1
|
Zhong R, He H, Wang X. Novel neutrophil targeting platforms in treating Glioblastoma: Latest evidence and therapeutic approaches. Int Immunopharmacol 2025; 150:114173. [PMID: 39938169 DOI: 10.1016/j.intimp.2025.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Glioblastoma (GBM) is the most aggressive and lethal type of primary brain tumor, characterized by its rapid growth, resistance to conventional therapies, and a highly immunosuppressive tumor microenvironment (TME). Recent studies have highlighted the critical role of neutrophils in the progression of GBM, where they contribute to tumor growth, invasion, and treatment resistance. As a result, neutrophils have emerged as a promising target for therapeutic intervention in GBM. Various strategies are being investigated to specifically target neutrophils within the GBM environment, including using small molecules, antibodies, and nanoparticle-based methods. These approaches aim to regulate neutrophils' recruitment, activation, and functions. This study reviews the latest findings regarding the involvement of neutrophils in GBM, explores potential techniques targeting neutrophils for therapeutic purposes, and discusses current clinical studies and prospects in this rapidly evolving field. By studying the diverse functions of neutrophils in GBM, these innovative therapeutic strategies can help address some of the most significant challenges in treating this malignancy.
Collapse
Affiliation(s)
- Rui Zhong
- Department of Neurosurgery, The First People's Hospital of Lin'an District, Hangzhou 311300, China
| | - Hongmei He
- Department of Neurosurgery, The First People's Hospital of Lin'an District, Hangzhou 311300, China
| | - Xiande Wang
- Department of Neurosurgery, The First People's Hospital of Lin'an District, Hangzhou 311300, China.
| |
Collapse
|
2
|
Rosichini M, Del Baldo G, De Luca CD, Benini F, Genah S, Vinci M, Cerimele A, Coccetti M, Flamini S, Carsetti R, Cacchione A, Carai A, Mastronuzzi A, Locatelli F, Velardi E. Pediatric brain tumor patients display altered immune activation and reduced lymphopoiesis at the onset of disease. NPJ Precis Oncol 2024; 8:269. [PMID: 39567679 PMCID: PMC11579487 DOI: 10.1038/s41698-024-00755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Optimal immune function is crucial in preventing cancer development and growth and for the success of anti-cancer therapies. Here, we characterized the peripheral immunological status of 83 steroids-naïve pediatric patients with central nervous system neoplasia at the disease onset. Tumors were classified into low-grade gliomas (LGG), high-grade gliomas (HGG), medulloblastoma, and other tumors. We revealed that glioma patients showed an altered lymphocyte pool. T-cells of HGG patients shifted from naïve to effector memory phenotype. LGG patients exhibited T-cell central memory expansion and higher T-cell activation. Interestingly, HGG patients displayed reduced thymic function. Furthermore, LGG and HGG patients showed reduced activated B-cells and suboptimal B-cell formation. Our data demonstrate that glioma patients have reduced lymphopoiesis at the disease onset, which could contribute to the systemic lymphopenia characterizing these patients. This study offers novel insights into the immunological status of brain tumor patients which may help in designing more effective treatments.
Collapse
Affiliation(s)
- Marco Rosichini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giada Del Baldo
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmen Dolores De Luca
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Benini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Shirley Genah
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alfredo Cerimele
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marianna Coccetti
- Research Core Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Flamini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B cell unit Research Area of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Velardi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
5
|
Amin T, Hossain A, Jerin N, Mahmud I, Rahman MA, Rafiqul Islam SM, Islam SMBUL. Immunoediting Dynamics in Glioblastoma: Implications for Immunotherapy Approaches. Cancer Control 2024; 31:10732748241290067. [PMID: 39353594 PMCID: PMC11459535 DOI: 10.1177/10732748241290067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that poses many therapeutic difficulties because of the high rate of proliferation, genetic variability, and its immunosuppressive microenvironment. The theory of cancer immunoediting, which includes the phases of elimination, equilibrium, and escape, offers a paradigm for comprehending interactions between the immune system and glioblastoma. Immunoediting indicates the process by which immune cells initially suppress tumor development, but thereafter select for immune-resistant versions leading to tumor escape and progression. The tumor microenvironment (TME) in glioblastoma is particularly immunosuppressive, with regulatory T cells and myeloid-derived suppressor cells being involved in immune escape. To achieve an efficient immunotherapy for glioblastoma, it is crucial to understand these mechanisms within the TME. Existing immunotherapeutic modalities such as chimeric antigen receptor T cells and immune checkpoint inhibitors have been met with some level of resistance because of the heterogeneous nature of the immune response to glioblastoma. Solving these issues is critical to develop novel strategies capable of modulating the TME and re-establishing normal immune monitoring. Further studies should be conducted to identify the molecular and cellular events that underlie the immunosuppressive tumor microenvironment in glioblastoma. Comprehending and modifying the stages of immunoediting in glioblastoma could facilitate the development of more potent and long-lasting therapies.
Collapse
Affiliation(s)
- Tasbir Amin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Amana Hossain
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Nusrat Jerin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Imteaz Mahmud
- Department of Public Health, North South University, Dhaka, Bangladesh
| | - Md Ahasanur Rahman
- Department of Physiology and Biophysics, Howard University, College of Medicine, Washington, DC, USA
| | - SM Rafiqul Islam
- Surgery Branch, National Cancer Institute, National Institute of Health, Bethesda, USA
| | - S M Bakhtiar UL Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Gazaille C, Bozzato E, Madadian-Bozorg N, Mellinger A, Sicot M, Farooq U, Saulnier P, Eyer J, Préat V, Bertrand N, Bastiat G. Glioblastoma-targeted, local and sustained drug delivery system based on an unconventional lipid nanocapsule hydrogel. BIOMATERIALS ADVANCES 2023; 153:213549. [PMID: 37453243 DOI: 10.1016/j.bioadv.2023.213549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The objective of this work was to develop an implantable therapeutic hydrogel that will ensure continuity in treatment between surgery and radiochemotherapy for patients with glioblastoma (GBM). A hydrogel of self-associated gemcitabine-loaded lipid nanocapsules (LNC) has shown therapeutic efficacy in vivo in murine GBM resection models. To improve the targeting of GBM cells, the NFL-TBS.40-63 peptide (NFL), was associated with LNC. The LNC-based hydrogels were formulated with the NFL. The peptide was totally and instantaneously adsorbed at the LNC surface, without modifying the hydrogel mechanical properties, and remained adsorbed to the LNC surface after the hydrogel dissolution. In vitro studies on GBM cell lines showed a faster internalization of the LNC and enhanced cytotoxicity, in the presence of NFL. Finally, in vivo studies in the murine GBM resection model proved that the gemcitabine-loaded LNC with adsorbed NFL could target the non-resected GBM cells and significantly delay or even inhibit the apparition of recurrences.
Collapse
Affiliation(s)
- Claire Gazaille
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | | | - Adélie Mellinger
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Sicot
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Umer Farooq
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | - Nicolas Bertrand
- Univ Laval, Faculty of Pharmacy, CHU Quebec Research Center, Québec, QC, Canada
| | | |
Collapse
|
7
|
Tumor Microenvironment and Immune Escape in the Time Course of Glioblastoma. Mol Neurobiol 2022; 59:6857-6873. [PMID: 36048342 PMCID: PMC9525332 DOI: 10.1007/s12035-022-02996-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with a malignant prognosis. GBM is characterized by high cellular heterogeneity and its progression relies on the interaction with the central nervous system, which ensures the immune-escape and tumor promotion. This interplay induces metabolic, (epi)-genetic and molecular rewiring in both domains. In the present study, we aim to characterize the time-related changes in the GBM landscape, using a syngeneic mouse model of primary GBM. GL261 glioma cells were injected in the right striatum of immuno-competent C57Bl/6 mice and animals were sacrificed after 7, 14, and 21 days (7D, 14D, 21D). The tumor development was assessed through 3D tomographic imaging and brains were processed for immunohistochemistry, immunofluorescence, and western blotting. A human transcriptomic database was inquired to support the translational value of the experimental data. Our results showed the dynamic of the tumor progression, being established as a bulk at 14D and surrounded by a dense scar of reactive astrocytes. The GBM growth was paralleled by the impairment in the microglial/macrophagic recruitment and antigen-presenting functions, while the invasive phase was characterized by changes in the extracellular matrix, as shown by the analysis of tenascin C and metalloproteinase-9. The present study emphasizes the role of the molecular changes in the microenvironment during the GBM progression, fostering the development of novel multi-targeted, time-dependent therapies in an experimental model similar to the human disease.
Collapse
|
8
|
Zeng Y, Cai Y, Chai P, Mao Y, Chen Y, Wang L, Zeng K, Zhan Z, Xie Y, Li C, Zhan H, Zhao L, Chen X, Zhu X, Liu Y, Chen M, Song Y, Zhou A. Optimization of cancer immunotherapy through pyroptosis: A pyroptosis-related signature predicts survival benefit and potential synergy for immunotherapy in glioma. Front Immunol 2022; 13:961933. [PMID: 35990696 PMCID: PMC9382657 DOI: 10.3389/fimmu.2022.961933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pyroptosis is a critical type of programmed cell death that is strongly associated with the regulation of tumor and immune cell functions. However, the role of pyroptosis in tumor progression and remodeling of the tumor microenvironment in gliomas has not been extensively studied. Thus, in this study, we aimed to establish a comprehensive pyroptosis-related signature and uncover its potential clinical application in gliomas. Methods The TCGA glioma cohort was obtained and divided into training and internal validation cohorts, while the CGGA glioma cohort was used as an external validation cohort. Unsupervised consensus clustering was performed to identify pyroptosis-related expression patterns. A Cox regression analysis was performed to establish a pyroptosis-related risk signature. Real-time quantitative PCR was performed to analyze the expression of signature genes in glioma tissues. Immune infiltration was analyzed and validated by immunohistochemical staining. The expression patterns of signature genes in different cell types were analyzed using single-cell RNA sequencing data. Finally, therapeutic responses to chemotherapy, immunotherapy, and potential small-molecule inhibitors were investigated. Results Patients with glioma were stratified into clusters 1 and 2 based on the expression patterns of pyroptosis-related genes. Cluster 2 showed a longer overall (P<0.001) and progression-free survival time (P<0.001) than Cluster 1. CD8+ T cell enrichment was observed in Cluster 1. A pyroptosis-related risk signature (PRRS) was then established. The high PRRS group showed a significantly poorer prognosis than the low PRRS group in the training cohort (P<0.001), with validation in the internal and external validation cohorts. Immunohistochemical staining demonstrated that CD8+ T cells were enriched in high PRRS glioma tissues. PRRS genes also showed cell-specific expression in tumor and immune cells. Moreover, the high PRRS risk group showed higher temozolomide sensitivity and increased response to anti-PD1 treatment in a glioblastoma immunotherapy cohort. Finally, Bcl-2 inhibitors were screened as candidates for adjunct immunotherapy of gliomas. Conclusion The pyroptosis-related signature established in this study can be used to reliably predict clinical outcomes and immunotherapy responses in glioma patients. The correlation between the pyroptosis signature and the tumor immune microenvironment may be used to further guide the sensitization of glioma patients to immunotherapy.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yonghua Cai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Chai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangqi Mao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanwen Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Li Wang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Kunlin Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Ziling Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuxin Xie
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Cuiying Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hongchao Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Liqian Zhao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Liu
- Department of Neurosurgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Chen
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Aidong Zhou, ; Ye Song, ; Ming Chen,
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Aidong Zhou, ; Ye Song, ; Ming Chen,
| | - Aidong Zhou
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
- *Correspondence: Aidong Zhou, ; Ye Song, ; Ming Chen,
| |
Collapse
|
9
|
Glycan-Lectin Interactions as Novel Immunosuppression Drivers in Glioblastoma. Int J Mol Sci 2022; 23:ijms23116312. [PMID: 35682991 PMCID: PMC9181495 DOI: 10.3390/ijms23116312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Despite diagnostic and therapeutic improvements, glioblastoma (GB) remains one of the most threatening brain tumor in adults, underlining the urgent need of new therapeutic targets. Lectins are glycan-binding proteins that regulate several biological processes through the recognition of specific sugar motifs. Lectins and their ligands are found on immune cells, endothelial cells and, also, tumor cells, pointing out a strong correlation among immunity, tumor microenvironment and vascularization. In GB, altered glycans and lectins contribute to tumor progression and immune evasion, shaping the tumor-immune landscape promoting immunosuppressive cell subsets, such as myeloid-derived suppressor cells (MDSCs) and M2-macrophages, and affecting immunoeffector populations, such as CD8+ T cells and dendritic cells (DCs). Here, we discuss the latest knowledge on the immune cells, immune related lectin receptors (C-type lectins, Siglecs, galectins) and changes in glycosylation that are involved in immunosuppressive mechanisms in GB, highlighting their interest as possible novel therapeutical targets.
Collapse
|
10
|
Glioblastoma Microenvironment and Cellular Interactions. Cancers (Basel) 2022; 14:cancers14041092. [PMID: 35205842 PMCID: PMC8870579 DOI: 10.3390/cancers14041092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This paper summarizes the crosstalk between tumor/non-tumor cells and other elements of the glioblastoma (GB) microenvironment. In tumor pathology, glial cells result in the highest number of cancers, and GB is considered the most lethal tumor of the central nervous system (CNS). The tumor microenvironment (TME) is a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be a key factor for the ineffective treatment since the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. A deeper understanding of cell–cell interactions in the TME and with the tumor cells could be the basis for a more efficient therapy. Abstract The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell–cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
Collapse
|
11
|
Li XL, Zhan A, Yue L, Zhang X, Wei ZH. Multiple occult intracranial diseases diverted diagnosis of glioma in a patient. J Int Med Res 2022; 50:3000605221079544. [PMID: 35184606 PMCID: PMC8864269 DOI: 10.1177/03000605221079544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
Dizziness is an atypical symptom of the nervous system. Many neurological disorders can manifest as dizziness. When patients have multiple neurological disorders, the most obvious diagnosis is often considered, and diseases that are potentially more deadly are overlooked. Here, we report the case of a man aged in his early 50s with dizziness who was found to have four neurological disorders. A series of treatments failed to resolve the condition. A review of this case highlights that when a patient's symptoms are not typical, a comprehensive examination and evaluation is required to determine the etiology, and imaging may reveal further minor problems.
Collapse
Affiliation(s)
| | | | | | | | - Zheng Hong Wei
- Zheng Hong Wei, Department of Neurosurgery,
People's Hospital of Leshan, 238 Baita Street, Leshan, Sichuan 614000, China.
| |
Collapse
|
12
|
Gazaille C, Sicot M, Saulnier P, Eyer J, Bastiat G. Local Delivery and Glioblastoma: Why Not Combining Sustained Release and Targeting? FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:791596. [PMID: 35047971 PMCID: PMC8757870 DOI: 10.3389/fmedt.2021.791596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors and is associated with a very low overall median survival despite the current treatment. The standard of care used in clinic is the Stupp's protocol which consists of a maximal resection of the tumor when possible, followed by radio and chemotherapy using temozolomide. However, in most cases, glioblastoma cells infiltrate healthy tissues and lead to fatal recurrences. There are a lot of hurdles to overcome in the development of new therapeutic strategies such as tumor heterogeneity, cell infiltration, alkylating agent resistance, physiological barriers, etc., and few treatments are on the market today. One of them is particularly appealing because it is a local therapy, which does not bring additional invasiveness since tumor resection is included in the gold standard treatment. They are implants: the Gliadel® wafers, which are deposited post-surgery. Nevertheless, in addition to presenting important undesirable effects, it does not bring any major benefit in the therapy despite the strategy being particularly attractive. The purpose of this review is to provide an overview of recent advances in the development of innovative therapeutic strategies for glioblastoma using an implant-type approach. The combination of this local strategy with effective targeting of the tumor microenvironment as a whole, also developed in this review, may be of interest to alleviate some of the obstacles encountered in the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Marion Sicot
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | |
Collapse
|
13
|
Liu J, Gao L, Zhu X, Geng R, Tao X, Xu H, Chen Z. Gasdermin D Is a Novel Prognostic Biomarker and Relates to TMZ Response in Glioblastoma. Cancers (Basel) 2021; 13:cancers13225620. [PMID: 34830775 PMCID: PMC8616249 DOI: 10.3390/cancers13225620] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/25/2023] Open
Abstract
The gasdermin (GSDM) family act as executioners during pyroptosis. However, its expression and biological role in glioma remain to be determined. This study carried out gene expression from six public datasets. Westerns blots and immunohistochemistry (IHC) staining were employed to examine GSDM expression in glioma in an in-house cohort. Kaplan-Meier and Cox regression analyses were performed to evaluate the prognostic role of GSDMs in glioma. Association between gene expression and immune infiltration was assessed by IHC and immunofluorescence (IF) staining of tissue sections. TMZ-induced pyroptosis was assessed by observation of morphological changes, WB and ELISA detection. Only GSDMD expression was upregulated in glioma compared with nontumor brain tissues both in the public datasets and in-house cohort. High GSDMD expression was significantly associated with WHO grade IV, IDH 1/2 wild-type and mesenchymal subtypes. Besides, high GSDMD expression was associated with shorter overall survival and could be used as an independent risk factor for poor outcomes in LGG and GBM. GO enrichment analysis and IHC validation revealed that GSDMD expression might participate in regulating macrophage infiltration and polarization. TMZ treatment induced the pyroptosis in GBM cells and GSDMD expression increased with after treating with TMZ in a time-dependent manner. Moreover, knocking down GSDMD obviously decreased IL-1β expression and reduced TMZ-induced pyroptosis in in vitro. GSDMD was a novel prognostic biomarker, as well as TMZ-treatment response marker in glioma.
Collapse
Affiliation(s)
- Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.L.); (L.G.); (X.Z.); (R.G.); (X.T.); (H.X.)
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.L.); (L.G.); (X.Z.); (R.G.); (X.T.); (H.X.)
| | - Xiaonan Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.L.); (L.G.); (X.Z.); (R.G.); (X.T.); (H.X.)
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.L.); (L.G.); (X.Z.); (R.G.); (X.T.); (H.X.)
| | - Xiang Tao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.L.); (L.G.); (X.Z.); (R.G.); (X.T.); (H.X.)
| | - Haitao Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.L.); (L.G.); (X.Z.); (R.G.); (X.T.); (H.X.)
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.L.); (L.G.); (X.Z.); (R.G.); (X.T.); (H.X.)
- Correspondence:
| |
Collapse
|
14
|
Virtuoso A, Giovannoni R, De Luca C, Gargano F, Cerasuolo M, Maggio N, Lavitrano M, Papa M. The Glioblastoma Microenvironment: Morphology, Metabolism, and Molecular Signature of Glial Dynamics to Discover Metabolic Rewiring Sequence. Int J Mol Sci 2021; 22:3301. [PMID: 33804873 PMCID: PMC8036663 DOI: 10.3390/ijms22073301] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Different functional states determine glioblastoma (GBM) heterogeneity. Brain cancer cells coexist with the glial cells in a functional syncytium based on a continuous metabolic rewiring. However, standard glioma therapies do not account for the effects of the glial cells within the tumor microenvironment. This may be a possible reason for the lack of improvements in patients with high-grade gliomas therapies. Cell metabolism and bioenergetic fitness depend on the availability of nutrients and interactions in the microenvironment. It is strictly related to the cell location in the tumor mass, proximity to blood vessels, biochemical gradients, and tumor evolution, underlying the influence of the context and the timeline in anti-tumor therapeutic approaches. Besides the cancer metabolic strategies, here we review the modifications found in the GBM-associated glia, focusing on morphological, molecular, and metabolic features. We propose to analyze the GBM metabolic rewiring processes from a systems biology perspective. We aim at defining the crosstalk between GBM and the glial cells as modules. The complex networking may be expressed by metabolic modules corresponding to the GBM growth and spreading phases. Variation in the oxidative phosphorylation (OXPHOS) rate and regulation appears to be the most important part of the metabolic and functional heterogeneity, correlating with glycolysis and response to hypoxia. Integrated metabolic modules along with molecular and morphological features could allow the identification of key factors for controlling the GBM-stroma metabolism in multi-targeted, time-dependent therapies.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | | | - Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
| | - Francesca Gargano
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
| | - Michele Cerasuolo
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
| | - Nicola Maggio
- Department of Neurology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5211401, Israel
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (F.G.); (M.C.); (M.P.)
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
15
|
Zhao C, Zhang N, Cui X, Zhang X, Ren Y, Su C, He J, Zhang W, Sun X, Yang J, Gao X. Integrative analysis regarding the correlation between GAS2 family genes and human glioma prognosis. Cancer Med 2021; 10:2826-2839. [PMID: 33713047 PMCID: PMC8026934 DOI: 10.1002/cam4.3829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background Emerging oncogenes were reportedly linked to the complicated subtypes and pathogenesis of clinical gliomas. Herein, we first comprehensively explored the potential correlation between growth‐arrest‐specific two family genes (GAS2, GAS2L1, GAS2L2, GAS2L3) and gliomas by bioinformatics analysis and cellular experiments. Methods Based on the available datasets of TCGA (The Cancer Genome Atlas), CGGA (Chinese Glioma Genome Atlas), and Oncomine databases, we performed a series of analyses, such as gene expression, survival prognosis, DNA methylation, immune infiltration, and partner enrichment. We also utilized two glioma cell lines to conduct the colony formation and wound‐healing assay. Results GAS2L3 gene was highly expressed in glioma tissues compared to normal brain tissues (p < 0.05). We further observed the relationship between the high expressed GAS2L3 and poor clinical prognosis of brain low‐grade glioma (LGG) cases in our Cox proportional hazard model (hazard ratio [HR] = 0.1715, p < 0.001). Moreover, DNA hypomethylation status of GAS2L3 was correlated with the high expression of GAS2L3 in LGG tissues and the poor clinical prognosis of primary glioma cases (p < 0.05). We also found that the high expression of GAS2L3 was associated with the infiltration level of immune cells, especially the T cells (p < 0.0001). Functional enrichment analysis of GAS2L3‐correlated genes and interaction partners further indicated that GAS2L3 might take part in the occurrence of glioma by influencing a series of biological behaviors, such as cell division, cytoskeleton binding, and cell adhesion. Additionally, our cellular experiment data suggested that a highly expressed GAS2L3 gene contributes to the enhanced proliferation and migration of glioma cells. Conclusion This study first analyzed the potential role of GAS2 family genes, especially GAS2L3, in the clinical prognosis and possible functional mechanisms of glioma, which gives a novel insight into the relationship between GAS2L3 and LGG.
Collapse
Affiliation(s)
- Chunyan Zhao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Cui
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China
| | - Xinxin Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Chao Su
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Jinyan He
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xiaoming Sun
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
González‐Tablas Pimenta M, Otero Á, Arandia Guzman DA, Pascual‐Argente D, Ruíz Martín L, Sousa‐Casasnovas P, García‐Martin A, Roa Montes de Oca JC, Villaseñor‐Ledezma J, Torres Carretero L, Almeida M, Ortiz J, Nieto A, Orfao A, Tabernero MD. Tumor cell and immune cell profiles in primary human glioblastoma: Impact on patient outcome. Brain Pathol 2021; 31:365-380. [PMID: 33314398 PMCID: PMC8018082 DOI: 10.1111/bpa.12927] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The distribution and role of tumor-infiltrating leucocytes in glioblastoma (GBM) remain largely unknown. Here, we investigated the cellular composition of 55 primary (adult) GBM samples by flow cytometry and correlated the tumor immune profile with patient features at diagnosis and outcome. GBM single-cell suspensions were stained at diagnosis (n = 44) and recurrence following radiotherapy and chemotherapy (n = 11) with a panel of 8-color monoclonal antibody combinations for the identification and enumeration of (GFAP+ CD45- ) tumor and normal astrocytic cells, infiltrating myeloid cells -i.e. microglial and blood-derived tumor-associated macrophages (TAM), M1-like, and M2-like TAM, neutrophils. and myeloid-derived suppressor cells (MDSC)- and tumor-infiltrating lymphocytes (TIL) -i.e. CD3+ T-cells and their TCD4+ , TCD8+ , TCD4- CD8- , and (CD25+ CD127lo ) regulatory (T-regs) subsets, (CD19+ CD20+ ) B-cells, and (CD16+ ) NK-cells-. Overall, GBM samples consisted of a major population (mean ± 1SD) of tumor and normal astrocytic cells (73% ± 16%) together with a significant but variable fraction of immune cells (24% ± 18%). Within myeloid cells, TAM predominated (13% ± 12%) including both microglial cells (10% ± 11%) and blood-derived macrophages (3% ± 5%), in addition to a smaller proportion of neutrophils (5% ± 9%) and MDSC (4% ± 8%). Lymphocytes were less represented and mostly included TCD4+ (0.5% ± 0.7%) and TCD8+ cells (0.6% ± 0.7%), together with lower numbers of TCD4- CD8- T-cells (0.2% ± 0.4%), T-regs (0.1% ± 0.2%), B-lymphocytes (0.1% ± 0.2%) and NK-cells (0.05% ± 0.05%). Overall, three distinct immune profiles were identified: cases with a minor fraction of leucocytes, tumors with a predominance of TAM and neutrophils, and cases with mixed infiltration by TAM, neutrophils, and T-lymphocytes. Untreated GBM patients with mixed myeloid and lymphoid immune infiltrates showed a significantly shorter patient overall survival versus the other two groups, in the absence of gains of the EGFR gene (p = 0.02). Here we show that immune cell infiltrates are systematically present in GBM, with highly variable levels and immune profiles. Patients with mixed myeloid and T-lymphoid infiltrates showed a worse outcome.
Collapse
Affiliation(s)
- María González‐Tablas Pimenta
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Centre for Cancer Research (CIC‐IBMCC; CSIC/USAL; IBSAL)Department of MedicineUniversity of SalamancaSalamancaSpain
| | - Álvaro Otero
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Daniel Angel Arandia Guzman
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Daniel Pascual‐Argente
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Laura Ruíz Martín
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Pablo Sousa‐Casasnovas
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Andoni García‐Martin
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Juan Carlos Roa Montes de Oca
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Javier Villaseñor‐Ledezma
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Luis Torres Carretero
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Maria Almeida
- Centre for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Javie Ortiz
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Pathology ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Adelaida Nieto
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Radiotherapy ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Alberto Orfao
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Centre for Cancer Research (CIC‐IBMCC; CSIC/USAL; IBSAL)Department of MedicineUniversity of SalamancaSalamancaSpain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400)Institute of Health Carlos IIIMadridSpain
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Centre for Cancer Research (CIC‐IBMCC; CSIC/USAL; IBSAL)Department of MedicineUniversity of SalamancaSalamancaSpain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400)Institute of Health Carlos IIIMadridSpain
| |
Collapse
|
17
|
Recent Advances and Challenges in Controlling the Spatiotemporal Release of Combinatorial Anticancer Drugs from Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12121156. [PMID: 33261219 PMCID: PMC7759840 DOI: 10.3390/pharmaceutics12121156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
To overcome cancer, various chemotherapeutic studies are in progress; among these, studies on nano-formulated combinatorial drugs (NFCDs) are being actively pursued. NFCDs function via a fusion technology that includes a drug delivery system using nanoparticles as a carrier and a combinatorial drug therapy using two or more drugs. It not only includes the advantages of these two technologies, such as ensuring stability of drugs, selectively transporting drugs to cancer cells, and synergistic effects of two or more drugs, but also has the additional benefit of enabling the spatiotemporal and controlled release of drugs. This spatial and temporal drug release from NFCDs depends on the application of nanotechnology and the composition of the combination drug. In this review, recent advances and challenges in the control of spatiotemporal drug release from NFCDs are provided. To this end, the types of combinatorial drug release for various NFCDs are classified in terms of time and space, and the detailed programming techniques used for this are described. In addition, the advantages of the time and space differences in drug release in terms of anticancer efficacy are introduced in depth.
Collapse
|
18
|
Li XL, Zeng S, He HP, Zeng X, Peng LL, Chen LG. A Hybrid Glioma Tumor Cell Lysate Immunotherapy Vaccine Demonstrates Good Clinical Efficacy in the Rat Model. Onco Targets Ther 2020; 13:8109-8124. [PMID: 32884294 PMCID: PMC7438187 DOI: 10.2147/ott.s259516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Conventional immunotherapy for glioma is not only expensive but also demonstrates less-than-desired clinical efficacy. In this study, we evaluated the immunotherapeutic efficacy of a tumor cell lysate-based hybrid glioma vaccine developed using a molecular-based approach. Methods First, the ability of the autologous (9L-cell lysate) and allogeneic (C6-cell lysate) vaccines against glioma, individually and in combination, to activate Fischer344 rat dendritic cells (DCs) was determined. Next, the activated DCs were co-cultured with T lymphocytes and screened for the optimal DC-to-T-cell ratio. The in vitro efficacy of the DC/T-cell vaccine formulations subjected to different immunogen treatments and co-cultured with glioma cells was evaluated based on glioma cell viability and monocyte chemoattractant protein (MCP)-2 and interferon (IFN)-γ secretion. Subsequently, the efficacy of the 9L + C6 hybrid vaccine was evaluated in 32 glioma rat models, randomly allocated to the following five treatment groups: blank control, tumor, vaccine treatment, thymosin treatment, and vaccine + thymosin treatment (combined treatment). Changes in survival duration, intracranial tumor volume, peripheral blood immune-cell (CD4+ T, CD8+ T, and natural killer [NK] cell) count, and serum cytokine (interleukin [IL]-2, IL-10) levels were assessed in these groups. Results The hybrid vaccine demonstrated the highest glioma cell apoptosis and the lowest cell viability and promoted MCP-2 and IFN-γ secretion in vitro. The vaccine treatment and combined treatment groups demonstrated longer survival duration, lower intracranial tumor volume, and higher immune cell glioma tissue infiltration and IL-2 secretion than the untreated tumor group, indicating the vaccine's good in vivo efficacy. Thymosin treatment had minimal effect in enhancing anti-glioma immunity. Conclusion We demonstrated the feasibility of combining autologous and allogeneic tumor cell lysates to stimulate specific host cell immune response against glioma cells. The good clinical efficacy of our developed glioma hybrid vaccine in rat models suggests its potential clinical application.
Collapse
Affiliation(s)
- Xin-Long Li
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Shan Zeng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Hai-Ping He
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Xu Zeng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Li-Lei Peng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Li-Gang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
19
|
He J, Xiao H, Li B, Peng Y, Li X, Wang Y, Adamus G, Kowalczuk M, Shuai X. The programmed site-specific delivery of the angiostatin sunitinib and chemotherapeutic paclitaxel for highly efficient tumor treatment. J Mater Chem B 2020; 7:4953-4962. [PMID: 31411627 DOI: 10.1039/c9tb01159e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Malignant solid tumors are composed of tumor cells, stromal cells and the complex networks of the tumor microenvironment (TME), which is the underlying cause of the unsatisfactory outcome of conventional chemotherapy approaches only aimed at cancer cell killing. In this study, a novel TME-responsive polymeric micelle has been developed for the programmed site-specific delivery of the angiostatin sunitinib and chemotherapeutic paclitaxel (PTX). The pH-sensitive micelle core encapsulates PTX, while β-cyclodextrin molecules being conjugated to the micelle shell via matrix metalloproteinase 2 (MMP-2) sensitive peptides include sunitinib. Following the pH and MMP-2 dual sensitive structure design, the micelle may sequentially release sunitinib inside the tumor extracellular matrix and PTX into cancer cells through responding to enriched MMP-2 levels and decreased pH, respectively. Consequently, the anti-angiogenesis effect of sunitinib and tumor cell-killing effect of PTX synergize, resulting in highly efficient tumor treatment.
Collapse
Affiliation(s)
- Jin He
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuan Peng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiaoxia Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yong Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland. and Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
20
|
Yu-Ju Wu C, Chen CH, Lin CY, Feng LY, Lin YC, Wei KC, Huang CY, Fang JY, Chen PY. CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase 2. Neuro Oncol 2020; 22:253-266. [PMID: 31593589 PMCID: PMC7032635 DOI: 10.1093/neuonc/noz189] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Glioma-associated microglia/macrophages (GAMs) comprise macrophages of peripheral origin and brain-intrinsic microglia, which support tumor progression. Chemokine C-C ligand 5 (CCL5) is an inflammatory mediator produced by immune cells and is involved in tumor growth and migration in several cancers, including glioma. However, the mechanisms detailing how CCL5 facilitates glioma invasion remain largely unresolved. METHODS Glioma migration and invasion were determined by wound healing, transwell assay, and 3D µ-slide chemotaxis assay. The expression levels of CCL5, CD68, matrix metalloproteinase 2 (MMP2), phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), p-Akt, and phosphorylated proline-rich tyrosine kinase 2 were determined by cytokine array, quantitative PCR, western blot, or immunohistochemistry. Zymography and intracellular calcium assays were used to analyze MMP2 activity and intracellular calcium levels, respectively. RESULTS CCL5 modulated the migratory and invasive activities of human glioma cells in association with MMP2 expression. In response to CCL5, glioma cells underwent a synchronized increase in intracellular calcium levels and p-CaMKII and p-Akt expression levels. CCL5-directed glioma invasion and increases in MMP2 were suppressed after inhibition of p-CaMKII. Glioma cells tended to migrate toward GAM-conditioned media activated by granulocyte-macrophage colony-stimulating factor (GM-CSF) in which CCL5 was abundant. This homing effect was associated with MMP2 upregulation, and could be ameliorated either by controlling intracellular and extracellular calcium levels or by CCL5 antagonism. Clinical results also revealed the associations between CCL5 and GAM activation. CONCLUSION Our results suggest that modulation of glioma CaMKII may restrict the effect of CCL5 on glioma invasion and could be a potential therapeutic target for alleviating glioma growth.
Collapse
Affiliation(s)
- Caren Yu-Ju Wu
- Graduate Institute of Biomedical Sciences, Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chia-Hua Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ying Feng
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-You Fang
- Graduate Institute of Biomedical Sciences, Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Riihilä P, Nissinen L, Knuutila J, Rahmati Nezhad P, Viiklepp K, Kähäri VM. Complement System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20143550. [PMID: 31331124 PMCID: PMC6678994 DOI: 10.3390/ijms20143550] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with high mortality rates in the advanced stage. Chronic inflammation is a recognized risk factor for cSCC progression and the complement system, as a part of innate immunity, belongs to the microenvironment of tumors. The complement system is a double-edged sword in cancer, since complement activation is involved in anti-tumor cytotoxicity and immune responses, but it also promotes cancer progression directly and indirectly. Recently, the role of several complement components and inhibitors in the regulation of progression of cSCC has been shown. In this review, we will discuss the role of complement system components and inhibitors as biomarkers and potential new targets for therapeutic intervention in cSCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland.
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| |
Collapse
|
22
|
Ma Q, Long W, Xing C, Chu J, Luo M, Wang HY, Liu Q, Wang RF. Cancer Stem Cells and Immunosuppressive Microenvironment in Glioma. Front Immunol 2018; 9:2924. [PMID: 30619286 PMCID: PMC6308128 DOI: 10.3389/fimmu.2018.02924] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Glioma is one of the most common malignant tumors of the central nervous system and is characterized by extensive infiltrative growth, neovascularization, and resistance to various combined therapies. In addition to heterogenous populations of tumor cells, the glioma stem cells (GSCs) and other nontumor cells present in the glioma microenvironment serve as critical regulators of tumor progression and recurrence. In this review, we discuss the role of several resident or peripheral factors with distinct tumor-promoting features and their dynamic interactions in the development of glioma. Localized antitumor factors could be silenced or even converted to suppressive phenotypes, due to stemness-related cell reprogramming and immunosuppressive mediators in glioma-derived microenvironment. Furthermore, we summarize the latest knowledge on GSCs and key microenvironment components, and discuss the emerging immunotherapeutic strategies to cure this disease.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Junjun Chu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Mei Luo
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, United States.,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, United States
| |
Collapse
|
23
|
Pedra NS, Galdino KDCA, da Silva DS, Ramos PT, Bona NP, Soares MSP, Azambuja JH, Canuto KM, de Brito ES, Ribeiro PRV, Souza ASDQ, Cunico W, Stefanello FM, Spanevello RM, Braganhol E. Endophytic Fungus Isolated From Achyrocline satureioides Exhibits Selective Antiglioma Activity-The Role of Sch-642305. Front Oncol 2018; 8:476. [PMID: 30420941 PMCID: PMC6215846 DOI: 10.3389/fonc.2018.00476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most devastating primary brain tumor. Current treatment is palliative, making necessary the development of new therapeutic strategies to offer alternatives to patients. Therefore, endophytes represent an interesting source of natural metabolites with anticancer potential. These microorganisms reside in tissues of living plants and act to improve their growth. Evidence revealed that several medicinal plants are colonized by endophytic fungi producer of antitumor metabolites. Achyrocline satureioides is a Brazilian medicinal plant characterized by its properties against gastrointestinal disturbances, anticancer and antioxidant effects. However, there are no reports describing the endophytic composition of A. satureioides. The present study proposes the isolation of endophytic fungus from A. satureioides, extract preparation, phytochemical characterization and evaluation of its antiglioma potential. Our data showed that crude extracts of endophyte decreased glioma viability with IC50 values of 1.60-1.63 μg/mL to eDCM (dichloromethane extract) and 37.30-55.12 μg/mL to eEtAc (ethyl acetate extract), respectively. Crude extracts induced cell death by apoptosis with modulation of redox status. In order to bioprospect anticancer metabolites, endophytic fungus extracts were subjected to guided fractionation and purification yielded five fractions of each extract. Six of ten fractions showed selective antiproliferative activity against glioma cells, with IC50 values ranged from 0.95 to 131.3 μg/mL. F3DCM (from eDCM) and F3EtAc (from eEtAc) fractions promoted C6 glioma toxicity with IC50 of 1.0 and 27.05 μg/mL, respectively. F3EtAc fraction induced late apoptosis and arrest in G2/M stage, while F3DCM promoted apoptosis with arrest in Sub-G1 phase. Moreover, F3DCM increased antioxidant defense and decreased ROS production. Additionally, F3DCM showed no cytotoxic activity against astrocytes, revealing selective effect. Based on promising potential of F3DCM, we identified the production of Sch-642305, a lactone, which showed antiproliferative properties with IC50 values of 1.1 and 7.6 μg/mL to C6 and U138MG gliomas, respectively. Sch-642305 promoted arrest on cell cycle in G2/M inducing apoptosis. Furthermore, this lactone decreased glioma cell migration and modulated redox status, increasing superoxide dismutase and catalase activities and enhancing sulfhydryl content, consequently suppressing reactive species of oxygen generation. Taken together, these results indicate that metabolites produced by endophytic fungus isolated from A. satureioides have therapeutic potential as antiglioma agent.
Collapse
Affiliation(s)
- Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Kennia de Cássia Araújo Galdino
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Daniel Schuch da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Priscila Treptow Ramos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Juliana Hoffstater Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | | | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
24
|
Bouwens van der Vlis TAM, Kros JM, Mustafa DAM, van Wijck RTA, Ackermans L, van Hagen PM, van der Spek PJ. The complement system in glioblastoma multiforme. Acta Neuropathol Commun 2018; 6:91. [PMID: 30208949 PMCID: PMC6134703 DOI: 10.1186/s40478-018-0591-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
The human complement system is represents the main effector arm of innate immunity and its ambivalent function in cancer has been subject of ongoing dispute. Glioma stem-like cells (GSC) residing in specific niches within glioblastomas (GBM) are capable of self-renewal and tumor proliferation. Recent data are indicative of the influence of the complement system on the maintenance of these cells. It appears that the role of the complement system in glial tumorigenesis, particularly its influence on GSC niches and GSC maintenance, is significant and warrants further exploration for therapeutic interventions.
Collapse
|
25
|
Broestl L, Rubin JB, Dahiya S. Fetal microchimerism in human brain tumors. Brain Pathol 2018; 28:484-494. [PMID: 28921714 PMCID: PMC5884742 DOI: 10.1111/bpa.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/13/2017] [Indexed: 11/26/2022] Open
Abstract
Sex differences in cancer incidence and survival, including central nervous system tumors, are well documented. Multiple mechanisms contribute to sex differences in health and disease. Recently, the presence of fetal-in-maternal microchimeric cells has been shown to have prognostic significance in breast and colorectal cancers. The frequency and potential role of these cells has not been investigated in brain tumors. We therefore selected two common primary adult brain tumors for this purpose: meningioma, which is sex hormone responsive and has a higher incidence in women, and glioblastoma, which is sex hormone independent and occurs more commonly in men. Quantitative PCR was used to detect the presence of male DNA in tumor samples from women with a positive history of male pregnancy and a diagnosis of either glioblastoma or meningioma. Fluorescence in situ hybridization for the X and Y chromosomes was used to verify the existence of intact male cells within tumor tissue. Fetal microchimerism was found in approximately 80% of glioblastoma cases and 50% of meningioma cases. No correlations were identified between the presence of microchimerism and commonly used clinical or molecular diagnostic features of disease. The impact of fetal microchimeric cells should be evaluated prospectively.
Collapse
Affiliation(s)
- Lauren Broestl
- Department of PediatricsWashington University School of MedicineSt. LouisMO
| | - Joshua B. Rubin
- Department of PediatricsWashington University School of MedicineSt. LouisMO
- Department of NeuroscienceWashington University School of MedicineSt. LouisMO
| | - Sonika Dahiya
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMO
| |
Collapse
|
26
|
Luoto S, Hermelo I, Vuorinen EM, Hannus P, Kesseli J, Nykter M, Granberg KJ. Computational Characterization of Suppressive Immune Microenvironments in Glioblastoma. Cancer Res 2018; 78:5574-5585. [DOI: 10.1158/0008-5472.can-17-3714] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/05/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
|
27
|
Li TF, Li K, Wang C, Liu X, Wen Y, Xu YH, Zhang Q, Zhao QY, Shao M, Li YZ, Han M, Komatsu N, Zhao L, Chen X. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. J Control Release 2017; 268:128-146. [PMID: 29051064 DOI: 10.1016/j.jconrel.2017.10.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/03/2017] [Accepted: 10/14/2017] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is the most frequent and malignant brain tumor with a high mortality rate. The presence of a large population of macrophages (Mφ) in the tumor microenvironment is a prominent feature of GBM and these so-called tumor-associated Mφ (TAM) closely interact with the GBM cells to promote the survival, progression and therapy resistance of the GBM. Various therapeutic strategies have been devised either targeting the GBM cells or the TAM but few have addressed the cross-talks between the two cell populations. The present study was carried out to explore the possibility of exploiting the cross-talks between the GBM cells (GC) and TAM for modulation of the GBM microenvironment through using Nano-DOX, a drug composite based on nanodiamonds bearing doxorubicin. In the in vitro work on human cell models, Nano-DOX-loaded TAM were first shown to be viable and able to infiltrate three-dimensional GC spheroids and release cargo drug therein. GC were then demonstrated to encourage Nano-DOX-loaded TAM to unload Nano-DOX back into GC which consequently emitted damage-associated molecular patterns (DAMPs) that are powerful immunostimulatory agents as well as indicators of cell damage. Nano-DOX was next proven to be a more potent inducer of GC DAMPs emission than doxorubicin. As a result, Nano-DOX-damaged GC exhibited an enhanced ability to attract both TAM and Nano-DOX-loaded TAM. Most remarkably, Nano-DOX-damaged GC reprogrammed the TAM from a pro-GBM phenotype to an anti-GBM phenotype that suppressed GC growth. Finally, the in vivo relevance of the in vitro findings was tested in animal study. Mice bearing orthotopic human GBM xenografts were intravenously injected with Nano-DOX-loaded mouse TAM which were found releasing drug in the GBM xenografts 24h after injection. GC damage was evidenced by the induction of DAMPs emission within the xenografts and a shift of TAM phenotype was detected as well. Taken together, our results demonstrate a novel way with therapeutic potential to harness the cross-talk between GBM cells and TAM for modulation of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Tong-Fei Li
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Chao Wang
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xin Liu
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yu Wen
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Quan Zhang
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Qiu-Ya Zhao
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ming Shao
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yan-Ze Li
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Li Zhao
- School of Radiation Medicine and Protection (SRMP), School of Radiation and Multidisciplinary Sciences (RAD-X), Medical College, Soochow University, Suzhou 215123, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medicine, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
28
|
Rühle PF, Goerig N, Wunderlich R, Fietkau R, Gaipl US, Strnad A, Frey B. Modulations in the Peripheral Immune System of Glioblastoma Patient Is Connected to Therapy and Tumor Progression-A Case Report from the IMMO-GLIO-01 Trial. Front Neurol 2017; 8:296. [PMID: 28690586 PMCID: PMC5481307 DOI: 10.3389/fneur.2017.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022] Open
Abstract
Immune responses are important for efficient tumor elimination, also in immune privileged organs such as the brain. Fostering antitumor immunity has therefore become an important challenge in cancer therapy. This cannot only be achieved by immunotherapies as already standard treatments such as radiotherapy and chemotherapy modify the immune system. Consequently, the understanding of how the tumor, the tumor microenvironment, and immune system are modulated by cancer therapy is required for prognosis, prediction, and therapy adaption. The prospective, explorative, and observational IMMO-GLIO-01 trial was initiated to examine the detailed immune status and its modulation of about 50 patients suffering from primary glioblastoma multiforme (GBM) or anaplastic astrocytoma during standard therapy. Prior to the study, a flow cytometry-based assay was established allowing the analysis of 34 immune cell subsets and their activation state. Here, we present the case of the first and longest accompanied patient, a 53-year-old woman suffering from GBM in the front left lobe. In context of tumor progression and therapy, we describe the modulation of the peripheral immune status over 17 months. Distinct immune modulations that were connected to therapy response or tumor progression were identified. Inter alia, a shift of CD4:CD8 ratio was observed that correlated with tumor progression. Twice we observed a unique composition of peripheral immune cells that correlated with tumor progression. Thus, following up these immune modulations in a closely-meshed manner is of high prognostic and predictive relevance for supporting personalized therapy and increasing therapy success. Clinical Trial registration: ClinicalTrials.gov, identifier NCT02022384 (registered retrospectively on 13th of December, 2013).
Collapse
Affiliation(s)
- Paul F Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Goerig
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Wunderlich
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Research Unit of Radiation Cytogenetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Annedore Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Immune checkpoint inhibition and its relationship with hypermutation phenoytype as a potential treatment for Glioblastoma. J Neurooncol 2017; 132:359-372. [PMID: 28293764 DOI: 10.1007/s11060-017-2390-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumour in adults. Current prognosis with standard treatment is poor. Immunotherapy is a new paradigm in tumour management. Specifically, recent advances in the field of immune checkpoint molecules have led to dramatic results in many cancers. Inhibition of one particular, programmed cell death-1 (PD-1) has recently been shown to be highly effective in melanoma and non-small cell lung cancer. There has also been recent data to suggest potential benefit in GBM. There also appears to be a relationship between immune checkpoint inhibition and hypermutation, in particular with the mismatch repair process. In this review we look at the current knowledge of immune checkpoint inhibitors with a focus on the PD-1 pathway. We will also review the evidence of PD-1 inhibition in GBM and the role of hypermutation in PD-1 inhibition.
Collapse
|
30
|
Vasefi F, MacKinnon N, Farkas DL, Kateb B. Review of the potential of optical technologies for cancer diagnosis in neurosurgery: a step toward intraoperative neurophotonics. NEUROPHOTONICS 2017; 4:011010. [PMID: 28042588 PMCID: PMC5184765 DOI: 10.1117/1.nph.4.1.011010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/07/2016] [Indexed: 05/06/2023]
Abstract
Advances in image-guided therapy enable physicians to obtain real-time information on neurological disorders such as brain tumors to improve resection accuracy. Image guidance data include the location, size, shape, type, and extent of tumors. Recent technological advances in neurophotonic engineering have enabled the development of techniques for minimally invasive neurosurgery. Incorporation of these methods in intraoperative imaging decreases surgical procedure time and allows neurosurgeons to find remaining or hidden tumor or epileptic lesions. This facilitates more complete resection and improved topology information for postsurgical therapy (i.e., radiation). We review the clinical application of recent advances in neurophotonic technologies including Raman spectroscopy, thermal imaging, optical coherence tomography, and fluorescence spectroscopy, highlighting the importance of these technologies in live intraoperative tissue mapping during neurosurgery. While these technologies need further validation in larger clinical trials, they show remarkable promise in their ability to help surgeons to better visualize the areas of abnormality and enable safe and successful removal of malignancies.
Collapse
Affiliation(s)
- Fartash Vasefi
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
- Brain Mapping Foundation, 8159 Santa Monica Boulevard, Suite 200, West Hollywood, California 90046, United States
- Society for Brain Mapping and Therapeutics (SBMT), 8159 Santa Monica Boulevard, Suite 200, West Hollywood, California 90046, United States
| | - Nicholas MacKinnon
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
| | - Daniel L. Farkas
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
- University of Southern California, Department of Biomedical Engineering, 1042 Downey Way, Los Angeles, California 90089, United States
| | - Babak Kateb
- Brain Mapping Foundation, 8159 Santa Monica Boulevard, Suite 200, West Hollywood, California 90046, United States
- Society for Brain Mapping and Therapeutics (SBMT), 8159 Santa Monica Boulevard, Suite 200, West Hollywood, California 90046, United States
- California Neurosurgical Institute, 25751 McBean Pkwy #305, Santa Clarita, California 91355, United States
- National Center for Nano-Bio-Electronics (NCNBE), NASA Research Park, P.O.Box 23, Moffett Field, California 94035, United States
| |
Collapse
|