1
|
Golbabaei MH, Pishbin F, Ebrahimi SAS, Haghighipour N. Development and characterization of bifunctional conductive and magnetic scaffold based on polyvinyl alcohol/polypyrrole/magnetite composite for neural tissue engineering. Biomed Mater 2025; 20:035027. [PMID: 40273941 DOI: 10.1088/1748-605x/add06d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
The incorporation of electroconductive and magnetic materials into scaffolds for tissue engineering has emerged as an innovative approach to enhance nerve tissue regeneration. In this study, the freeze-drying technique was used to fabricate a bifunctional 3D neural scaffold based on biodegradable polyvinyl alcohol (PVA), incorporating magnetite nanoparticles (Fe3O4NPs) and the conductive polymer polypyrrole (PPy). Microstructural and chemical analyses using field emission scanning electron microscopy/energy-dispersive spectrophotometer, x-ray diffraction, and Fourier transform infrared spectroscopy revealed scaffolds with a homogeneous structure, interconnected pores averaging 100 µm, and over 80% porosity, with magnetite evenly distributed in the PVA matrix. The incorporation of Fe3O4nanoparticles significantly enhanced the scaffold's compressive strength and elastic modulus, while PPy increased conductivity to levels comparable to those of native neural tissue. The scaffold also exhibited superparamagnetic properties due to Fe3O4NPs, as confirmed by vibrating-sample magnetometry analysis. PBS submersion demonstrated water absorption and a 30% weight loss over 24 d.In vitrocytotoxicity tests on SH-SY5Y human neuroblastoma cells cultured on composite scaffolds confirmed cell viability, both with and without pulsed electromagnetic field stimulation. Overall, these results suggest that this scaffold is a promising candidate for neural tissue regeneration.
Collapse
Affiliation(s)
- Mohammad Hossein Golbabaei
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
- Department of Mechanical Engineering, Baylor University, Waco, TX 76706, United States of America
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
| | - S A Seyyed Ebrahimi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
| | - Nooshin Haghighipour
- National Cell Bank of Iran, Pasteur Institute of Iran, No 69, Pasteur Ave, Tehran 1316943551, Iran
| |
Collapse
|
2
|
Randhawa A, Ganguly K, Dutta SD, Patil TV, Lim KT. Transcriptomic profiling of human mesenchymal stem cells using a pulsed electromagnetic-wave motion bioreactor system for enhanced osteogenic commitment and therapeutic potentials. Biomaterials 2025; 312:122713. [PMID: 39084096 DOI: 10.1016/j.biomaterials.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Traditional bioreactor systems involve the use of three-dimensional (3D) scaffolds or stem cell aggregates, limiting the accessibility to the production of cell-secreted biomolecules. Herein, we present the use a pulse electromagnetic fields (pEMFs)-assisted wave-motion bioreactor system for the dynamic and scalable culture of human bone marrow-derived mesenchymal stem cells (hBMSCs) with enhanced the secretion of various soluble factors with massive therapeutic potential. The present study investigated the influence of dynamic pEMF (D-pEMF) on the kinetic of hBMSCs. A 30-min exposure of pEMF (10V-1Hz, 5.82 G) with 35 oscillations per minute (OPM) rocking speed can induce the proliferation (1 × 105 → 4.5 × 105) of hBMSCs than static culture. Furthermore, the culture of hBMSCs in osteo-induction media revealed a greater enhancement of osteogenic transcription factors under the D-pEMF condition, suggesting that D-pEMF addition significantly boosted hBMSCs osteogenesis. Additionally, the RNA sequencing data revealed a significant shift in various osteogenic and signaling genes in the D-pEMF group, further suggesting their osteogenic capabilities. In this research, we demonstrated that the combined effect of wave and pEMF stimulation on hBMSCs allows rapid proliferation and induces osteogenic properties in the cells. Moreover, our study revealed that D-pEMF stimuli also induce ROS-scavenging properties in the cultured cells. This study also revealed a bioactive and cost-effective approach that enables the use of cells without using any expensive materials and avoids the possible risks associated with them post-implantation.
Collapse
Affiliation(s)
- Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Gorgol D, Mrlík M, Mikulka F, Víchová Z, Mahelová L, Ilčíková M, Minařík A. Smart Biopolymer Scaffolds Based on Hyaluronic Acid and Carbonyl Iron Microparticles: 3D Printing, Magneto-Responsive, and Cytotoxicity Study. ACS APPLIED BIO MATERIALS 2024; 7:7483-7493. [PMID: 39417485 PMCID: PMC11577426 DOI: 10.1021/acsabm.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
This study deals with utilization of the hyaluronic acid (HA) and carbonyl iron (CI) microparticles to fabricate the magneto-responsive hydrogel scaffolds that can provide triggered functionality upon application of an external magnetic field. The various combinations of the HA and CI were investigated from the rheological and viscoelastic point of view to clearly show promising behavior in connection to 3D printing. Furthermore, the swelling capabilities with water diffusion kinetics were also elucidated. Magneto-responsive performance of bulk hydrogels and their noncytotoxic nature were investigated,, and all hydrogels showed cell viability in the range 75-85%. The 3D printing of such developed systems was successful, and fundamental characterization of the scaffolds morphology (SEM and CT) has been presented. The magnetic activity of the final scaffolds was confirmed at a very low magnetic field strength of 140 kA/m, and such a scaffold also provides very good biocompatibility with NIH/3T3 fibroblasts.
Collapse
Affiliation(s)
- Danila Gorgol
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Miroslav Mrlík
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Filip Mikulka
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, 70 01 Zlin, Czech
Republic
| | - Zdenka Víchová
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Leona Mahelová
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Markéta Ilčíková
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, 70 01 Zlin, Czech
Republic
- Polymer
Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia
| | - Antonín Minařík
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, 70 01 Zlin, Czech
Republic
| |
Collapse
|
4
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
5
|
Cacialli P, Ricci S, Servetto GP, Franceschini V, Ruiz-Zepeda F, Vigliaturo R. Altered Morpho-Functional Features of Neurogenesis in Zebrafish Embryos Exposed to Non-Combustion-Derived Magnetite. Int J Mol Sci 2024; 25:6459. [PMID: 38928164 PMCID: PMC11203806 DOI: 10.3390/ijms25126459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Neurogenesis is the process by which new brain cells are formed. This crucial event emerges during embryonic life and proceeds in adulthood, and it could be influenced by environmental pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter (PM) contributing to air and water pollution in urban settings. Studies on humans have reported that magnetite and other iron oxides have significant damaging effects at a central level, where these particles accumulate and promote oxidative stress. Similarly, magnetite nanoparticles can cross the placenta and damage the embryo brain during development, but the impact on neurogenesis is still unknown. Furthermore, an abnormal Fe cation concentration in cells and tissues might promote reactive oxygen species (ROS) generation and has been associated with multiple neurodegenerative conditions. In the present study, we used zebrafish as an in vivo system to analyze the specific effects of magnetite on embryonic neurogenesis. First, we characterized magnetite using mineralogical and spectroscopic analyses. Embryos treated with magnetite at sub-lethal concentrations showed a dose-response increase in ROS in the brain, which was accompanied by a massive decrease in antioxidant genes (sod2, cat, gsr, and nrf2). In addition, a higher number of apoptotic cells was observed in embryos treated with magnetite. Next, interestingly, embryos exposed to magnetite displayed a decrease in neural staminal progenitors (nestin, sox2, and pcna markers) and a neuronal marker (elavl3). Finally, we observed significative increases in apoeb (specific microglia marker) and interleukin-1b (il1b), confirming a status of inflammation in the brain embryos treated with magnetite. Our study represents the very first in vivo evidence concerning the effects of magnetite on brain development.
Collapse
Affiliation(s)
- Pietro Cacialli
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy
| | - Serena Ricci
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy
| | | | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy
| | - Francisco Ruiz-Zepeda
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ruggero Vigliaturo
- Department of Earth Sciences, University of Turin, 10124 Turin, Italy
- Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10124 Turin, Italy
| |
Collapse
|
6
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
7
|
Frachini ECG, Silva JB, Fornaciari B, Baptista MS, Ulrich H, Petri DFS. Static Magnetic Field Reduces Intracellular ROS Levels and Protects Cells Against Peroxide-Induced Damage: Suggested Roles for Catalase. Neurotox Res 2023; 42:2. [PMID: 38095761 DOI: 10.1007/s12640-023-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
A feature in neurodegenerative disorders is the loss of neurons, caused by several factors including oxidative stress induced by reactive oxygen species (ROS). In this work, static magnetic field (SMF) was applied in vitro to evaluate its effect on the viability, proliferation, and migration of human neuroblastoma SH-SY5Y cells, and on the toxicity induced by hydrogen peroxide (H2O2), tert-butyl hydroperoxide (tBHP), H2O2/sodium azide (NaN3) and photosensitized oxidations by photodynamic therapy (PDT) photosensitizers. The SMF increased almost twofold the cell expression of the proliferation biomarker Ki-67 compared to control cells after 7 days of exposure. Exposure to SMF accelerated the wound healing of scratched cell monolayers and significantly reduced the H2O2-induced and the tBHP-induced cell deaths. Interestingly, SMF was able to revert the effects of NaN3 (a catalase inhibitor), suggesting an increased activity of catalase under the influence of the magnetic field. In agreement with this hypothesis, SMF significantly reduced the oxidation of DCF-H2, indicating a lower level of intracellular ROS. When the redox imbalance was triggered through photosensitized oxidation, no protection was observed. This observation aligns with the proposed role of catalase in cellular proctetion under SMF. Exposition to SMF should be further validated in vitro and in vivo as a potential therapeutic approach for neurodegenerative disorders.
Collapse
Affiliation(s)
- Emilli Caroline Garcia Frachini
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Jean Bezerra Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Barbara Fornaciari
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Maurício S Baptista
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| | - Denise Freitas Siqueira Petri
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
8
|
Rahimi Darehbagh R, Mahmoodi M, Amini N, Babahajiani M, Allavaisie A, Moradi Y. The effect of nanomaterials on embryonic stem cell neural differentiation: a systematic review. Eur J Med Res 2023; 28:576. [PMID: 38071365 PMCID: PMC10709835 DOI: 10.1186/s40001-023-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Humans' nervous system has a limited ability to repair nerve cells, which poses substantial challenges in treating injuries and diseases. Stem cells are identified by the potential to renew their selves and develop into several cell types, making them ideal candidates for cell replacement in injured neurons. Neuronal differentiation of embryonic stem cells in modern medicine is significant. Nanomaterials have distinct advantages in directing stem cell function and tissue regeneration in this field. We attempted in this systematic review to collect data, analyze them, and report results on the effect of nanomaterials on neuronal differentiation of embryonic stem cells. METHODS International databases such as PubMed, Scopus, ISI Web of Science, and EMBASE were searched for available articles on the effect of nanomaterials on neuronal differentiation of embryonic stem cells (up to OCTOBER 2023). After that, screening (by title, abstract, and full text), selection, and data extraction were performed. Also, quality assessment was conducted based on the STROBE checklist. RESULTS In total, 1507 articles were identified and assessed, and then only 29 articles were found eligible to be included. Nine studies used 0D nanomaterials, ten used 1D nanomaterials, two reported 2D nanomaterials, and eight demonstrated the application of 3D nanomaterials. The main biomaterial in studies was polymer-based composites. Three studies reported the negative effect of nanomaterials on neural differentiation. CONCLUSION Neural differentiation is crucial in neurological regenerative medicine. Nanomaterials with different characteristics, particularly those cellular regulating activities and stem cell fate, have much potential in neural tissue engineering. These findings indicate a new understanding of potential applications of physicochemical cues in nerve tissue engineering.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanoclub Elites Association, Tehran, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mozaffar Mahmoodi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nader Amini
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Media Babahajiani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Azra Allavaisie
- Department of Anatomical Sciences, School of Medicine, Sanandaj, Iran
| | - Yousef Moradi
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
9
|
McGraw M, Gilmer G, Bergmann J, Seshan V, Wang K, Pekker D, Modo M, Ambrosio F. Mapping the Landscape of Magnetic Field Effects on Neural Regeneration and Repair: A Combined Systematic Review, Mathematical Model, and Meta-Analysis. J Tissue Eng Regen Med 2023; 2023:5038317. [PMID: 40226417 PMCID: PMC11918650 DOI: 10.1155/2023/5038317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 04/15/2025]
Abstract
Magnetic field exposure is a well-established diagnostic tool. However, its use as a therapeutic in regenerative medicine is relatively new. To better understand how magnetic fields affect neural repair in vitro, we started by performing a systematic review of publications that studied neural repair responses to magnetic fields. The 38 included articles were highly heterogeneous, representing 13 cell types, magnetic field magnitudes of 0.0002-10,000 mT with frequencies of 0-150 Hz, and exposure times ranging from one hour to several weeks. Mathematical modeling based on data from the included manuscripts revealed higher magnetic field magnitudes enhance neural progenitor cell (NPC) viability. Finally, for those regenerative processes not influenced by magnitude, frequency, or time, we integrated the data by meta-analyses. Results revealed that magnetic field exposure increases NPC proliferation while decreasing astrocytic differentiation. Collectively, our approach identified neural repair processes that may be most responsive to magnetic field exposure.
Collapse
Affiliation(s)
- Meghan McGraw
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Gabrielle Gilmer
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliana Bergmann
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Biological Sciences in the Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu Seshan
- Institute of Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Wang
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - David Pekker
- Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Zhang J, Wang Y, Shu X, Deng H, Wu F, He J. Magnetic chitosan hydrogel induces neuronal differentiation of neural stem cells by activating RAS-dependent signal cascade. Carbohydr Polym 2023; 314:120918. [PMID: 37173006 DOI: 10.1016/j.carbpol.2023.120918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Our aim was to modulate magnetic cues to influence the differentiation of neural stem cell (NSC) into neuron during nerve repair and to explore corresponding mechanisms. Here, a magnetic hydrogel composed of chitosan matrices and magnetic nanoparticles (MNPs) with different content was prepared as the magnetic-stimulation platform to apply intrinsically-present magnetic cue and externally-applied magnetic field to NSC grown on the hydrogel. The MNP content had regulatory effects on neuronal differentiation and the MNPs-50 samples exhibited the best neuronal potential and appropriate biocompatibility in vitro, as well as accelerated the subsequent neuronal regeneration in vivo. Remarkably, the use of proteomics analysis parsed the underlying mechanism of magnetic cue-mediated neuronal differentiation form the perspective of protein corona and intracellular signal transduction. The intrinsically-present magnetic cues in hydrogel contributed to the activation of intracellular RAS-dependent signal cascades, thus facilitating neuronal differentiation. Magnetic cue-dependent changes in NSCs benefited from the upregulation of adsorbed proteins related to "neuronal differentiation", "cell-cell interaction", "receptor", "protein activation cascade", and "protein kinase activity" in the protein corona. Additionally, magnetic hydrogel acted cooperatively with the exterior magnetic field, showing further improving neurogenesis. The findings clarified the mechanism for magnetic cue-mediated neuronal differentiation, coupling protein corona and intracellular signal transduction.
Collapse
Affiliation(s)
- Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xuedong Shu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
11
|
Chen Y, Hou S. Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles. Cell Death Discov 2023; 9:195. [PMID: 37380637 DOI: 10.1038/s41420-023-01490-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
At present, iron oxide nanoparticles (IONPs) are widely used in the biomedical field. They have unique advantages in targeted drug delivery, imaging and disease treatment. However, there are many things to pay attention to. In this paper, we reviewed the fate of IONPs in different cells and the influence on the production, separation, delivery and treatment of extracellular vesicles. It aims to provide cutting-edge knowledge related to iron oxide nanoparticles. Only by ensuring the safety and effectiveness of IONPs can their application in biomedical research and clinic be further improved.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, 300072, Tianjin, China.
- Key Laboratory for Disaster Medicine Technology, 300072, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, 300072, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, 300072, Tianjin, China
| |
Collapse
|
12
|
Benayas E, Espinosa A, Portolés MT, Vila-del Sol V, Morales MP, Serrano MC. Cellular and Molecular Processes Are Differently Influenced in Primary Neural Cells by Slight Changes in the Physicochemical Properties of Multicore Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17726-17741. [PMID: 36976318 PMCID: PMC10103129 DOI: 10.1021/acsami.3c02729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Herein, we use two exemplary superparamagnetic iron oxide multicore nanoparticles (SPIONs) to illustrate the significant influence of slightly different physicochemical properties on the cellular and molecular processes that define SPION interplay with primary neural cells. Particularly, we have designed two different SPION structures, NFA (i.e., a denser multicore structure accompanied by a slightly less negative surface charge and a higher magnetic response) and NFD (i.e., a larger surface area and more negatively charged), and identified specific biological responses dependent on SPION type, concentration, exposure time, and magnetic actuation. Interestingly, NFA SPIONs display a higher cell uptake, likely driven by their less negative surface and smaller protein corona, more significantly impacting cell viability and complexity. The tight contact of both SPIONs with neural cell membranes results in the significant augmentation of phosphatidylcholine, phosphatidylserine, and sphingomyelin and the reduction of free fatty acids and triacylglycerides for both SPIONs. Nonetheless, NFD induces greater effects on lipids, especially under magnetic actuation, likely indicating a preferential membranal location and/or a tighter interaction with membrane lipids than NFA, in agreement with their lower cell uptake. From a functional perspective, these lipid changes correlate with an increase in plasma membrane fluidity, again larger for more negatively charged nanoparticles (NFD). Finally, the mRNA expression of iron-related genes such as Ireb-2 and Fth-1 remains unaltered, while TfR-1 is only detected in SPION-treated cells. Taken together, these results demonstrate the substantial impact that minor physicochemical differences of nanomaterials may exert in the specific targeting of cellular and molecular processes. A denser multicore structure generated by autoclave-based production is accompanied by a slight difference in surface charge and magnetic properties that become decisive for the biological impact of these SPIONs. Their capacity to markedly modify the lipidic cell content makes them attractive as lipid-targetable nanomedicines.
Collapse
Affiliation(s)
- Esther Benayas
- , Instituto de
Ciencia de Materiales de Madrid, Consejo Superior de
Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Ana Espinosa
- , Instituto de
Ciencia de Materiales de Madrid, Consejo Superior de
Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - M. Teresa Portolés
- Departamento
de Bioquímica y Biología Molecular, Facultad de Ciencias
Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico
San Carlos (IdISSC), Madrid 28040, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (IDSCIII), Madrid 28040, Spain
| | - Virginia Vila-del Sol
- Hospital
Nacional de Parapléjicos, Servicio
de Salud de Castilla-La Mancha (SESCAM), Finca de la Peraleda s/n, Toledo 45071, Spain
| | - M. Puerto Morales
- , Instituto de
Ciencia de Materiales de Madrid, Consejo Superior de
Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - María C. Serrano
- , Instituto de
Ciencia de Materiales de Madrid, Consejo Superior de
Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| |
Collapse
|
13
|
Wang J, Shang P. Static magnetic field: A potential tool of controlling stem cells fates for stem cell therapy in osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:91-102. [PMID: 36596343 DOI: 10.1016/j.pbiomolbio.2022.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a kind of bone diseases characterized by dynamic imbalance of bone formation and bone absorption, which is prone to fracture, and seriously endangers human health. At present, there is a lack of highly effective drugs for it, and the existing measures all have some side effects. In recent years, mesenchymal stem cell therapy has brought a certain hope for osteoporosis, while shortcomings such as homing difficulty and unstable therapeutic effects limit its application widely. Therefore, it is extremely urgent to find effective and reliable means/drugs for adjuvant stem cell therapy or develop new research techniques. It has been reported that static magnetic fields(SMFs) has a certain alleviating and therapeutic effect on varieties of bone diseases, also promotes the proliferation and osteogenic differentiation of mesenchymal stem cells derived from different tissues to a certain extent. Basing on the above background, this article focuses on the key words "static/constant magnetic field, mesenchymal stem cell, osteoporosis", combined literature and relevant contents were studied to look forward that SMFs has unique advantages in the treatment of osteoporosis with mesenchymal stem cells, which can be used as an application tool to promote the progress of stem cell therapy in clinical application.
Collapse
Affiliation(s)
- Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
14
|
Wei M, Yang Z, Li S, Le W. Nanotherapeutic and Stem Cell Therapeutic Strategies in Neurodegenerative Diseases: A Promising Therapeutic Approach. Int J Nanomedicine 2023; 18:611-626. [PMID: 36760756 PMCID: PMC9904216 DOI: 10.2147/ijn.s395010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Neurodegeneration is characterized by progressive, disabling, and incurable neurological disorders with the massive loss of specific neurons. As one of the most promising potential therapeutic strategies for neurodegenerative diseases, stem cell therapy exerts beneficial effects through different mechanisms, such as direct replacement of damaged or lost cells, secretion of neurotrophic and growth factors, decreased neuroinflammation, and activation of endogenous stem cells. However, poor survival and differentiation rates of transplanted stem cells, insufficient homing ability, and difficulty tracking after transplantation limit their further clinical use. The rapid development of nanotechnology provides many promising nanomaterials for biomedical applications, which already have many applications in neurodegenerative disease treatment and seem to be able to compensate for some of the deficiencies in stem cell therapy, such as transport of stem cells/genes/drugs, regulating stem cell differentiation, and real-time tracking in stem cell therapy. Therefore, nanotherapeutic strategies combined with stem cell therapy is a promising therapeutic approach to treating neurodegenerative diseases. The present review systematically summarizes recent advances in stem cell therapeutics and nanotherapeutic strategies and highlights how they can be combined to improve therapeutic efficacy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Wei
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China
| | - Zhaofei Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China,Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, 610072, People’s Republic of China,Correspondence: Weidong Le, Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China, Email
| |
Collapse
|
15
|
Magnetic Nanomaterials Mediate Electromagnetic Stimulations of Nerves for Applications in Stem Cell and Cancer Treatments. J Funct Biomater 2023; 14:jfb14020058. [PMID: 36826857 PMCID: PMC9960824 DOI: 10.3390/jfb14020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Although some progress has been made in the treatment of cancer, challenges remain. In recent years, advancements in nanotechnology and stem cell therapy have provided new approaches for use in regenerative medicine and cancer treatment. Among them, magnetic nanomaterials have attracted widespread attention in the field of regenerative medicine and cancer; this is because they have high levels of safety and low levels of invasibility, promote stem cell differentiation, and affect biological nerve signals. In contrast to pure magnetic stimulation, magnetic nanomaterials can act as amplifiers of an applied electromagnetic field in vivo, and by generating different effects (thermal, electrical, magnetic, mechanical, etc.), the corresponding ion channels are activated, thus enabling the modulation of neuronal activity with higher levels of precision and local modulation. In this review, first, we focused on the relationship between biological nerve signals and stem cell differentiation, and tumor development. In addition, the effects of magnetic nanomaterials on biological neural signals and the tumor environment were discussed. Finally, we introduced the application of magnetic-nanomaterial-mediated electromagnetic stimulation in regenerative medicine and its potential in the field of cancer therapy.
Collapse
|
16
|
Mocanu-Dobranici AE, Costache M, Dinescu S. Insights into the Molecular Mechanisms Regulating Cell Behavior in Response to Magnetic Materials and Magnetic Stimulation in Stem Cell (Neurogenic) Differentiation. Int J Mol Sci 2023; 24:ijms24032028. [PMID: 36768351 PMCID: PMC9916404 DOI: 10.3390/ijms24032028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels' activity and cyclic AMP response element-binding protein (CREB) phosphorylation. This review presents an updated and integrated perspective on the molecular mechanisms that govern the cellular response to magnetic cues, with a special focus on neurogenic differentiation and the possible utility of nervous TE, as well as the limitations of using magnetism for these applications.
Collapse
Affiliation(s)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
- Correspondence:
| |
Collapse
|
17
|
Gelatin Meshes Enriched with Graphene Oxide and Magnetic Nanoparticles Support and Enhance the Proliferation and Neuronal Differentiation of Human Adipose-Derived Stem Cells. Int J Mol Sci 2022; 24:ijms24010555. [PMID: 36613995 PMCID: PMC9820391 DOI: 10.3390/ijms24010555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The field of tissue engineering is constantly evolving due to the fabrication of novel platforms that promise to stimulate tissue regeneration in the scenario of accidents. Here, we describe the fabrication of fibrous nanostructured substrates based on fish gelatin (FG) and enriched with graphene oxide (GO) and magnetic nanoparticles (MNPs) and demonstrate its biological properties in terms of cell viability and proliferation, cell adhesion, and differentiation. For this purpose, electrospun fibers were fabricated using aqueous precursors containing either only GO and only MNP nanospecies, or both of them within a fish gelatin solution. The obtained materials were investigated in terms of morphology, aqueous media affinity, tensile elasticity, and structural characteristics. The biological evaluation was assessed against adipose-derived stem cells by MTT, LDH, Live/Dead assay, cytoskeleton investigation, and neuronal trans-differentiation. The results indicate an overall good interaction and show that these materials offer a biofriendly environment. A higher concentration of both nanospecies types induced some toxic effects, thus 0.5% GO, MNPs, and GO/MNPs turned out to be the most suitable option for biological testing. Moreover, a successful neuronal differentiation has been shown on these materials, where cells presented a typical neuronal phenotype. This study demonstrates the potential of this scaffold to be further used in tissue engineering applications.
Collapse
|
18
|
Dai Y, Lu T, Shao M, Lyu F. Recent advances in PLLA-based biomaterial scaffolds for neural tissue engineering: Fabrication, modification, and applications. Front Bioeng Biotechnol 2022; 10:1011783. [PMID: 36394037 PMCID: PMC9663477 DOI: 10.3389/fbioe.2022.1011783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Repairing and regenerating injured neural tissue remains a worldwide challenge. Tissue engineering (TE) has been highlighted as a potential solution to provide functional substitutes for damaged organs or tissue. Among the biocompatible and biodegradable materials, poly-L-lactic-acid (PLLA) has been widely investigated in the TE field because of its tunable mechanical properties and tailorable surface functionalization. PLLA-based biomaterials can be engineered as scaffolds that mimic neural tissue extracellular matrix and modulate inflammatory responses. With technological advances, PLLA-based scaffolds can also have well-controlled three-dimensional sizes and structures to facilitate neurite extension. Furthermore, PLLA-based scaffolds have the potential to be used as drug-delivery carriers with controlled release. Moreover, owing to the good piezoelectric properties and capacity to carry conductive polymers, PLLA-based scaffolds can be combined with electrical stimulation to maintain stemness and promote axonal guidance. This mini-review summarizes and discusses the fabrication and modification techniques utilized in the PLLA-based biomaterial scaffolds for neural TE. Recent applications in peripheral nerve and spinal cord regeneration are also presented, and it is hoped that this will guide the future development of more effective and multifunctional PLLA-based nerve scaffolds.
Collapse
Affiliation(s)
- Yuan Dai
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingwei Lu
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Minghao Shao, ; Feizhou Lyu,
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Minghao Shao, ; Feizhou Lyu,
| |
Collapse
|
19
|
Dhillon K, Aizel K, Broomhall TJ, Secret E, Goodman T, Rotherham M, Telling N, Siaugue JM, Ménager C, Fresnais J, Coppey M, El Haj AJ, Gates MA. Directional control of neurite outgrowth: emerging technologies for Parkinson's disease using magnetic nanoparticles and magnetic field gradients. J R Soc Interface 2022; 19:20220576. [PMID: 36349444 PMCID: PMC9653228 DOI: 10.1098/rsif.2022.0576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
A challenge in current stem cell therapies for Parkinson's disease (PD) is controlling neuronal outgrowth from the substantia nigra towards the targeted area where connectivity is required in the striatum. Here we present progress towards controlling directional neurite extensions through the application of iron-oxide magnetic nanoparticles (MNPs) labelled neuronal cells combined with a magnetic array generating large spatially variant field gradients (greater than 20 T m-1). We investigated the viability of this approach in both two-dimensional and organotypic brain slice models and validated the observed changes in neurite directionality using mathematical models. Results showed that MNP-labelled cells exhibited a shift in directional neurite outgrowth when cultured in a magnetic field gradient, which broadly agreed with mathematical modelling of the magnetic force gradients and predicted MNP force direction. We translated our approach to an ex vivo rat brain slice where we observed directional neurite outgrowth of transplanted MNP-labelled cells from the substantia nigra towards the striatum. The improved directionality highlights the viability of this approach as a remote-control methodology for the control and manipulation of cellular growth for regenerative medicine applications. This study presents a new tool to overcome challenges faced in the development of new therapies for PD.
Collapse
Affiliation(s)
- K. Dhillon
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - K. Aizel
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - T. J. Broomhall
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - E. Secret
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - T. Goodman
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - M. Rotherham
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - N. Telling
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - J. M. Siaugue
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - C. Ménager
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - J. Fresnais
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - M. Coppey
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - A. J. El Haj
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - M. A. Gates
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
- School of Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
20
|
Mohammadalizadeh M, Dabirian S, Akrami M, Hesari Z. SPION based magnetic PLGA nanofibers for neural differentiation of mesenchymal stem cells. NANOTECHNOLOGY 2022; 33:375101. [PMID: 35623211 DOI: 10.1088/1361-6528/ac7402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Recently, magnetic platforms have been widely investigated in diagnostic, therapeutic and research applications due to certain properties, such as cell and tissue tracking and imaging, thermal therapy and being dirigible. In this study, the incorporation of magnetic nanoparticles (MNPs) in nanofibers has been proposed to combine the advantages of both nanofibers and MNPs to induce neural differentiation of mesenchymal stem cells. Magnetic poly (lactic-co-glycolic acid) nanofibers (containing 0%, 5% and 10% SPION) were fabricated and utilized as the matrix for the differentiation of mesenchymal stem cells (MSCs). Morphological, magnetic and mechanical properties were analyzed using FESEM, VSM and tensile test, respectively. The expression of neural markers (TUJ-1, NSE, MAP-2) was assessed quantitative and qualitatively utilizing RT-PCR and immunocytochemistry. Results confirmed the incorporation of MNPs in nanofibrous scaffold, presenting a saturation magnetization of 9.73 emu g-1. Also, with increase in magnetic particle concentration (0%-10%), tensile strength increased from 4.08 to 5.85 MPa, whereas the percentage of elongation decreased. TUJ-1 expression was 3.8 and 1.8 fold for 10% and 5% magnetic scaffold (versus non-magnetic scaffold) respectively, and the expression of NSE was 6.3 and 1.2-fold for 10% and 5%, respectively. Consequently, it seems that incorporation of magnetic biomaterial can promote the neural differentiation of MSCs, during which the augmentation of super paramagnetic iron oxide concentration from 0% to 10% accelerates the neural differentiation process.
Collapse
Affiliation(s)
- Mahdieh Mohammadalizadeh
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Dabirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|