1
|
Yang X, Jia Z, Shi M, Li Y, Zhang G, Wang P, Sun X, Qi W, Guo Y. Non-hormone replacement therapy to overcome premature ovarian insufficiency: advances in natural products and stem cells targeting autophagy. Front Endocrinol (Lausanne) 2025; 16:1571021. [PMID: 40519517 PMCID: PMC12162328 DOI: 10.3389/fendo.2025.1571021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/07/2025] [Indexed: 06/18/2025] Open
Abstract
Premature ovarian insufficiency (POI) is the most common cause of female infertility. With the increase in people's bad life habits, the causative factors of POI have increased, and its incidence has shown a rising trend year by year. At present, the commonly used clinical treatment for POI is hormonal replacement therapy (HRT), but it is not universally applicable and is prone to cause subsequent complications, posing certain health risks to patients with POI. Therefore, exploring greener, safer, and more efficacious non-hormonal treatments can help to address the clinical challenges of POI-induced infertility better. Studies have shown that autophagy plays a key role in the development and degeneration of oocytes from their origin to the follicle and that any alteration in autophagy affects the ovarian reserve in the follicle. Moreover, certain natural products and human stem cells from different sources can treat POI by modulating the autophagic pathway and have shown good efficacy. Therefore, our study aimed to review and analyze the previous research-based literature on natural product and stem cell therapy based on the autophagy mechanism of POI, and provide new insights and references for related scholars to continue to explore the autophagy mechanism of POI and non-hormone-targeted therapeutic strategies in depth.
Collapse
Affiliation(s)
- Xinxin Yang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhicheng Jia
- Department of Gynecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyu Shi
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongqian Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peixuan Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinwei Sun
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenlong Qi
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Ding Z, Shao G, Li M. Targeting autophagy in premature ovarian failure: Therapeutic strategies from molecular pathways to clinical applications. Life Sci 2025; 366-367:123473. [PMID: 39971127 DOI: 10.1016/j.lfs.2025.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Premature ovarian failure (POF) is a condition where the ovaries lose their function before the age of 40, leading to significant impacts on reproductive health and overall well-being. Current treatment options are limited and often ineffective at restoring ovarian function. This review explores the role of autophagy- a cellular process that helps maintain homeostasis by recycling damaged components-in the development and potential treatment of POF. Autophagy is crucial for the survival of follicle cells and can be disrupted by various stressors associated with POF, such as oxidative damage and mitochondrial dysfunction. We review several key molecular pathways involved in autophagy, including the PI3K/AKT/mTOR, PINK1-Parkin, JAK2/STAT3, MAPK and AMPK/FOXO3a pathways, which have been implicated in POF. Each pathway offers unique insights into how autophagy can be modulated to counteract POF-related damage. Additionally, we discuss emerging therapeutic strategies that target these pathways, including chemical compounds, peptides, hormones, RNA therapy, extracellular vesicles and traditional Chinese medicine. These approaches aim to restore autophagic balance, promote follicle survival and improve ovarian function. By targeting autophagy, new treatments may offer hope for better management and potential reversal of POF, thus improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Ziwen Ding
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingyang Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Alsaab HO, Almutairy B, Almobarki AO, Mughaedh MAA, Alzahrani MS. Exosome's role in ovarian disease pathogenesis and therapy; Focus on ovarian cancer and failure. J Reprod Immunol 2025; 167:104403. [PMID: 39662240 DOI: 10.1016/j.jri.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
In the eukaryotic system, exosomes are categorized as unique extracellular vesicles with dimensions ranging from 30 to 150 nm. These vesicles contain a variety of endogenous molecules, such as proteins, DNA, mRNA, microRNA, and circular RNA. They are essential for a wide range of metabolic events and have the potential to be used as therapeutic or diagnostic targets for a number of diseases, including ovarian diseases. By inducing changes in the surrounding environment, the donor exosomes transfer their contents to the receiving cells, so demonstrating the biological implications of major interactions between cells. Mesenchymal stem cells (MSCs) have produced exosomes have shown promise as a treatment for premature organ failure (POF or POI). Furthermore, exosomal transport has many complexities, and contributes to the pathophysiology of ovarian cancer by affecting cell growth, migration, metastastsis and etc. Owing to these facts, in this paper, we present the progress developed in the understanding of exosomes as a viable therapeutic avenue and indisputable prognostic targets in ovarian disorders.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia.
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | | | | | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif , Saudi Arabia
| |
Collapse
|
4
|
Wu PL, Tang SH, Wang HY, Zhang HM, Peng L, Liu Y, Yang Y, Zheng CB, Zhang XP. Human umbilical cord mesenchymal stem cells improve the ovarian function through oxidative stress-mediated PERK/eIF-2α/ATF4/CHOP signaling in premature ovarian insufficiency mice. Mol Biol Rep 2024; 52:85. [PMID: 39724303 DOI: 10.1007/s11033-024-10189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway. METHODS AND RESULTS Forty-five sexually mature female C57 mice were divided into a blank control group, POI model group, and hUCMSCs intervention group. To establish the POI model, mice received intraperitoneal injections of cyclophosphamide (CTX) (70 mg/kg) daily for 14 consecutive days, while the control group received saline only. In the hUCMSC intervention group, mice were given hUCMSCs on days 14 and 28, based on CTX modeling in the POI model group. The hUCMSCs were isolated, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) fluorescent dye, and tail vein-injected, and the distribution of the DiR signal was monitored in the mice using a fluorescence imaging detection method. The ovarian tissues were hematoxylin and eosin stained to observe the ovarian structure, and the number of primordial follicles were counted. An enzyme-linked immunosorbent assay was used to detect the serum levels of estradiol, anti-mullerian hormone, and follicle-stimulating hormone. Terminal deoxynucleotidyl transferase dUTP nick end labeling was used to detect the apoptosis of granulosa cells (GCs). The reactive oxygen species (ROS) content of ovarian tissue was detected by flow cytometry assay. The RNA expression of PERK, eIF-2α, ATF4, and CHOP was determined by quantitative real-time polymerase chain reaction, and protein levels of the targets were determined by western blot and immunohistochemistry. We identified hUCMSCs using surface antigenic markers (CD90, CD44, CD105, and CD73), and osteoblasts and chondroplast differentiation assays. Our studies demonstrated that hUCMSC intervention significantly restored ovarian function by improving the irregular estrous cycle, increasing the number of follicles, decreasing ROS, and inhibiting GC apoptosis in POI mice. Moreover, hUCMSCs suppressed CTX-induced PERK/eIF-2a/ATF4/CHOP pathway activation. CONCLUSIONS HUCMSCs can migrate to the damaged ovaries of POI mice, and improve the ovarian function of POI mice by inhibiting oxidative stress, down-regulating the expression of the PERK/eIF-2α/ATF4/CHOP pathway, and reducing the apoptosis of GCs.
Collapse
Affiliation(s)
- Pei-Ling Wu
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | - Shi-Huan Tang
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | | | - Hong-Mei Zhang
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | - Lu Peng
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | - Yao Liu
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China
| | - Yuan Yang
- Hunan Yuanpin Cell Technology (Yuanpin Biotech), Changsha, Hunan, 410100, China
| | - Chun-Bing Zheng
- Hunan Yuanpin Cell Technology (Yuanpin Biotech), Changsha, Hunan, 410100, China.
| | - Xian-Ping Zhang
- The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China.
| |
Collapse
|
5
|
Yan L, Tu W, Zhao X, Wan H, Wu J, Zhao Y, Wu J, Sun Y, Zhu L, Qin Y, Hu L, Yang H, Ke Q, Zhang W, Luo W, Xiao Z, Chen X, Wu Q, He B, Teng M, Dai S, Zhai J, Wu H, Yang X, Guo F, Wang H. Stem cell transplantation extends the reproductive life span of naturally aging cynomolgus monkeys. Cell Discov 2024; 10:111. [PMID: 39496598 PMCID: PMC11535534 DOI: 10.1038/s41421-024-00726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/03/2024] [Indexed: 11/06/2024] Open
Abstract
The ovary is crucial for female reproduction and health, as it generates oocytes and secretes sex hormones. Transplantation of mesenchymal stem cells (MSCs) has been shown to alleviate pathological ovarian aging. However, it is unclear whether MSCs could benefit the naturally aging ovary. In this study, we first examined the dynamics of ovarian reserve of Chinese women during perimenopause. Using a naturally aging cynomolgus monkey (Macaca fascicularis) model, we found that transplanting human embryonic stem cells-derived MSC-like cells, which we called M cells, into the aging ovaries significantly decreased ovarian fibrosis and DNA damage, enhanced secretion of sex hormones and improved fertility. Encouragingly, a healthy baby monkey was born after M-cell transplantation. Moreover, single-cell RNA sequencing analysis and in vitro functional validation suggested that apoptosis, oxidative damage, inflammation, and fibrosis were mitigated in granulosa cells and stromal cells following M-cell transplantation. Altogether, these findings demonstrate the beneficial effects of M-cell transplantation on aging ovaries and expand our understanding of the molecular mechanisms underlying ovarian aging and stem cell-based alleviation of this process.
Collapse
Affiliation(s)
- Long Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wan Tu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xuehan Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Haifeng Wan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiaqi Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yan Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jun Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Linli Hu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiong Ke
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenzhe Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenyu Xiao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qiqian Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Beijia He
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Man Teng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shanjun Dai
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fan Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
6
|
Liu S, Zhao H, Jiang T, Wan G, Yan C, Zhang C, Yang X, Chen Z. The Angiogenic Repertoire of Stem Cell Extracellular Vesicles: Demystifying the Molecular Underpinnings for Wound Healing Applications. Stem Cell Rev Rep 2024; 20:1795-1812. [PMID: 39001965 DOI: 10.1007/s12015-024-10762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment. By elucidating the molecular intricacies governing their angiogenic prowess, we aim to unravel the mechanistic repertoire underlying their remarkable potential to accelerate wound healing. Additionally, methods to enhance the angiogenic effects of SC-EVs, current limitations, and future perspectives are highlighted, emphasizing the significant potential of this rapidly advancing field in revolutionizing wound healing strategies.
Collapse
Affiliation(s)
- Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huayuan Zhao
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
8
|
Dai W, Yang H, Xu B, He T, Liu L, Zhang Z, Ding L, Pei X, Fu X. 3D hUC-MSC spheroids exhibit superior resistance to autophagy and apoptosis of granulosa cells in POF rat model. Reproduction 2024; 168:e230496. [PMID: 38912966 PMCID: PMC11301424 DOI: 10.1530/rep-23-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/24/2024] [Indexed: 06/25/2024]
Abstract
In brief This study reveals that orthotopic transplantation of 3D hUC-MSC spheroids is more effective than monolayer-cultured hUC-MSCs in improving POF and distinctly reducing oxidative stress through the paracrine effect, thereby preventing apoptosis and autophagy of GCs. Abstract Premature ovarian failure (POF) is a common reproductive disease in women younger than 40 years old, and studies have demonstrated that the application of human umbilical cord mesenchymal stem cells (hUC-MSCs) is a promising therapy strategy for POF. Given the previously established therapeutic advantages of 3D MSC spheroids, and to evaluate their effectiveness, both 3D hUC-MSC spheroids and monolayer-cultured hUC-MSCs were employed to treat a cyclophosphamide-induced POF rat model through orthotopic transplantation. The effects of these two forms on POF were subsequently assessed by examining apoptosis, autophagy, and oxidative damage in ovarian granulosa cells (GCs). The results indicated that hUC-MSC spheroids exhibited superior treatment effects on resisting autophagy, apoptosis, and oxidative damage in GCs compared to monolayer-cultured hUC-MSCs. To further elucidate the impact of hUC-MSC spheroids in vitro, a H2O2-induced KGN cells model was established and co-cultured with both forms of hUC-MSCs. As expected, the hUC-MSC spheroids also exhibited superior effects in resisting apoptosis and autophagy caused by oxidative damage. Therefore, this study demonstrates that 3D hUC-MSC spheroids have potential advantages in POF therapy; however, the detailed mechanisms need to be further investigated. Furthermore, this study will provide a reference for the clinical treatment strategy of POF.
Collapse
Affiliation(s)
- Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhen Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liyang Ding
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Meng Y, Lyu Y, Gong J, Zou Y, Jiang X, Xiao M, Guo J. Therapeutic effects of curculigoside on cyclophosphamide-induced premature ovarian failure in mice. Climacteric 2024; 27:421-432. [PMID: 38990052 DOI: 10.1080/13697137.2024.2354742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE The main purpose of this study was to elucidate the anti-apoptotic effects of curculigoside (CUR) on ovarian granulosa cells (GCs) in a mouse model of cyclophosphamide (CTX)-induced premature ovarian failure (POF). METHOD Intraperitoneal injection of CTX (100 mg/kg body weight) induced POF in mice. Thirty-six female mice were divided into six groups: blank group; POF model group; low-dose CUR group; medium-dose CUR group; high-dose CUR group; and estradiol benzoate group. Mice were orally administered for 28 consecutive days. Twenty-four hours after the completion of treatment, mice were weighed and euthanized, and blood was collected from the eyeball under anesthesia. The ovaries were surgically separated and weighed, and the ovarian index was calculated. Hematoxylin-eosin (HE) staining was used to observe follicular development and corpus luteum morphology in the ovaries. Serum levels of follicle stimulating hormone (FSH), anti-Müllerian hormone (AMH) and estradiol (E2) were measured. Superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) content and malondialdehyde (MDA) levels in ovarian tissue were determined. The GC apoptosis level was measured. Western blotting was used to detect protein expression levels of Beclin-1, LC3, P62, AKT, p-AKT, mTOR and p-mTOR in the ovaries. RESULTS The results showed that CUR can improve body weight and ovarian index; promote follicular development and reduce follicular atresia; improve FSH, AMH and E2 levels; downregulate MDA levels and restore antioxidant enzyme activity; inhibit the autophagy level; activate the AKT/mTOR signaling pathway; and alleviate GC apoptosis. CONCLUSION CUR improves POF by activating the AKT/mTOR signaling pathway, inhibiting autophagy and alleviating GC apoptosis.
Collapse
Affiliation(s)
- Yuhao Meng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Yinjuan Lyu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Jian Gong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Yue Zou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaocui Jiang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
- Laboratory Animal Center, Hubei University of Chinese Medicine, Wuhan, China
| | - Min Xiao
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
- Laboratory Animal Center, Hubei University of Chinese Medicine, Wuhan, China
| | - Jianfang Guo
- Department of Traditional Chinese Medicine, Hubei Maternal and Child Health Hospital, Wuhan, China
| |
Collapse
|
10
|
Xu LM, Yu XX, Zhang N, Chen YS. Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse. World J Stem Cells 2024; 16:708-727. [PMID: 38948096 PMCID: PMC11212552 DOI: 10.4252/wjsc.v16.i6.708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity, and vaginal structure is an essential factor. In POP, the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions. The intricate etiology of POP and the prohibition of transvaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development. Human umbilical cord mesenchymal stromal cells (hucMSCs) present limitations, but their exosomes (hucMSC-Exo) are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling. AIM To investigate the effects of hucMSC-Exo on the functions of primary vaginal fibroblasts and to elucidate the underlying mechanism involved. METHODS Human vaginal wall collagen content was assessed by Masson's trichrome and Sirius blue staining. Gene expression differences in fibroblasts from patients with and without POP were assessed via RNA sequencing (RNA-seq). The effects of hucMSC-Exo on fibroblasts were determined via functional experiments in vitro. RNA-seq data from fibroblasts exposed to hucMSC-Exo and microRNA (miRNA) sequencing data from hucMSC-Exo were jointly analyzed to identify effective molecules. RESULTS In POP, the vaginal wall exhibited abnormal collagen distribution and reduced fibroblast 1 quality and quantity. Treatment with 4 or 6 μg/mL hucMSC-Exo suppressed inflammation in POP group fibroblasts, stimulated primary fibroblast growth, and elevated collagen I (Col1) production in vitro. High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11 (MMP11) expression. CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro. Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression. HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
Collapse
Affiliation(s)
- Lei-Mei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China
| | - Xin-Xin Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yi-Song Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.
| |
Collapse
|
11
|
Xu LM, Yu XX, Zhang N, Chen YS. Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse. World J Stem Cells 2024; 16:707-726. [DOI: 10.4252/wjsc.v16.i6.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity, and vaginal structure is an essential factor. In POP, the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions. The intricate etiology of POP and the prohibition of transvaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development. Human umbilical cord mesenchymal stromal cells (hucMSCs) present limitations, but their exosomes (hucMSC-Exo) are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.
AIM To investigate the effects of hucMSC-Exo on the functions of primary vaginal fibroblasts and to elucidate the underlying mechanism involved.
METHODS Human vaginal wall collagen content was assessed by Masson’s trichrome and Sirius blue staining. Gene expression differences in fibroblasts from patients with and without POP were assessed via RNA sequencing (RNA-seq). The effects of hucMSC-Exo on fibroblasts were determined via functional experiments in vitro. RNA-seq data from fibroblasts exposed to hucMSC-Exo and microRNA (miRNA) sequencing data from hucMSC-Exo were jointly analyzed to identify effective molecules.
RESULTS In POP, the vaginal wall exhibited abnormal collagen distribution and reduced fibroblast 1 quality and quantity. Treatment with 4 or 6 μg/mL hucMSC-Exo suppressed inflammation in POP group fibroblasts, stimulated primary fibroblast growth, and elevated collagen I (Col1) production in vitro. High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11 (MMP11) expression.
CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro. Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression. HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
Collapse
Affiliation(s)
- Lei-Mei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China
| | - Xin-Xin Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yi-Song Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
12
|
Umer A, Ahmad K, Khan N, Greene DL, Shamim S, Habiba UE. Meta-analysis highlight the therapeutic potential of stem cells for premature ovarian failure. Regen Ther 2024; 26:478-488. [PMID: 39131506 PMCID: PMC11315119 DOI: 10.1016/j.reth.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Stem cell (SC) transplantation has shown potential as a therapeutic approach for premature ovarian failure (POF). Despite this, no quantitative analysis has been conducted on the efficacy of SC therapy for POF in humans. To address this gap, the present study conducted a meta-analysis to evaluate the effectiveness of the transplantation of SC in improving ovarian function among POF patients. A systematic review in this regard by searching PubMed, ScienceDirect, clinicalTrial.gov, and Cochrane's library databases was conducted to identify relevant studies, while associated reviews were also considered. The extracted data included parameters such as estradiol (E2), follicle-stimulating hormone (FSH), follicle count (FC), ovarian weight (OW), number of pregnancies, and live birth. As per the combined effect taking the last follow-up time, the level of FSH and AMH for the SC group was lower than these were at the baseline as (SMD: 1.58, 95% CI: 0.76 to 3.92, P-value: 0.185 > 0.05, I2: 94.03%) and (SMD: 1.34, 95% CI: 0.77 to 1.92, P-value: 0.001 < 0.05, I2: 0%) respectively. While the means of E2 and OW for the SC group was higher than these were at the baseline as (SMD: -0.47, 95% CI: -0.73 to -0.21, P-value: 0.001 < 0.01, I2: 38.23%) and (SMD: -1.18, 95% CI: -2.62 to 0.26, P-value: 0.108 > 0.05, I2: 76.68%) respectively. The overall effect size measured with proportion of pregnancy and live birth at a 5% level of significance expected SC transplantation results were as (combined proportion: 0.09, 95% CI: 0.03 to 0.15, P-value: 0.002 < 0.05, I2: 46.29%) and (SMD: 0.09, 95% CI: 0.03 to 0.15, P-value: 0.003 < 0.05, I2: 1.76%) respectively. Based on the fixed-effects model, the estimated average log odds ratio of Follicles count was 1.0234 (95% CI: 0.1252 to 1.9216). Therefore, the average outcome differed significantly from zero (P-value: 0.0255 < 0.05) due to SC transplantation. These results suggest that using SCs to restore ovarian function may be viable for treating POF. However, larger and better-quality investigations would need to be conducted in the future due to the heterogeneity of the examined studies.
Collapse
Affiliation(s)
- Amna Umer
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ 85262, United States
- Pak-American Hospital, Jahangir Multiplex, Sector H-13, Islamabad 44000, Pakistan
| | - Khalil Ahmad
- Department of Statistics, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Nasar Khan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ 85262, United States
- Bello Bio LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ 85262, United States
- Bello Bio Labs and Therapeutics Pvt. Ltd., Jahangir Multiplex, Sector H-13, Islamabad 44000, Pakistan
- Pak-American Hospital, Jahangir Multiplex, Sector H-13, Islamabad 44000, Pakistan
| | - David Lawrence Greene
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ 85262, United States
- Bello Bio LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ 85262, United States
- Bello Bio Labs and Therapeutics Pvt. Ltd., Jahangir Multiplex, Sector H-13, Islamabad 44000, Pakistan
- Pak-American Hospital, Jahangir Multiplex, Sector H-13, Islamabad 44000, Pakistan
| | - Sabiha Shamim
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ 85262, United States
- Pak-American Hospital, Jahangir Multiplex, Sector H-13, Islamabad 44000, Pakistan
| | - Umm E. Habiba
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ 85262, United States
- Pak-American Hospital, Jahangir Multiplex, Sector H-13, Islamabad 44000, Pakistan
| |
Collapse
|
13
|
Jiang F, Hong J, Jiang J, Li L, Zheng X, Zhao K, Wu X. The Effect of Human Umbilical Cord Mesenchymal Stem Cell on Premature Ovarian Cell Senilism Through miR-10a. Int J Womens Health 2024; 16:1023-1032. [PMID: 38835833 PMCID: PMC11149645 DOI: 10.2147/ijwh.s453125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/11/2024] [Indexed: 06/06/2024] Open
Abstract
Objective To investigate the potential protective impact of miR-10a-modified HUMSCs-derived exosomes on both premature ovarian failure and the functionality of ovarian granulosa cells in a POF model. Methods KGN cells were co-cultured with cisplatin-diaminedichloroplatinum (II) (10 μM) for 24 h to establish an in vitro POF model. The cells were distributed into three distinct groups: the control group, the POF group, and the POF + HUCMSC group. The plasmid sh-NC, sh-miR-10 a and miR-10 a mimic were transfected into KGN cells. After co-cultured with HUCMSC-EVs for 48 h, they were divided into HUCMSC group, sh-miR-10 a-HUMSCs-exosomes group and miR-10 a-HUMSCs-exosomes group. Flow cytometry was adopted to assess the impact of HUMSCs surface immune antigens and miR-10a-HUCMSCs-exosomes on KGN cell apoptosis. Additionally, the evaluation of cell proliferation was carried out through CCK-8 and EDU assays. Western blot analysis was utilized to detect the Caspase-3, Bax, and Bcl-2 proteins levels. Furthermore, the levels of TNF-α, IL-6, IL-10, MDA, SOD, and CAT were quantified using ELISA. Results Compared with the Control group, the POF group inhibited the growth of ovarian granulosa cells (P<0.01), reduced the number of EDU cells (P<0.01), and increased the protein expression of Caspase-3 (P<0.05) and Bax (P<0.01). HUMSCs treatment significantly down-regulated the expression of IL-6, TNF-α and MDA, while up-regulating the expression of IL-10, SOD and CAT (P<0.01); the overexpression of miR-10a promoted cell growth, besides, the introduction of miR-10a-HUMSCs-derived exosomes led to an elevation in the proliferation rate of OGCs affected by POF and concurrently suppressed the apoptosis rate. Conclusion HUMSCs-derived exosomes modified by miR-10a have protective effects on premature ovarian failure and ovarian granulosa cell function in POF model.
Collapse
Affiliation(s)
- Fan Jiang
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Jingzhen Hong
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Juanjuan Jiang
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Ling Li
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Xianrui Zheng
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Kun Zhao
- Fujian Heze Biotechnology Company Limited, Fuzhou, 350000, People's Republic of China
| | - Xuebin Wu
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| |
Collapse
|
14
|
Yin N, Luo C, Wei L, Yang G, Bo L, Mao C. The mechanisms of MicroRNA 21 in premature ovarian insufficiency mice with mesenchymal stem cells transplantation : The involved molecular and immunological mechanisms. J Ovarian Res 2024; 17:75. [PMID: 38575997 PMCID: PMC10996253 DOI: 10.1186/s13048-024-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Umbilical cord-derived mesenchymal stem cell (UCMSC) transplantation has been deeply explored for premature ovarian insufficiency (POI) disease. However, the associated mechanism remains to be researched. To explore whether and how the microRNA 21 (miR-21) functions in POI mice with UCMSCs transplantation, the autoimmune-induced POI mice model was built up, transplanted with or without UCMSCs transfect with the LV-hsa-miR-21-5p/LV-hsa-miR-21-5p-inhibition, with the transfection efficiency analyzed by QRT-PCR. Mice hormone secretion and the anti-Zona pellucida antibody (AZPAb) levels were analyzed, the ovarian morphological changes and folliculogenesis were observed, and the ovarian apoptosis cells were detected to evaluate ovarian function. The expression and localization of the PTEN/Akt/FOXO3a signal pathway-related cytokines were analyzed in mice ovaries.Additionally, the spleen levels of CD8 + CD28-T cells were tested and qualified with its significant secretory factor, interleukin 10 (IL-10). We found that with the LV-hsa-miR-21-5p-inhibition-UCMSCs transplantation, the mice ovarian function can be hardly recovered than mice with LV-NC-UCMSCs transplantation, and the PTEN/Akt/FOXO3a signal pathway was activated. The expression levels of the CD8 + CD28-T cells were decreased, with the decreased levels of the IL-10 expression. In contrast, in mice with the LV-hsa-miR-21-5p-UCMSCs transplantation, the injured ovarian function can be reversed, and the PTEN/AKT/FOXO3a signal pathway was detected activated, with the increased levels of the CD8 + CD28-T cells, and the increased serum levels of IL-10. In conclusion, miR-21 improves the ovarian function recovery of POI mice with UCMSCs transplantation, and the mechanisms may be through suppressing the PTEN/AKT/FOXO3a signal pathway and up-regulating the circulating of the CD8 + CD28-T cells.
Collapse
Affiliation(s)
- Na Yin
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China
- International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, 200030, China
| | - Chao Luo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China
| | - Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China
| | - Guangzhao Yang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China
| | - Le Bo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China.
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
15
|
Nabil Salama A, Badr EAEF, Holah NS, El Barbary AA, Hessien M. Conservative Hypomethylation of Mesenchymal Stem Cells and Their Secretome Restored the Follicular Development in Cisplatin-Induced Premature Ovarian Failure Mice. Reprod Sci 2024; 31:1053-1068. [PMID: 37957472 PMCID: PMC10959784 DOI: 10.1007/s43032-023-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Premature ovarian failure (POF) is one of the main causes of infertility in women under the age of 40 years. Recently, epigenetic reprogramming, particularly DNA hypomethylation, has emerged as a promising strategy to enhance the therapeutic potential of mesenchymal stem cells (MSCs). Thus, it is crucial to elucidate how far global hypomethylation of MSCs genome can maintain their pluripotency and viability and improve their therapeutic effect in chemotherapy-induced POF mice. Herein, the genomic DNA of bone marrow-derived MSCs (BM-MSCs) was hypomethylated by the DNA methyltransferase inhibitor (5-Aza-dC), and the degree of global hypomethylation was assessed by methylation-sensitive HepII/MspI restriction analysis. Next, mildly hypomethylated cells and their secretome were independently transplanted (or infused) in POF mice, established via cisplatin-mediated gonadotoxicity. We found that conservative global hypomethylation of BM-MSCs genome with low doses of 5-Aza-dC (≤0.5 μM) has maintained cell viability and MSCs-specific clusters of differentiation (CD). Engraftment of mildly hypomethylated cells in POF mice, or infusion of their secretome, improved the concentrations of estradiol (E2), follicle-stimulating hormone (FSH), and anti-Mullerian hormone (AMH). Furthermore, mice restored their normal body weight, ovarian size, and ovarian follicle count. This was associated with improved follicular development, where the populations of healthy primordial, primary, secondary, and tertiary follicles were significantly ameliorated, relative to mice transplanted with normally methylated cells. This observational study suggests that transplantation of mildly hypomethylated BM-MSCs cells and their secretome can restore the structural and functional integrity of the damaged ovaries in POF mice. Also, it presents conservative hypomethylation of BM-MSCs and their secretome as a promising alternative to MSCs transplantation.
Collapse
Affiliation(s)
- Amira Nabil Salama
- Directorate of Health Affairs, Joint Regional Laboratories, Shebin El-Koum, Menoufia, 32511, Egypt
| | - Eman Abd El-Fatah Badr
- Department of Medical Biochemistry, Faculty of Medicine, Menoufia University, Shebin El-Koum City, 32511, Egypt
| | - Nanis Shawky Holah
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Koum City, 32511, Egypt
| | - Ahmed A El Barbary
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Directorate of Health Affairs, Joint Regional Laboratories, Shebin El-Koum, Menoufia, 32511, Egypt.
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
16
|
Wang J, Zhao Z, Yang K, Bai Y. Research progress in cell therapy for oral diseases: focus on cell sources and strategies to optimize cell function. Front Bioeng Biotechnol 2024; 12:1340728. [PMID: 38515628 PMCID: PMC10955105 DOI: 10.3389/fbioe.2024.1340728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
In recent years, cell therapy has come to play an important therapeutic role in oral diseases. This paper reviews the active role of mesenchymal stem cells, immune cell sources, and other cells in oral disorders, and presents data supporting the role of cell therapy in oral disorders, including bone and tooth regeneration, oral mucosal disorders, oral soft tissue defects, salivary gland dysfunction, and orthodontic tooth movement. The paper will first review the progress of cell optimization strategies for oral diseases, including the use of hormones in combination with stem cells, gene-modified regulatory cells, epigenetic regulation of cells, drug regulation of cells, cell sheets/aggregates, cell-binding scaffold materials and hydrogels, nanotechnology, and 3D bioprinting of cells. In summary, we will focus on the therapeutic exploration of these different cell sources in oral diseases and the active application of the latest cell optimization strategies.
Collapse
Affiliation(s)
| | | | | | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Dai W, Yang H, Xu B, He T, Liu L, Ma X, Ma J, Yang G, Si R, Pei X, Du X, Fu X. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) alleviate excessive autophagy of ovarian granular cells through VEGFA/PI3K/AKT/mTOR pathway in premature ovarian failure rat model. J Ovarian Res 2023; 16:198. [PMID: 37777781 PMCID: PMC10542694 DOI: 10.1186/s13048-023-01278-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is one of the leading causes of female infertility and is accompanied by abnormal endocrine, seriously affecting female quality of life. Previous studies have demonstrated that mesenchymal stem cells (MSCs) transplantation is a promising therapeutic strategy for POF. However, the mechanism remains obscure. This study aims to investigate the therapeutic effect of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on ovarian function in the POF rat model and explore the underlying mechanisms. METHODS The ovarian function was evaluated by ovarian morphology, histology, estrous cycle, hormone levels (AMH, E2, FSH, and LH), and fertility ability to investigate the effect of hUC-MSCs on the POF rats model. The cytokines levels were assayed in serum using protein array to explore the mechanisms of hUC-MSCs therapy for POF. The excessive autophagy levels were evaluated using a co-culture system of 3D MSCs spheroids with human ovarian granulosa cell line (KGN) or primary ovarian granulosa cells (GCs) to understand the paracrine effect of hUC-MSCs on GCs. The related proteins expression of autophagy and PI3K/AKT/mTOR pathway was detected using Western Blotting and/or in various inhibitors supplement to further demonstrate that vascular endothelial growth factor A (VEGFA) secreted by hUC-MSCs can alleviate excessive autophagy of ovarian GCs via PI3K/AKT/mTOR signaling pathway. The ovarian culture model in vitro was applied to confirm the mechanism. RESULTS The ovarian function of POF and the excessive autophagy of ovarian GCs were restored after hUC-MSCs transplantation. The protein array result demonstrated that VEGF and PI3K/AKT might improve ovarian function. in vitro experiments demonstrated that VEGFA secreted by hUC-MSCs could decrease oxidative stress and inhibit excessive autophagy of ovarian GCs via PI3K/AKT/mTOR pathway. The ovarian culture model results confirmed this mechanism in vitro. CONCLUSION The hUC-MSCs can alleviate excessive autophagy of ovarian GCs via paracrine VEGFA and regulate the PI3K/AKT/mTOR signaling pathway, thereby improving the ovarian function of POF.
Collapse
Affiliation(s)
- Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoqian Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiaxue Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Guoqin Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Rui Si
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
18
|
Jiang M, Jiang X, Li H, Zhang C, Zhang Z, Wu C, Zhang J, Hu J, Zhang J. The role of mesenchymal stem cell-derived EVs in diabetic wound healing. Front Immunol 2023; 14:1136098. [PMID: 36926346 PMCID: PMC10011107 DOI: 10.3389/fimmu.2023.1136098] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic foot is one of the most common complications of diabetes, requiring repeated surgical interventions and leading to amputation. In the absence of effective drugs, new treatments need to be explored. Previous studies have found that stem cell transplantation can promote the healing of chronic diabetic wounds. However, safety issues have limited the clinical application of this technique. Recently, the performance of mesenchymal stem cells after transplantation has been increasingly attributed to their production of exocrine functional derivatives such as extracellular vesicles (EVs), cytokines, and cell-conditioned media. EVs contain a variety of cellular molecules, including RNA, DNA and proteins, which facilitate the exchange of information between cells. EVs have several advantages over parental stem cells, including a high safety profile, no immune response, fewer ethical concerns, and a reduced likelihood of embolism formation and carcinogenesis. In this paper, we summarize the current knowledge of mesenchymal stem cell-derived EVs in accelerating diabetic wound healing, as well as their potential clinic applications.
Collapse
Affiliation(s)
- Min Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Can Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Junhui Zhang
- Department of Geriatic Oncology, Department of Palliative Care, Department of Clinical Nutrition, Chongqing University Cancer Hospital, Chongqing, China.,Endocrinology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiongyu Hu
- Endocrinology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|