1
|
Lee FFY, Alper S. Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Front Immunol 2022; 13:1023567. [PMID: 36531997 PMCID: PMC9755862 DOI: 10.3389/fimmu.2022.1023567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
While inflammation induced by Toll-like receptor (TLR) signaling is required to combat infection, persistent inflammation can damage host tissues and contribute to a myriad of acute and chronic inflammatory disorders. Thus, it is essential not only that TLR signaling be activated in the presence of pathogens but that TLR signaling is ultimately terminated. One mechanism that limits persistent TLR signaling is alternative pre-mRNA splicing. In addition to encoding the canonical mRNAs that produce proteins that promote inflammation, many genes in the TLR signaling pathway also encode alternative mRNAs that produce proteins that are dominant negative inhibitors of signaling. Many of these negative regulators are induced by immune challenge, so production of these alternative isoforms represents a negative feedback loop that limits persistent inflammation. While these alternative splicing events have been investigated on a gene by gene basis, there has been limited systemic analysis of this mechanism that terminates TLR signaling. Here we review what is known about the production of negatively acting alternative isoforms in the TLR signaling pathway including how these inhibitors function, how they are produced, and what role they may play in inflammatory disease.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States
| | - Scott Alper
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States,*Correspondence: Scott Alper,
| |
Collapse
|
2
|
Khanfar MA. Structure-Based Pharmacophore Screening Coupled with QSAR Analysis Identified Potent Natural-Product-Derived IRAK-4 Inhibitors. Mol Inform 2021; 40:e2100025. [PMID: 34427398 DOI: 10.1002/minf.202100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022]
Abstract
Interleukin-1 Receptor-Associated Kinase 4 (IRAK-4) has crucial functions in inflammation, innate immunity, and malignancy. Structure-based pharmacophore modeling integrated with validated QSAR analysis was implemented to discover structurally novel IRAK-4 inhibitors from natural products database. The QSAR model combined molecular descriptors with structure-based pharmacophore capable of explaining bioactivity variation of structurally diverse IRAK-4 inhibitors. Manually built pharmacophore model, validated with receiver operating characteristic curve, and selected using the statistically optimum QSAR equation, was applied as a 3D-search query to mine AnalytiCon Discovery database of natural products. Experimental in vitro testing of highest-ranked hits identified uvaretin, saucerneol, and salvianolic acid B as active IRAK-4 inhibitors with IC50 values in low micromolar range.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, P.O. Box 50927, Riyadh 1, 1533, Saudi Arabia.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman, 11942, Jordan
| |
Collapse
|
3
|
Khanfar MA, Alqtaishat S. Discovery of potent IRAK-4 inhibitors as potential anti-inflammatory and anticancer agents using structure-based exploration of IRAK-4 pharmacophoric space coupled with QSAR analyses. Comput Biol Chem 2019; 79:147-154. [PMID: 30818109 DOI: 10.1016/j.compbiolchem.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022]
Abstract
Interleukin-1 Receptor-Associated Kinase 4 (IRAK-4) has an important role in immunity, inflammation, and malignancy. The significant role of IRAK-4 makes it an interesting target for the discovery and development of potent small molecule inhibitors. In the current study, multiple linear regression -based QSAR analyses coupled with structure-based pharmacophoric exploration was applied to reveal the structural and physiochemical properties required for IRAK-4 inhibition. Manually built pharmacophoric models were initially validated with receiver operating characteristic curve, and best-ranked models were subsequently integrated in QSAR analysis along with other physiochemical descriptors. The pharmacophore model, selected using the statistically optimum QSAR equation, was implied as a 3D-search filter to mine the National Cancer Institute database for novel IRAK-4 inhibitors. Whereas the associated QSAR model prioritized the bioactivities of captured hits for in vitro evaluation. Experimental validation identified several potent IRAK-4 inhibitors of novel structural scaffolds. The most potent captured hit exhibited an IC50 value of 157 nM.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Düsseldorf, Germany; College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia.
| | - Saja Alqtaishat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman 11942, Jordan
| |
Collapse
|
4
|
Gobin K, Hintermeyer M, Boisson B, Chrabieh M, Ghandil P, Puel A, Picard C, Casanova JL, Routes J, Verbsky J. IRAK4 Deficiency in a Patient with Recurrent Pneumococcal Infections: Case Report and Review of the Literature. Front Pediatr 2017; 5:83. [PMID: 28503543 PMCID: PMC5408006 DOI: 10.3389/fped.2017.00083] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Abstract
Primary immunodeficiencies are genetic defects of the innate or adaptive immune system, resulting in a propensity to infections. The innate immune system is the first line of defense against pathogens and is critical to recognize microbes and start the inflammatory cascade. Sensing of microbes occurs by a number of pathogen-recognition receptors, resulting in the activation of inflammatory signal transduction pathways, such as the activation of NF-κB. Herein, we describe a case of IRAK4 deficiency, a key signal transduction molecule of toll-like and IL-1 receptors. We highlight the complexities in diagnosis of these disorders and review genetic defects of the NF-κB pathway.
Collapse
Affiliation(s)
- Karina Gobin
- Division of Asthma, Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary Hintermeyer
- Division of Asthma, Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Pegah Ghandil
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology Unit, Assistance Publique Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Center for the Study of Primary Immunodeficiencies AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.,Pediatric Hematology-Immunology Unit, Assistance Publique Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - John Routes
- Division of Asthma, Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Shichijo K, Ogose T, Kubota M, Tomimoto A, Kondo R, Taniguchi T, Takahashi A, Nakatsu T, Urano Y, Watanabe T. Recurrent Staphylococcus aureus abscess and fatal pneumococcal septicemia due to IRAK-4 deficiency. Pediatr Int 2015; 57:1166-9. [PMID: 26711917 DOI: 10.1111/ped.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 11/30/2022]
Abstract
We describe the case of an infant with recurrent episodes of staphylococcal skin abscess and subsequent lethal pneumococcal meningitis/septicemia due to interleukin-1 receptor-associated kinase 4 (IRAK-4) deficiency. In this case, systemic signs of inflammatory response were poor and delayed. Among all other reported cases of IRAK-4 deficiency, none involved severe viral or fungal disease, and the range of infecting bacteria was narrow.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yoshio Urano
- Dermatology, Tokushima Red Cross Hospital, Tokushima, Japan
| | | |
Collapse
|
6
|
Pidgeon TE, Ahmad F, Hackett S, Rodrigues D, Nishikawa H. Management of a transcranial abscess secondary to interleukin-1 receptor associated kinase 4 deficiency. J Craniofac Surg 2015; 26:e2-3. [PMID: 25569407 DOI: 10.1097/scs.0000000000001184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Interleukin-1 receptor associated kinase 4 (IRAK-4) deficiency is a primary immunodeficiency that predisposes to opportunistic pyogenic infections in affected patients. The presentation can be variable, and the microbiological and immunologic management of this condition has been documented; however, the atypical nature of its presentation calls for a different approach in its surgical management. This is the first reported case of transcranial progression of a soft tissue abscess in a patient with IRAK-4 deficiency, with an emphasis on a multidisciplinary approach to treat infection at an extremely vulnerable anatomic site.
Collapse
Affiliation(s)
- Thomas Edward Pidgeon
- From the *University Hospital Coventry and Warwickshire National Health Service Trust, Coventry; †Department of Craniofacial Surgery, Birmingham Children's Hospital National Health Service Trust, Birmingham, West Midlands; and ‡Department of Paediatric Immunology, Heartlands Hospital, Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Fatal Pneumococcal Meningitis in a 7-Year-Old Girl with Interleukin-1 Receptor Activated Kinase Deficiency (IRAK-4) Despite Prophylactic Antibiotic and IgG Responses to Streptococcus Pneumoniae Vaccines. J Clin Immunol 2014; 34:267-71. [DOI: 10.1007/s10875-014-9996-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
|
8
|
Tremblay MM, Bilal MY, Houtman JCD. Prior TLR5 induction in human T cells results in a transient potentiation of subsequent TCR-induced cytokine production. Mol Immunol 2013; 57:161-70. [PMID: 24128895 DOI: 10.1016/j.molimm.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/24/2022]
Abstract
Activation of TLRs by components required for pathogen viability results in increased inflammation and an enhanced immune response to infection. Unlike their effects on other immune cells, TLR activation in the absence of T cell antigen receptor (TCR) induction has little effect on T cell activity. Instead, the simultaneous induction of TLR and TCR results in increased cytokine release compared to TCR treatment alone. Thus, the current model states that TLRs alter T cell function only if activated at the same time as the TCR. In this study, we tested the novel hypothesis that prior TLR induction can also alter TCR-mediated functions. We found that human T cells responded to ligands for TLR2 and TLR5. However, only prior TLR5 induction potentiated subsequent TCR-mediated cytokine production in human T cells. This response required at least 24h of TLR5 induction and lasted for approximately 24-36h after removal of a TLR5 ligand. Interestingly, prior TLR5 induction enhanced TCR-mediated activation of Akt without increasing Lck, LAT or ERK kinase phosphorylation. Together, our studies show that TLR5 induction leads to a transient increase in the sensitivity of T cells to TCR stimulation by selectively enhancing TCR-mediated Akt function, highlighting that timeframe when TLR5 can potentiate TCR-induced downstream functions are significantly longer that previously appreciated.
Collapse
Affiliation(s)
- Mikaela M Tremblay
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | | | | |
Collapse
|
9
|
Johannessen M, Askarian F, Sangvik M, Sollid JE. Bacterial interference with canonical NFκB signalling. MICROBIOLOGY-SGM 2013; 159:2001-2013. [PMID: 23873783 PMCID: PMC3799228 DOI: 10.1099/mic.0.069369-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The human body is constantly challenged by a variety of commensal and pathogenic micro-organisms that trigger the immune system. Central in the first line of defence is the pattern-recognition receptor (PRR)-induced stimulation of the NFκB pathway, leading to NFκB activation. The subsequent production of pro-inflammatory cytokines and/or antimicrobial peptides results in recruitment of professional phagocytes and bacterial clearance. To overcome this, bacteria have developed mechanisms for targeted interference in every single step in the PRR–NFκB pathway to dampen host inflammatory responses. This review aims to briefly overview the PRR–NFκB pathway in relation to the immune response and give examples of the diverse bacterial evasion mechanisms including changes in the bacterial surface, decoy production and injection of effector molecules. Targeted regulation of inflammatory responses is needed and bacterial molecules developed for immune evasion could provide future anti-inflammatory agents.
Collapse
Affiliation(s)
- Mona Johannessen
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Fatemeh Askarian
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Maria Sangvik
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Johanna E Sollid
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
10
|
Tremmel DM, Resad S, Little CJ, Wesley CS. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos. PLoS One 2013; 8:e67789. [PMID: 23861806 PMCID: PMC3701627 DOI: 10.1371/journal.pone.0067789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/23/2013] [Indexed: 01/04/2023] Open
Abstract
The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.
Collapse
Affiliation(s)
- Daniel M. Tremmel
- Departments of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sedat Resad
- Departments of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christopher J. Little
- Departments of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cedric S. Wesley
- Departments of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
11
|
Lee KE, Kim KW, Hong JY, Kim KE, Sohn MH. Modulation of IL-8 boosted by Mycoplasma pneumoniae lysate in human airway epithelial cells. J Clin Immunol 2013; 33:1117-25. [PMID: 23779254 DOI: 10.1007/s10875-013-9909-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/20/2013] [Indexed: 01/09/2023]
Abstract
Mycoplasma pneumoniae, a major cause of community-acquired pneumonia, has been recognized as a trigger for asthma inception and exacerbation. The epithelial cells on the respiratory tract parasitized by M. pneumoniae exhibit a number of cytopathic effects as a result of local inflammation and stimulated host immune response. We investigated the interactions of signaling molecules regulating the release of IL-8 by the direct stimulation of M. pneumoniae lysate (MPL) in human airway epithelial cells. In human airway epithelial cells, MPL-induced IL-8 proteins were decreased by monoclonal anti-TLR2 antibody in a dose-dependent fashion, and significantly blocked by siRNA TLR2. The pharmacologic inhibitors of ERK, U0126 and PD98059, effectively reduced IL-8 expression and the active forms of ERK signaling molecules, as detected by anti-phosphorylated p44/42 antibody. The region spanning from -132 to +41 in the IL-8 promoter demonstrated the highest luciferase activity against MPL and the mutations of NF-κB and NF-IL6 entirely diminished the activity. After investigating transfections of the NF-κB and NF-IL6 reporter vectors, NF-IL6 activation was significantly induced by MPL stimulation, which was considerably decreased by U0126 and monoclonal anti-TLR2 antibody. These results indicate that MPL-induced IL-8 increase is transcriptionally regulated by NF-IL6 more than by NF-κB. Additionally, the activation of NF-IL6 is influenced by TLR2 and ERK signaling pathways in airway epithelial cells.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department of Pediatrics and Institute of Allergy, BioMedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
12
|
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854.
| |
Collapse
|
13
|
Pennini ME, Perkins DJ, Salazar AM, Lipsky M, Vogel SN. Complete dependence on IRAK4 kinase activity in TLR2, but not TLR4, signaling pathways underlies decreased cytokine production and increased susceptibility to Streptococcus pneumoniae infection in IRAK4 kinase-inactive mice. THE JOURNAL OF IMMUNOLOGY 2012; 190:307-16. [PMID: 23209321 DOI: 10.4049/jimmunol.1201644] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IRAK4 is critical for MyD88-dependent TLR signaling, and patients with Irak4 mutations are extremely susceptible to recurrent bacterial infections. In these studies, mice homozygous for a mutant IRAK4 that lacks kinase activity (IRAK4(KDKI)) were used to address the role of IRAK4 in response to TLR agonists or bacterial infection. IRAK4(KDKI) macrophages exhibited diminished responsiveness to the TLR4 agonist LPS and little to no response to the TLR2 agonist Pam3Cys compared with wild-type macrophages as measured by cytokine mRNA, cytokine protein expression, and MAPK activation. Importantly, we identified two kinases downstream of the MAPKs, MNK1 and MSK1, whose phosphorylation is deficient in IRAK4(KDKI) macrophages stimulated through either TLR2 or TLR4, suggesting that IRAK4 contributes to TLR signaling beyond the initial phosphorylation of MAPKs. Additionally, IRAK4(KDKI) macrophages produced minimal cytokine mRNA expression in response to the Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus compared with WT cells, and IRAK4(KDKI) mice exhibited increased susceptibility and decreased cytokine production in vivo upon S. pneumoniae infection. Treatment of infected mice with a complex of polyinosinic-polycytidylic acid with poly-L-lysine and carboxymethyl cellulose (Hiltonol), a potent TLR3 agonist, significantly improved survival of both WT and IRAK4(KDKI) mice, thereby providing a potential treatment strategy in both normal and immunocompromised patients.
Collapse
Affiliation(s)
- Meghan E Pennini
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
14
|
Sánchez-Quiles V, Segura V, Bigaud E, He B, O'Malley BW, Santamaría E, Prieto J, Corrales FJ. Prohibitin-1 deficiency promotes inflammation and increases sensitivity to liver injury. J Proteomics 2012; 75:5783-5792. [PMID: 22951295 DOI: 10.1016/j.jprot.2012.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
Liver diseases are the fifth cause of mortality in Western countries, and as opposed to other major causes of mortality, their incidence is increasing. Understanding the molecular background contributing to the progression of liver ailments will surely open new perspectives for the better management of patients. The aim of this study is to elucidate mechanisms underlying the progression of liver injury associated with deficient prohibitin 1, an essential protein to maintain mitochondrial homeostasis and gene expression. PHB1+/- mice developed a more severe steatohepatitis than WT littermates when exposed to a choline and methionine deficient diet. The increased sensitivity was mediated by mitochondrial dysfunction and metabolic impairment in PHB1+/- livers, including inactivation of AMP kinase, measured under a non-restricted diet. Moreover, pro-inflammatory challenges induced higher mortality and liver injury in PHB+/- mice. The increased proliferative capacity of PHB+/- splenocytes, resulting from constitutive defects in central molecular pathways as stated by deregulation of GSK3β, Erk, Akt or SHP-1, and the concomitant overproduction of pro-inflammatory mediators in Phb1 deficient mice, might account for these effects. In light of these results it might be concluded that Phb1 deficiency is a potential driver of chronic liver diseases by inducing hepatocyte damage and inflammation.
Collapse
|
15
|
Abstract
There have been enormous strides in our understanding of autoimmunity. These strides have come under the umbrellas of epidemiology, immunological phenotype and function, disease definitions and classification and especially new therapeutic reagents. However, while these advances have been herculean, there remains enormous voids. Some of these voids include genetic susceptibility and the interaction of genes and environment. The voids include induction of tolerance in preclinical disease and definitions of host susceptibility and responses to the expensive biologic agents. The voids include the so-called clustering of human autoimmune diseases and the issues of whether the incidence is rising in our western society. Other voids include the relationships between microbiology, vaccination, gut flora, overzealous use of antibiotics, and the role of nanoparticles and environmental pollution in either the induction or the natural history of disease. One cannot even begin to address even a fraction of these issues. However, in this special issue, we are attempting to discuss clinical issues in autoimmunity that are not usually found in generic reviews. The goal is to bring to the readership provocative articles that ultimately will lead to improvement in patient care.
Collapse
|
16
|
Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One 2012; 7:e39191. [PMID: 22723961 PMCID: PMC3377628 DOI: 10.1371/journal.pone.0039191] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 05/16/2012] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal tract harbors a complex and diverse microbiota that has an important role in host metabolism. Microbial diversity is influenced by a combination of environmental and host genetic factors and is associated with several polygenic diseases. In this study we combined next-generation sequencing, genetic mapping, and a set of physiological traits of the BXD mouse population to explore genetic factors that explain differences in gut microbiota and its impact on metabolic traits. Molecular profiling of the gut microbiota revealed important quantitative differences in microbial composition among BXD strains. These differences in gut microbial composition are influenced by host-genetics, which is complex and involves many loci. Linkage analysis defined Quantitative Trait Loci (QTLs) restricted to a particular taxon, branch or that influenced the variation of taxa across phyla. Gene expression within the gastrointestinal tract and sequence analysis of the parental genomes in the QTL regions uncovered candidate genes with potential to alter gut immunological profiles and impact the balance between gut microbial communities. A QTL region on Chr 4 that overlaps several interferon genes modulates the population of Bacteroides, and potentially Bacteroidetes and Firmicutes–the predominant BXD gut phyla. Irak4, a signaling molecule in the Toll-like receptor pathways is a candidate for the QTL on Chr15 that modulates Rikenellaceae, whereas Tgfb3, a cytokine modulating the barrier function of the intestine and tolerance to commensal bacteria, overlaps a QTL on Chr 12 that influence Prevotellaceae. Relationships between gut microflora, morphological and metabolic traits were uncovered, some potentially a result of common genetic sources of variation.
Collapse
|
17
|
Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, MacFarlane M, Häcker G, Leverkus M. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 2011; 43:449-63. [PMID: 21737330 PMCID: PMC3163271 DOI: 10.1016/j.molcel.2011.06.011] [Citation(s) in RCA: 797] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 03/20/2011] [Accepted: 06/17/2011] [Indexed: 11/25/2022]
Abstract
The intracellular regulation of cell death pathways by cIAPs has been enigmatic. Here we show that loss of cIAPs promotes the spontaneous formation of an intracellular platform that activates either apoptosis or necroptosis. This 2 MDa intracellular complex that we designate “Ripoptosome” is necessary but not sufficient for cell death. It contains RIP1, FADD, caspase-8, caspase-10, and caspase inhibitor cFLIP isoforms. cFLIPL prevents Ripoptosome formation, whereas, intriguingly, cFLIPS promotes Ripoptosome assembly. When cIAPs are absent, caspase activity is the “rheostat” that is controlled by cFLIP isoforms in the Ripoptosome and decides if cell death occurs by RIP3-dependent necroptosis or caspase-dependent apoptosis. RIP1 is the core component of the complex. As exemplified by our studies for TLR3 activation, our data argue that the Ripoptosome critically influences the outcome of membrane-bound receptor triggering. The differential quality of cell death mediated by the Ripoptosome may cause important pathophysiological consequences during inflammatory responses.
Collapse
Affiliation(s)
- Maria Feoktistova
- Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gene expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis. Blood 2011; 117:e151-60. [PMID: 21325597 DOI: 10.1182/blood-2010-08-300046] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is a rare, genetically heterogeneous autosomal recessive immune disorder that results when the critical regulatory pathways that mediate immune defense mechanisms and the natural termination of immune/inflammatory responses are disrupted or overwhelmed. To advance the understanding of FHL, we performed gene expression profiling of peripheral blood mononuclear cells from 11 children with untreated FHL. Total RNA was isolated and gene expression levels were determined using microarray analysis. Comparisons between patients with FHL and normal pediatric controls (n = 30) identified 915 down-regulated and 550 up-regulated genes with more than or equal to 2.5-fold difference in expression (P ≤ .05). The expression of genes associated with natural killer cell functions, innate and adaptive immune responses, proapoptotic proteins, and B- and T-cell differentiation were down-regulated in patients with FHL. Genes associated with the canonical pathways of interleukin-6 (IL-6), IL-10 IL-1, IL-8, TREM1, LXR/RXR activation, and PPAR signaling and genes encoding of antiapoptotic proteins were overexpressed in patients with FHL. This first study of genome-wide expression profiling in children with FHL demonstrates the complexity of gene expression patterns, which underlie the immunobiology of FHL.
Collapse
|
19
|
McDermott JE, Archuleta M, Thrall BD, Adkins JN, Waters KM. Controlling the response: predictive modeling of a highly central, pathogen-targeted core response module in macrophage activation. PLoS One 2011; 6:e14673. [PMID: 21339814 PMCID: PMC3038849 DOI: 10.1371/journal.pone.0014673] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/17/2011] [Indexed: 11/19/2022] Open
Abstract
We have investigated macrophage activation using computational analyses of a compendium of transcriptomic data covering responses to agonists of the TLR pathway, Salmonella infection, and manufactured amorphous silica nanoparticle exposure. We inferred regulatory relationship networks using this compendium and discovered that genes with high betweenness centrality, so-called bottlenecks, code for proteins targeted by pathogens. Furthermore, combining a novel set of bioinformatics tools, topological analysis with analysis of differentially expressed genes under the different stimuli, we identified a conserved core response module that is differentially expressed in response to all studied conditions. This module occupies a highly central position in the inferred network and is also enriched in genes preferentially targeted by pathogens. The module includes cytokines, interferon induced genes such as Ifit1 and 2, effectors of inflammation, Cox1 and Oas1 and Oasl2, and transcription factors including AP1, Egr1 and 2 and Mafb. Predictive modeling using a reverse-engineering approach reveals dynamic differences between the responses to each stimulus and predicts the regulatory influences directing this module. We speculate that this module may be an early checkpoint for progression to apoptosis and/or inflammation during macrophage activation.
Collapse
Affiliation(s)
- Jason E McDermott
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington, United States of America.
| | | | | | | | | |
Collapse
|