. Present study was undertaken to study the presence of stem cells in the pericardium. Intact adult mouse heart was subjected to partial enzymatic digestion to collect the pericardial cells dislodged from the surface. Pericardial cells suspension was processed to enrich the stem cells using our recently published protocol. Two populations of stem cells were successfully enriched from the pericardium of adult mouse heart along with distinct 'cardiospheres' with cytoplasmic continuity (formed by rapid proliferation and incomplete cytokinesis). These included very small embryonic-like stem cells (VSELs) and slightly bigger 'progenitors' cardiac stem cells (CSCs). Expression of pluripotent (Oct-4A, Sox-2, Nanog), primordial germ cells (Stella, Fragilis) and CSCs (Oct-4, Sca-1) specific transcripts was studied by RT-PCR. Stem cells expressed OCT-4, NANOG, SSEA-1, SCA-1 and c-KIT. c-KIT was expressed by cells of different sizes but only smaller CD45-c-KIT+ VSELs possess regenerative potential. Inadvertent loss of stem cells while processing for different experiments has led to misperceptions & controversies existing in the field of cardiac stem cells and requires urgent rectification. VSELs/CSCs have the potential to regenerate damaged cardiac tissue in the presence of paracrine support provided by the mesenchymal stromal cells.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Yash Flora
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Subhan Ali Mohammad
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
23
|
Bhartiya D. Adult tissue-resident stem cells-fact or fiction? Stem Cell Res Ther 2021; 12:73. [PMID: 33478531 PMCID: PMC7819245 DOI: 10.1186/s13287-021-02142-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
Life-long tissue homeostasis of adult tissues is supposedly maintained by the resident stem cells. These stem cells are quiescent in nature and rarely divide to self-renew and give rise to tissue-specific “progenitors” (lineage-restricted and tissue-committed) which divide rapidly and differentiate into tissue-specific cell types. However, it has proved difficult to isolate these quiescent stem cells as a physical entity. Recent single-cell RNAseq studies on several adult tissues including ovary, prostate, and cardiac tissues have not been able to detect stem cells. Thus, it has been postulated that adult cells dedifferentiate to stem-like state to ensure regeneration and can be defined as cells capable to replace lost cells through mitosis. This idea challenges basic paradigm of development biology regarding plasticity that a cell enters point of no return once it initiates differentiation. The underlying reason for this dilemma is that we are putting stem cells and somatic cells together while processing for various studies. Stem cells and adult mature cell types are distinct entities; stem cells are quiescent, small in size, and with minimal organelles whereas the mature cells are metabolically active and have multiple organelles lying in abundant cytoplasm. As a result, they do not pellet down together when centrifuged at 100–350g. At this speed, mature cells get collected but stem cells remain buoyant and can be pelleted by centrifuging at 1000g. Thus, inability to detect stem cells in recently published single-cell RNAseq studies is because the stem cells were unknowingly discarded while processing and were never subjected to RNAseq. This needs to be kept in mind before proposing to redefine adult stem cells.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
24
|
Bhartiya D, Kaushik A. Testicular Stem Cell Dysfunction Due to Environmental Insults Could Be Responsible for Deteriorating Reproductive Health of Men. Reprod Sci 2021; 28:649-658. [PMID: 33409879 DOI: 10.1007/s43032-020-00411-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Reproductive health of men has declined over time including reduced semen quality specifically sperm count, increased incidence of infertility, and testicular cancers. Our recent findings suggest that these disease states possibly arise as a result of disruption of testicular stem cells biology by perinatal insults including exposure to endocrine disrupting chemicals. Testicular stem cells include relatively quiescent, very small embryonic-like stem cells (VSELs), and actively dividing spermatogonial stem cells (SSCs). Both VSELs and SSCs express estrogen receptors and are directly vulnerable to endocrine disruption. Exposing mice pups to estradiol (20 μg/pup/day on days 5-7) or diethylstilbestrol (2 μg/pup/day on days 1-5) affected spermatogenesis during adult life with reduced numbers of tubules in stage VIII, tetraploid cells and sperm. These mice were infertile and majority of diethylstilbestrol treated mice revealed testicular cancer-like changes. An increase in VSEL numbers, observed by both flow cytometry and qRT-PCR, was associated with marked reduction of c-KIT positive spermatogonial cells. VSELs undergo epigenetic changes due to endocrine disruption that results in blocked differentiation (impaired spermatogenesis) leading to reduced sperm count and infertility, and their excessive self-renewal initiates cancer-like changes in adult life. Thus, testicular dysgenesis syndrome (TDS) has a stem cell rather than a genetic basis.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
25
|
Bhartiya D, Kausik A, Singh P, Sharma D. Will Single-Cell RNAseq decipher stem cells biology in normal and cancerous tissues? Hum Reprod Update 2020; 27:421. [PMID: 33367724 DOI: 10.1093/humupd/dmaa058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ankita Kausik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| |
Collapse
|