1
|
Dong L, Wu H, Qi F, Xu Y, Chen W, Wang Y, Cai P. Non-coding RNA-mediated granulosa cell dysfunction during ovarian aging: From mechanisms to potential interventions. Noncoding RNA Res 2025; 12:102-115. [PMID: 40144342 PMCID: PMC11938093 DOI: 10.1016/j.ncrna.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
As the earliest aging organ in the reproductive system, the ovary has both reproductive and endocrine functions, which are closely related to overall female health. The exact pathogenesis of ovarian aging (OA) remains incompletely understood, with granulosa cells (GCs) dysfunction playing a significant role in this process. Recent advancements in research and biotechnology have highlighted the importance of non-coding RNAs (ncRNAs), including micro RNAs, long non-coding RNAs, and circular RNAs, in regulating the biological functions of GCs through gene expression modulation. This paper provides a comprehensive overview of the role of ncRNAs in various cellular functions such as apoptosis, autophagy, proliferation, and steroid synthesis in GCs, and explores the underlying regulatory mechanisms. Additionally, the therapeutic potential of ncRNAs, particularly those carried by exosomes derived from mesenchymal stem cells, in delaying OA is discussed. Understanding the regulatory mechanisms of ncRNAs in GC function and the current progress in this field is crucial for identifying effective biomarkers and therapeutic targets, ultimately aiding in the early diagnosis, prognostic assessment, and individualized treatment of OA.
Collapse
Affiliation(s)
- Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haicui Wu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Chen
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqi Wang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Brito KDNLD, Trentin AG. Role of mesenchymal stromal cell secretome on recovery from cellular senescence: an overview. Cytotherapy 2025; 27:422-437. [PMID: 39674933 DOI: 10.1016/j.jcyt.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Cellular senescence is intricately linked with numerous changes observed in the aging process, including the depletion of the stem cell pool and the decline in tissue and organ functions. Over the past three decades, efforts to halt and reverse aging have intensified, bringing rejuvenation closer to reality. Current strategies involve treatments using stem cells or their derivatives, such as the secretome. This article aims to highlight key points and evaluate the utilization of secretome derived from mesenchymal stromal cells (MSCs) as an antisenescent approach. Employing a quasi-systematic research approach, the authors conducted a comprehensive analysis based on a search algorithm targeting the in vitro effects of MSC-derived secretome on rescuing cells from a senescent state. Reviewing 39 articles out of 687 hits retrieved from PubMed and Scopus without a time limit, the authors synthesized information and identified common types of MSC-tissue sources utilized (including bone marrow-MSCs, umbilical cord-MSCs, iPSC-derived MSCs, adipose tissue-MSCs, dental pulp-MSCs, amniotic membrane-MSCs, placenta-MSCs, gingival-MSCs, urine-MSCs, and commercially available MSC lineages) from both human and other species (such as mice and rats). The authors also examined the forms of secretome tested (including conditioned media and extracellular vesicles), the cell types treated (MSCs or other cell types), methods/biomarkers of monitoring senescence/rejuvenation, and the mechanisms involved. Ultimately, this review underscores the proof-of-principle of the beneficial effects of MSC-derived secretome in reversing cellular senescence across various cell types. Such insights might aid the scientific community in designing improved in vitro and in vivo assays for future research and clinical validation of this promising cell-free therapy.
Collapse
Affiliation(s)
- Karynne de Nazaré Lins de Brito
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; Faculty of Medicine, Altamira Campus, Federal University of Pará, Altamira, Brazil.
| | - Andréa Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Niu Z, Cui M, Fu Y, Zhou L, Wang J, Lei Y, Fan X, Wang Q, Yang J. A bibliometric analysis of exosomes in aging from 2007 to 2023. Front Med (Lausanne) 2025; 11:1488536. [PMID: 39911664 PMCID: PMC11794001 DOI: 10.3389/fmed.2024.1488536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Background Aging is the primary factor contributing to the development of aging-related diseases. As research on exosomes continues to advance, its relationship with aging and aging-related diseases has become a hot topic This article analyzes the research hotspots of exosomes in aging and aging-related diseases, aiming to fill the gap in bibliometric research in this field and help researchers better understand the current status and future trends of both fundamental and clinical research in this field. Methods The articles were retrieved and exported from WoSCC on December 18, 2023. The visual analysis of countries and regions, institutions, authors, references, and keywords in exosomes of aging was conducted using VOSviewer 1.6.18, CiteSpace 6.2.R7, and Bibliometrix. Results The bibliometric analysis included 1628 articles. China and the United States emerged as the top two leading countries in this field. A total of 2,321 research institutions from 78 countries and regions were primarily led by China and the United States. Both Kapogiannis D and Goetzl E were active authors in this field. Thery C, Valadi H, and Raposo G were the important promoters in this field. Thery C proposed the method of differential centrifugation and density gradient centrifugation to extract exosomes. Valadi H discovered cells could send RNA-messages to each other by loading them into exosome-vesicles. The journal with the highest number of articles was International Journal of Molecular Sciences, while PLoS One was the most frequently cited journal. The keyword analysis revealed that future research on exosomes in aging will possibly focus on "inflammation, cellular senescence, angiogenesis, insulin resistance, and Alzheimer's disease." Conclusion We identified the research trends of exosomes in the field of aging through this bibliometric analysis. The present study provides valuable new perspectives on the history and current status of exosomes in the field of aging and aging-related diseases, and also offering guidance for future research directions.
Collapse
Affiliation(s)
- Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiyu Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingkun Fu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingfeng Zhou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinrong Fan
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiang Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Huang J, Zeng F, Yi H, Wan L, Xu Q. tsRNA-3043a intensifies apoptosis and senescence of ovarian granulosa cells to drive premature ovarian failure by targeting FLT1. J Mol Histol 2024; 55:1147-1162. [PMID: 39343854 PMCID: PMC11568010 DOI: 10.1007/s10735-024-10256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
Premature ovarian failure (POF) represents the pathological aging of the ovary. The tRNA-derived small fragments (tsRNAs) play significant roles in diseases; however, whether tsRNAs are involved in POF remains unknown. The cell and mice models of POF were established, and the tsRNAs profile in the ovarian tissues of POF mice was revealed through sequencing. The functions of tsRNA-3043a and its target gene FLT1 in POF cells and mice were detected. POF mice were characterized by a decreased number of normal follicles, ovarian weight, SOD level, and serum contents of E2, LH, and FSH. A total of 81 tsRNAs were aberrantly expressed in the ovarian tissue of POF mice. The expression of tsRNA-3043a was up-regulated in POF mice. tsRNA-3043a mimics inhibited the proliferation and promoted apoptosis, lipid accumulation, and cellular senescence of ovarian granulosa KGN cells, as well as altered the transcriptome. tsRNA-3043a inhibitor had the opposite effect. tsRNA-3043a targets and binds to FLT1. Overexpression of FLT1 protected KGN cells from pathological aging. tsRNA-3043a promotes the progression of POF by inhibiting FLT1 in vitro and in vivo. tsRNA-3043a targets FLT1 and promotes apoptosis and senescence of ovarian granulosa cells, leading to the progression of POF. This study provides a new target for pharmacological intervention in POF.
Collapse
Affiliation(s)
- Jianzhen Huang
- Department of Assisted Reproduction, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fang Zeng
- Department of Assisted Reproduction, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongxia Yi
- Department of Assisted Reproduction, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lixia Wan
- Department of Assisted Reproduction, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qinggang Xu
- Department of Urological Surgery, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, No. 90 Fuzhou Road, Donghu District, Nanchang, 330046, Jiangxi, China.
| |
Collapse
|
5
|
Firouzabadi SR, Mohammadi I, Ghafourian K, Mofidi SA, Firouzabadi SR, Hashemi SM, Tehrani FR, Jafarabady K. Mesenchymal stem cell-derived extracellular vesicles therapy for primary ovarian insufficiency: a systematic review and meta-analysis of pre-clinical studies. J Ovarian Res 2024; 17:200. [PMID: 39402602 PMCID: PMC11472498 DOI: 10.1186/s13048-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) manifests with hormonal imbalances, menstrual irregularities, follicle loss, and infertility. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are emerging as a promising treatment for POI. This systematic review aims to assess the effects of MSC-EVs on follicle number, hormonal profile, and fertility in POI animal models. METHODS A systematic search of PubMed, Scopus, and Web of Science databases up to December 14th, 2023 was conducted. Two reviewers independently conducted screening, risk of bias assessment, and data extraction. Meta-analysis was performed to analyze treatment versus control outcomes using a random effects model. Publication bias was assessed using Egger's regression test and sensitivity analysis was assessed using the leave-one-out method. Subgroup analyses and meta-regressions were conducted based on EV source, induction model, type of animal, study quality, administration route, administration frequency and route, and dose. RESULTS a total of 29 studies were included. MSC-EVs treatment significantly increased total follicle count (SMD, (95CI), p-value; 3.56, (0.91, 6.21), < 0.001), including primordial (SMD, (95CI), p-value; 2.86, (1.60, 4.12), < 0.001), primary (SMD, (95CI), p-value; 3.17, (2.28, 4.06), < 0.001), mature (SMD, (95CI), p-value; 2.26, (1.02, 3.50), < 0.001), and antral follicles (SMD, (95CI), p-value; 2.44, (1.21, 3.67), < 0.001). Administration frequency and route did not affect this outcome, but EV source affected primordial, primary, secondary and antral follicle count. Additionally, MSC-EVs treatment elevated anti-müllerian hormone (SMD, (95CI); 3.36, (2.14, 4.58)) and estradiol (SMD, (95CI); 3.19, (2.20, 4.17)) levels while reducing follicle stimulating hormone levels (SMD, (95CI); -2.68, (-4.42, -0.94)). Unlike EV source, which had a significant impact on all three hormones, administration frequency, route, and EV dose did not affect this outcome. Moreover, treatment increased offspring number (SMD, (95CI); 3.70, (2.17, 5.23)) and pregnancy odds (OR, (95CI); 10.25, (4.29, 24.46)) compared to controls. Publication bias and a high level of heterogeneity was evident in all analyses, except for the analysis of the pregnancy odds. However, sensitivity analysis indicated that all of the analyses were stable. CONCLUSION MSC-EVs therapy shows promise for POI treatment, potentially facilitating clinical translation. However, Further research is warranted to optimize methodology and assess side effects.
Collapse
Affiliation(s)
| | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Ghafourian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mofidi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
6
|
Xu X, Wang J, Jin X, Ma Q, Li H, Zhou Q, Chen W. Bu-Shen-Ning-Xin decoction ameliorates premature ovarian insufficiency by suppressing oxidative stress through rno_circRNA_012284/rno_miR-760-3p/HBEGF pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155920. [PMID: 39126922 DOI: 10.1016/j.phymed.2024.155920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND POI (premature ovarian insufficiency) refers to premature and rapid decline of ovarian reserve function in women before the age of 40, which can be manifested as menstrual disorders, endocrine abnormalities and low fertility. Bu-Shen-Ning-Xin decoction (BSNXD) has been found to have therapeutic effects on POI. Nevertheless, how it exerts therapeutic effects remains elusive. PURPOSE This research aims to clarify the pharmacological mechanisms of BSNXD. METHODS We applied Ultra Performance Liquid Chromatography (UPLC) to identify the main components of BSNXD.4-vinylcyclohexene diepoxide(VCD)was used to induce POI models. ELISA detected the serum level of hormones. H&E staining evaluated the morphology of ovarian tissues.CircRNA and mRNA expression profiles in the ovaries of both POI rats and those treated with BSNXD were detected. Then, dysregulated circRNAs and mRNAs that were potentially altered by BSNXD were screened. Network pharmacology analysis was performed to identify drug targets of BSNXD active ingredients. A circRNA-miRNA-mRNA network and an oxidative stress(OS)-related subnetwork were constructed. Expression of rno_circRNA_012284, rno_miR-760-3p, and HBEGF(Heparin-binding epidermal growth factor-like growth factor) was measured by RT-PCR and their binding were verified by dual-luciferase reporter assays. ROS was measured through DCFH-DA fluorescence probes. The HBEGF target was selected for molecular docking with key active ingredients.Surface plasmon resonance(SPR) was applied to verify the binding ability and affinity between components and HBEGF. RESULTS UPLC analysis indicated that 6 chemical compounds including berberine, paeoniflorin, morroniside,gallic acid, loganin, baicalin were identified.Elevated FSH and LH levels, suppressed E2 and AMH levels in the serum, and inhibited follicles and corpus luteums in the ovarian tissues of VCD-induced rats were notably reversed by BSNXD.In total, 992 up- and 1135 down-regulated circRNAs, and 205 up- and 243 down-regulated mRNAs were found in POI rat ovaries following BSNXD administration. Furthermore, 198 drug targets of BSNXD were identified. An OS-related and BSNXD-targeted ceRNA subnetwork composed of rno_circRNA_012284/rno_miR-760-3p/HBEGF was established. rno_circRNA_012284 and HBEGF were up-regulated and rno_miR-760-3p was down-regulated in POI ovarian granulosa cells (OGCs) after BSNXD administration. rno_circRNA_012284 was a sponge of rno_miR-760-3p to elevate HBEGF expression. Moreover, rno_circRNA_012284 overexpression alleviated POI-induced excessive ROS generation in ovarian granulosa cells, while rno_circRNA_012284 inhibition exerted the opposite effect. Finally,molecular docking speculated active ingredients of each herb acted on HBEGF to reduce the OS. SPR tests showed that Berberine,Baicalein,Quercetin,Pachymic acid,Paeoniflorin exhibited satisfying affinity with HBEGF protein. CONCLUSION This study demonstrates that BSNXD ameliorates POI partly by attenuating OS in ovarian granulosa cells via rno_circRNA_012284/rno_miR-760-3p/HBEGF axis, uncovering the pharmacological mechanisms of BSNXD in alleviating POI.
Collapse
Affiliation(s)
- Xianli Xu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, 310006 Hangzhou, Zhejiang, China
| | - Jiajing Wang
- School of Pharmacy, Zhejiang Chinese Medical University,311402 Hangzhou, Zhejiang, China
| | - Xin Jin
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University, 310006 Hangzhou, Zhejiang, China
| | - Qianwen Ma
- Department of Traditional Chinese Medicine, Hangzhou Ninth People's Hospital,311225, Hangzhou, Zhejiang, China
| | - Huifang Li
- Department of TCM Gynecology, Tongxiang Maternal and Child Health-Care Center, 314500, Jiaxing, Zhejiang, China
| | - Qun Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, 310006 Hangzhou, Zhejiang, China
| | - Wenjun Chen
- School of Nursing, Hangzhou Medical College, 311399 Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Luo Y, Chen J, Ning J, Sun Y, Chai Y, Xiao F, Huang B, Li G, Tian F, Hao J, Zhang Q, Zhao J, Li Y, Li H. Stem cell-derived extracellular vesicles in premature ovarian failure: an up-to-date meta-analysis of animal studies. J Ovarian Res 2024; 17:182. [PMID: 39252114 PMCID: PMC11382489 DOI: 10.1186/s13048-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND There has been a significant surge in animal studies of stem cell-derived extracellular vesicles (EVs) therapy for the treatment of premature ovarian failure (POF) but its efficacy remains unknown and a comprehensive and up-to-date meta-analysis is lacking. Before clinical translation, it is crucial to thoroughly understand the overall impact of stem cell-derived EVs on POF. METHODS PubMed, EMBASE, Cochrane Library, Web of Science were searched up to February 18, 2024. The risk of bias was evaluated according to Cochrane Handbook criteria, while quality of evidence was assessed using the SYRCLE system. The PRISMA guidance was followed. Trial sequential analysis was conducted to assess outcomes, and sensitivity analysis and publication bias analysis were performed using Stata 14. RESULTS Data from 25 studies involving 339 animals were extracted and analyzed. The analysis revealed significant findings: stem cell-derived EVs increase ovary weight (SMD = 3.88; 95% CI: 2.50 ~ 5.25; P < 0.00001; I2 = 70%), pregnancy rate (RR = 3.88; 95% CI: 1.94 ~ 7.79; P = 0.0001; I2 = 0%), count of births (SMD = 2.17; 95% CI: 1.31 ~ 3.04; P < 0.00001; I2 = 69%) and counts of different types of follicles. In addition, it elevates the level of AMH (SMD = 4.15; 95% CI: 2.75 ~ 5.54; P < 0.00001; I2 = 88%) and E2 (SMD = 2.88; 95% CI: 2.02 ~ 3.73; P < 0.00001; I2 = 80%) expression, while reducing FSH expression (SMD = -5.05; 95% CI: -6.60 ~ -3.50; P < 0.00001; I2 = 90%). Subgroup analysis indicates that the source of EVs, animal species, modeling method, administration route, and test timepoint affected efficacy. Trial sequential analysis showed that there was sufficient evidence to confirm the effects of stem cell-derived EVs on birth counts, ovarian weights, and follicle counts. However, the impact of stem cell-derived EVs on pregnancy rates needs to be further demonstrated through more animal experimental evidence. CONCLUSIONS Stem cell-derived EVs demonstrate safety and efficacy in treating POF animal models, with potential improvements in fertility outcomes. TRIAL REGISTRATION PROSPERO registration number: CRD42024509699.
Collapse
Affiliation(s)
- Yan Luo
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Chen
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Jinyao Ning
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Sun
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Yitong Chai
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Fen Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bixia Huang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Ge Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Fen Tian
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Jie Hao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Qiong Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Jing Zhao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Yanping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Hui Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Rudnitsky E, Braiman A, Wolfson M, Muradian KK, Gorbunova V, Turgeman G, Fraifeld VE. Stem cell-derived extracellular vesicles as senotherapeutics. Ageing Res Rev 2024; 99:102391. [PMID: 38914266 DOI: 10.1016/j.arr.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Cellular senescence (CS) is recognized as one of the hallmarks of aging, and an important player in a variety of age-related pathologies. Accumulation of senescent cells can promote a pro-inflammatory and pro-cancerogenic microenvironment. Among potential senotherapeutics are extracellular vesicles (EVs) (40-1000 nm), including exosomes (40-150 nm), that play an important role in cell-cell communications. Here, we review the most recent studies on the impact of EVs derived from stem cells (MSCs, ESCs, iPSCs) as well as non-stem cells of various types on CS and discuss potential mechanisms responsible for the senotherapeutic effects of EVs. The analysis revealed that (i) EVs derived from stem cells, pluripotent (ESCs, iPSCs) or multipotent (MSCs of various origin), can mitigate the cellular senescence phenotype both in vitro and in vivo; (ii) this effect is presumably senomorphic; (iii) EVs display cross-species activity, without apparent immunogenic responses. In summary, stem cell-derived EVs appear to be promising senotherapeutics, with a feasible application in humans.
Collapse
Affiliation(s)
- Ekaterina Rudnitsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Khachik K Muradian
- Department of Biology of Aging and Experimental Life Span Extension, State Institute of Gerontology of National Academy of Medical Sciences of Ukraine, Kiev 4114, Ukraine
| | - Vera Gorbunova
- Department of Biology, Rochester Aging Research Center, University of Rochester, Rochester, NY 14627, USA
| | - Gadi Turgeman
- Department of Molecular Biology, Faculty of Natural Sciences and Medical School, Ariel University, Ariel 40700, Israel.
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
9
|
Yang G, Zhang B, Xu M, Wu M, Lin J, Luo Z, Chen Y, Hu Q, Huang G, Hu H. Improving Granulosa Cell Function in Premature Ovarian Failure with Umbilical Cord Mesenchymal Stromal Cell Exosome-Derived hsa_circ_0002021. Tissue Eng Regen Med 2024; 21:897-914. [PMID: 38842768 PMCID: PMC11286897 DOI: 10.1007/s13770-024-00652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The therapeutic potential of exosomes from human umbilical cord mesenchymal stem cells (HUMSCs-Exo) for delivering specific circular RNAs (circRNAs) in treating premature ovarian failure (POF) is not well understood. This study aimed to explore the efficacy of HUMSCs-Exo in delivering hsa_circ_0002021 for POF treatment, focusing on its effects on granulosa cell (GC) senescence and ovarian function. METHODS Bioinformatic analysis was conducted on circRNA profiles using the GSE97193 dataset from GEO, targeting granulosa cells from varied age groups. To simulate granulosa cell senescence, KGN cells were treated with cyclophosphamide (CTX). HUMSCs were transfected with pcDNA 3.1 vectors to overexpress hsa_circ_0002021, and the HUMSCs-Exo secreted were isolated. These exosomes were characterized by transmission electron microscopy (TEM) and Western blotting to confirm exosomal markers CD9 and CD63. Co-culture of these exosomes with CTX-treated KGN cells was performed to assess β-galactosidase activity, oxidative stress markers, ROS levels, and apoptosis via flow cytometry. Interaction between hsa_circ_0002021, microRNA-125a-5p (miR-125a-5p), and cyclin-dependent kinase 6 (CDK6) was investigated using dual-luciferase assays and RNA immunoprecipitation (RIP). A POF mouse model was induced with CTX, treated with HUMSCs-Exo, and analyzed histologically and via immunofluorescence staining. Gene expression was quantified using RT-qPCR and Western blot. RESULTS hsa_circ_0002021 was under expressed in both in vivo and in vitro POF models and was effectively delivered by HUMSCs-Exo to KGN cells, showing a capability to reduce GC senescence. Overexpression of hsa_circ_0002021 in HUMSCs-Exo significantly enhanced these anti-senescence effects. This circRNA acts as a competitive adsorbent of miR-125a-5p, regulating CDK6 expression, which is crucial in modulating cell cycle and apoptosis. Enhanced expression of hsa_circ_0002021 in HUMSCs-Exo ameliorated GC senescence in vitro and improved ovarian function in POF models by modulating oxidative stress and cellular senescence markers. CONCLUSION This study confirms that hsa_circ_0002021, when delivered through HUMSCs-Exo, can significantly mitigate GC senescence and restore ovarian function in POF models. These findings provide new insights into the molecular mechanisms of POF and highlight the therapeutic potential of circRNA-enriched exosomes in treating ovarian aging and dysfunction.
Collapse
Affiliation(s)
- Ge Yang
- Department of Clinical Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - Bo Zhang
- Stem Cell & Regenerative Medicine Center, Sichuan Neo-Life Stem Cell Biotech Inc, Chengdu City, 610036, Sichuan Province, China
| | - Mei Xu
- Department of Clinical Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - MingJun Wu
- Stem Cell & Regenerative Medicine Center, Sichuan Neo-Life Stem Cell Biotech Inc, Chengdu City, 610036, Sichuan Province, China
| | - Jie Lin
- Center for Reproductive Medicine, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - ZiYu Luo
- Stem Cell & Regenerative Medicine Center, Sichuan Neo-Life Stem Cell Biotech Inc, Chengdu City, 610036, Sichuan Province, China
| | - YueHua Chen
- Department of Clinical Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - Qin Hu
- Molecular Genetics Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - GuoPing Huang
- Molecular Genetics Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - HaiYan Hu
- Department of Pediatrics, Zigong Maternity and Child Health Care Hospital, No.49, Dahuangtong Road, Longjing Street, Da'an District, Zigong City, 643010, Sichuan Province, China.
| |
Collapse
|
10
|
Zhang H, Liu Y, Zhang K, Hong Z, Liu Z, Liu Z, Li G, Xu Y, Pi J, Fu J, Xu Y. Understanding the Transcription Factor NFE2L1/NRF1 from the Perspective of Hallmarks of Cancer. Antioxidants (Basel) 2024; 13:758. [PMID: 39061827 PMCID: PMC11274343 DOI: 10.3390/antiox13070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer cells subvert multiple properties of normal cells, including escaping strict cell cycle regulation, gaining resistance to cell death, and remodeling the tumor microenvironment. The hallmarks of cancer have recently been updated and summarized. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also named NRF1) belongs to the cap'n'collar (CNC) basic-region leucine zipper (bZIP) family. It acts as a transcription factor and is indispensable for maintaining both cellular homoeostasis and organ integrity during development and growth, as well as adaptive responses to pathophysiological stressors. In addition, NFE2L1 mediates the proteasome bounce-back effect in the clinical proteasome inhibitor therapy of neuroblastoma, multiple myeloma, and triple-negative breast cancer, which quickly induces proteasome inhibitor resistance. Recent studies have shown that NFE2L1 mediates cell proliferation and metabolic reprogramming in various cancer cell lines. We combined the framework provided by "hallmarks of cancer" with recent research on NFE2L1 to summarize the role and mechanism of NFE2L1 in cancer. These ongoing efforts aim to contribute to the development of potential novel cancer therapies that target the NFE2L1 pathway and its activity.
Collapse
Affiliation(s)
- Haomeng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yong Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Ke Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Zhixuan Hong
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Zongfeng Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Zhe Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Guichen Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang 110001, China
| |
Collapse
|
11
|
Yan H, Miranda EAD, Jin S, Wilson F, An K, Godbee B, Zheng X, Brau-Rodríguez AR, Lei L. Primary oocytes with cellular senescence features are involved in ovarian aging in mice. Sci Rep 2024; 14:13606. [PMID: 38871781 PMCID: PMC11176158 DOI: 10.1038/s41598-024-64441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
In mammalian females, quiescent primordial follicles serve as the ovarian reserve and sustain normal ovarian function and egg production via folliculogenesis. The loss of primordial follicles causes ovarian aging. Cellular senescence, characterized by cell cycle arrest and production of the senescence-associated secretory phenotype (SASP), is associated with tissue aging. In the present study, we report that some quiescent primary oocytes in primordial follicles become senescent in adult mouse ovaries. The senescent primary oocytes share senescence markers characterized in senescent somatic cells. The senescent primary oocytes were observed in young adult mouse ovaries, remained at approximately 15% of the total primary oocytes during ovarian aging from 6 to 12 months, and accumulated in aged ovaries. Administration of a senolytic drug ABT263 to 3-month-old mice reduced the percentage of senescent primary oocytes and the transcription of the SASP factors in the ovary, in addition, led to increased numbers of primordial and total follicles and a higher rate of oocyte maturation. Our study provides experimental evidence that primary oocytes, a germline cell type that is arrested in meiosis, become senescent in adult mouse ovaries and that senescent cell clearance reduced primordial follicle loss and mitigated ovarian aging phenotypes.
Collapse
Affiliation(s)
- Hao Yan
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Shiying Jin
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Faith Wilson
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Kang An
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Brooke Godbee
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
- College of Health Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Astrid Roshealy Brau-Rodríguez
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Lei Lei
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA.
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
12
|
Ju W, Zhao Y, Yu Y, Zhao S, Xiang S, Lian F. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front Endocrinol (Lausanne) 2024; 15:1361289. [PMID: 38694941 PMCID: PMC11061492 DOI: 10.3389/fendo.2024.1361289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Mitochondria plays an essential role in regulating cellular metabolic homeostasis, proliferation/differentiation, and cell death. Mitochondrial dysfunction is implicated in many age-related pathologies. Evidence supports that the dysfunction of mitochondria and the decline of mitochondrial DNA copy number negatively affect ovarian aging. However, the mechanism of ovarian aging is still unclear. Treatment methods, including antioxidant applications, mitochondrial transplantation, emerging biomaterials, and advanced technologies, are being used to improve mitochondrial function and restore oocyte quality. This article reviews key evidence and research updates on mitochondrial damage in the pathogenesis of ovarian aging, emphasizing that mitochondrial damage may accelerate and lead to cellular senescence and ovarian aging, as well as exploring potential methods for using mitochondrial mechanisms to slow down aging and improve oocyte quality.
Collapse
Affiliation(s)
- Wenhan Ju
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuewen Zhao
- CReATe Fertility Centre, Toronto, ON, Canada
| | - Yi Yu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shan Xiang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Lian
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Vogt S, Handke D, Behre HM, Greither T. Decreased Serum Levels of the Insulin Resistance-Related microRNA miR-320a in Patients with Polycystic Ovary Syndrome. Curr Issues Mol Biol 2024; 46:3379-3393. [PMID: 38666942 PMCID: PMC11049427 DOI: 10.3390/cimb46040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is often associated with metabolic abnormalities in the affected patients such as obesity or a dysregulated glucose metabolism/insulin resistance (IR). IR affects the serum levels of several circulating microRNAs; however, studies on the association between IR-related microRNAs and PCOS are scarce. Therefore, we quantified the serum levels of the IR-associated microRNAs miR-93, miR-148a, miR-216a, miR-224 and miR-320a via qPCR in a cohort of 358 infertility patients, of whom 136 were diagnosed with PCOS. In bivariate correlation analyses, the serum levels of miR-93 and miR-216a were inversely associated with dipeptidyl peptidase 4 serum concentrations, and the miR-320a serum levels were significantly downregulated in PCOS patients (p = 0.02, Mann-Whitney U test). Interestingly, in all patients who achieved pregnancy after Assisted Reproductive Technology (ART) cycles, the serum levels of the five IR-associated microRNAs were significantly elevated compared to those of non-pregnant patients. In cell culture experiments, we detected a significant upregulation of miR-320a expression following testosterone stimulation over 24 and 48 h in KGN and COV434 granulosa carcinoma cells. In conclusion, we demonstrated a significantly reduced serum level of the IR-associated miR-320a in our patient cohort. This result once again demonstrates the close relationship between metabolic disorders and the dysregulation of microRNA expression patterns in PCOS.
Collapse
Affiliation(s)
| | | | | | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin-Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| |
Collapse
|
14
|
Huang XC, Jiang YN, Bao HJ, Wang JL, Lin RJ, Yuan J, Xian JY, Zhao Y, Chen S. Role and Mechanism of Epigenetic Regulation in the Aging of Germ Cells: Prospects for Targeted Interventions. Aging Dis 2024; 16:AD.2024.0126. [PMID: 38377031 PMCID: PMC11745444 DOI: 10.14336/ad.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
In modern times, a notable trend toward delayed childbearing has been observed in most developed countries. As a result, sperm aging and quality loss, as well as premature ovarian failure (POF), have emerged as major causes of infertility. The pathogenesis of sperm aging and POF is complex and has not been clearly elucidated. However, evidence from some studies has linked germ cell aging to epigenetic modifications. Epigenetics refers to the heritable changes in gene expression that occur in the absence of any alterations to the gene's nucleotide sequence. This paper systematically reviewed and analyzed the relevant literature to describe the relationship of DNA methylation, non-coding RNA regulation, histone modifications, chromatin remodeling, and RNA modifications with sperm aging and POF. In addition, we analyzed how sperm aging and POF can be mitigated via epigenetic interventions. This review could provide new therapeutic insights and guide strategies for improving sperm quality and ovarian function.
Collapse
Affiliation(s)
- Xiang-Chun Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yi-Nan Jiang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jie-Lin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Rong-Jin Lin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing-Yuan Xian
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The ThirdAffiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Yan H, Miranda EAD, Jin S, Wilson F, An K, Godbee B, Zheng X, Brau-Rodríguez AR, Lei L. Primary oocytes with cellular senescence features are involved in ovarian aging in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574768. [PMID: 38260383 PMCID: PMC10802418 DOI: 10.1101/2024.01.08.574768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In mammalian females, quiescent primordial follicles serve as the ovarian reserve and sustain normal ovarian function and egg production via folliculogenesis. The loss of primordial follicles causes ovarian aging. Cellular senescence, characterized by cell cycle arrest and production of the senescence-associated secretory phenotype (SASP), is associated with tissue aging. In the present study, we report that some quiescent primary oocytes in primordial follicles become senescent in adult mouse ovaries. The senescent primary oocytes share senescence markers characterized in senescent somatic cells. The senescent primary oocytes were observed in young adult mouse ovaries, remained at approximately 15% of the total primary oocytes during ovarian aging from 6 months to 12 months, and accumulated in aged ovaries. Administration of a senolytic drug ABT263 to 3-month-old mice reduced the percentage of senescent primary oocytes and the transcription of the SASP cytokines in the ovary. In addition, led to increased numbers of primordial and total follicles and a higher rate of oocyte maturation and female fertility. Our study provides experimental evidence that primary oocytes, a germline cell type that is arrested in meiosis, become senescent in adult mouse ovaries and that senescent cell clearance reduced primordial follicle loss and mitigated ovarian aging phenotypes.
Collapse
Affiliation(s)
- Hao Yan
- Buck Institute for Research on Aging, Novato, California, 94945
- Carnegie Institution for Science, Department of Embryology, Baltimore, Maryland, 21218
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
| | - Shiying Jin
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
| | - Faith Wilson
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, Missouri, 65211
| | - Kang An
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
| | - Brooke Godbee
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
- College of Health Sciences, University of Missouri, Columbia, Missouri, 65211
| | - Xiaobin Zheng
- Carnegie Institution for Science, Department of Embryology, Baltimore, Maryland, 21218
| | - Astrid Roshealy Brau-Rodríguez
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
| | - Lei Lei
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, Missouri, 65211
| |
Collapse
|