1
|
Liu H, Jiang M, Chen Z, Li C, Yin X, Zhang X, Wu M. The Role of the Complement System in Synaptic Pruning after Stroke. Aging Dis 2024; 16:1452-1470. [PMID: 39012667 PMCID: PMC12096917 DOI: 10.14336/ad.2024.0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Stroke is a serious disease that can lead to local neurological dysfunction and cause great harm to the patient's health due to blood cerebral circulation disorder. Synaptic pruning is critical for the normal development of the human brain, which makes the synaptic circuit completer and more efficient by removing redundant synapses. The complement system is considered a key player in synaptic loss and cognitive impairment in neurodegenerative disease. After stroke, the complement system is over-activated and complement proteins can be labeled on synapses. Microglia and astrocytes can recognize and engulf synapses through corresponding complement receptors. Complement-mediated excessive synaptic pruning can cause post-stroke cognitive impairment (PSCI) and secondary brain damage. This review summarizes the latest progress of complement-mediated synaptic pruning after stroke and the potential mechanisms. Targeting complement-mediated synaptic pruning may be essential for exploring therapeutic strategies for secondary brain injury (SBI) and neurological dysfunction after stroke.
Collapse
Affiliation(s)
- Hongying Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China.
| | - Chuan Li
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China.
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
| | - Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
| |
Collapse
|
2
|
Wu Y, Tan M, Gao Y, Geng N, Zhong W, Sun H, Li Z, Wu C, Li X, Zhang J. Complement Proteins in Serum Astrocyte-Derived Exosomes Are Associated with Poststroke Cognitive Impairment in Type 2 Diabetes Mellitus Patients. J Alzheimers Dis 2024; 99:291-305. [PMID: 38669534 DOI: 10.3233/jad-231235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background The complement system plays crucial roles in cognitive impairment and acute ischemic stroke (AIS). High levels of complement proteins in plasma astrocyte-derived exosomes (ADEs) were proven to be associated with Alzheimer's disease. We aimed to investigate the relationship of complement proteins in serum ADEs with poststroke cognitive impairment in type 2 diabetes mellitus (T2DM) patients. Methods This study analyzed 197 T2DM patients who suffered AIS. The Beijing version of the Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. Complement proteins in serum ADEs were quantified using ELISA kits. Results Mediation analyses showed that C5b-9 and C3b in serum ADEs partially mediate the impact of obstructive sleep apnea (OSA), depression, small vessel disease (SVD), and infarct volume on cognitive function at the acute phase of AIS in T2DM patients. After adjusting for age, sex, time, and interaction between time and complement proteins in serum ADEs, the mixed linear regression showed that C3b and complement protein Factor B in serum ADEs were associated with MoCA scores at three-, six-, and twelve-months after AIS in T2DM patients. Conclusions Our study suggested that the impact of OSA, depression, SVD, and infarct volume on cognitive impairment in the acute stage of AIS may partially mediate through the complement proteins in serum ADEs. Additionally, the complement proteins in serum ADEs at the acute phase of AIS associated with MoCA scores at three-, six-, twelve months after AIS in T2DM patients.REGISTRATION: URL: http://www.chictr.org.cn/,ChiCTR1900021544.
Collapse
Affiliation(s)
- Yaxuan Wu
- Weifang Medical University, Weifang, Shandong, China
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ming Tan
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yanling Gao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Na Geng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Weibin Zhong
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Chenxi Wu
- Department of Central Sterile Supply Department, Xichang People's Hospital, Xichang, Liangshan Yi Autonomous Prefecture, Sichuan, China
| | - Xuemei Li
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| |
Collapse
|
3
|
McCulloch L, Harris AJ, Malbon A, Daniels MJD, Younas M, Grainger JR, Allan SM, Smith CJ, McColl BW. Treatment with IgM-enriched intravenous immunoglobulins enhances clearance of stroke-associated bacterial lung infection. Immunology 2022; 167:558-575. [PMID: 35881080 PMCID: PMC11495265 DOI: 10.1111/imm.13553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Post-stroke infection is a common complication of stroke that is associated with poor outcome. We previously reported that stroke induces an ablation of multiple sub-populations of B cells and reduces levels of immunoglobulin M (IgM) antibody, which coincides with the development of spontaneous bacterial pneumonia. The loss of IgM after stroke could be an important determinant of infection susceptibility and highlights this pathway as a target for intervention. We treated mice with a replacement dose of IgM-enriched intravenous immunoglobulin (IgM-IVIg) prior to and 24 h after middle cerebral artery occlusion (MCAO) and allowed them to recover for 2- or 5-day post-surgery. Treatment with IgM-IVIg enhanced bacterial clearance from the lung after MCAO and improved lung pathology but did not impact brain infarct volume. IgM-IVIg treatment induced immunomodulatory effects systemically, including rescue of splenic plasma B cell numbers and endogenous mouse IgM and IgA circulating immunoglobulin concentrations that were reduced by MCAO. Treatment attenuated MCAO-induced elevation of selected pro-inflammatory cytokines in the lung. IgM-IVIg treatment did not increase the number of lung mononuclear phagocytes or directly modulate macrophage phagocytic capacity but enhanced phagocytosis of Staphylococcus aureus bioparticles in vitro. Low-dose IgM-IVIg contributes to increased clearance of spontaneous lung bacteria after MCAO likely via increasing availability of antibody in the lung to enhance opsonophagocytic activity. Immunomodulatory effects of IgM-IVIg treatment may also contribute to reduced levels of damage in the lung after MCAO. IgM-IVIg shows promise as an antibacterial and immunomodulatory agent to use in the treatment of post-stroke infection.
Collapse
Affiliation(s)
- Laura McCulloch
- Centre for Inflammation Research, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Alison J. Harris
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Alexandra Malbon
- Easter Bush Pathology, The Royal (Dick) School of Veterinary Studies and The Roslin InstituteUniversity of EdinburghEdinburghUK
| | | | - Mehwish Younas
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS GroupUniversity of ManchesterManchesterUK
| | - John R. Grainger
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS GroupUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS GroupUniversity of ManchesterManchesterUK
| | - Craig J. Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS GroupUniversity of ManchesterManchesterUK
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical NeurosciencesManchester Academic Health Science Centre, Salford Royal NHS Foundation TrustSalfordUK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Barry W. McColl
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
Schepetkin IA, Chernysheva GA, Aliev OI, Kirpotina LN, Smol’yakova VI, Osipenko AN, Plotnikov MB, Kovrizhina AR, Khlebnikov AI, Plotnikov EV, Quinn MT. Neuroprotective Effects of the Lithium Salt of a Novel JNK Inhibitor in an Animal Model of Cerebral Ischemia–Reperfusion. Biomedicines 2022; 10:biomedicines10092119. [PMID: 36140222 PMCID: PMC9495587 DOI: 10.3390/biomedicines10092119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs) regulate many physiological processes, including inflammatory responses, morphogenesis, cell proliferation, differentiation, survival, and cell death. Therefore, JNKs represent attractive targets for therapeutic intervention. In an effort to develop improved JNK inhibitors, we synthesized the lithium salt of 11H-indeno[1,2-b]quinoxaline-11-one oxime (IQ-1L) and evaluated its affinity for JNK and biological activity in vitro and in vivo. According to density functional theory (DFT) modeling, the Li+ ion stabilizes the six-membered ring with the 11H-indeno[1,2-b]quinoxaline-11-one (IQ-1) oximate better than Na+. Molecular docking showed that the Z isomer of the IQ-1 oximate should bind JNK1 and JNK3 better than (E)-IQ-1. Indeed, experimental analysis showed that IQ-1L exhibited higher JNK1-3 binding affinity in comparison with IQ-1S. IQ-1L also was a more effective inhibitor of lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue monocytes and was a potent inhibitor of proinflammatory cytokine production by MonoMac-6 monocytic cells. In addition, IQ-1L inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. In a rat model of focal cerebral ischemia (FCI), intraperitoneal injections of 12 mg/kg IQ-1L led to significant neuroprotective effects, decreasing total neurological deficit scores by 28, 29, and 32% at 4, 24, and 48 h after FCI, respectively, and reducing infarct size by 52% at 48 h after FCI. The therapeutic efficacy of 12 mg/kg IQ-1L was comparable to that observed with 25 mg/kg of IQ-1S, indicating that complexation with Li+ improved efficacy of this compound. We conclude that IQ-1L is more effective than IQ-1S in treating cerebral ischemia injury and thus represents a promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Galina A. Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
| | - Oleg I. Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Vera I. Smol’yakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
| | - Anton N. Osipenko
- Department of Pharmacology, Siberian State Medical University, 2 Moskovskiy tract, 634050 Tomsk, Russia
| | - Mark B. Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
- Radiophysical Faculty, National Research Tomsk State University, 634050 Tomsk, Russia
| | | | | | - Evgenii V. Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
5
|
The Complement System in the Central Nervous System: From Neurodevelopment to Neurodegeneration. Biomolecules 2022; 12:biom12020337. [PMID: 35204837 PMCID: PMC8869249 DOI: 10.3390/biom12020337] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
The functions of the complement system to both innate and adaptive immunity through opsonization, cell lysis, and inflammatory activities are well known. In contrast, the role of complement in the central nervous system (CNS) which extends beyond immunity, is only beginning to be recognized as important to neurodevelopment and neurodegeneration. In addition to protecting the brain against invasive pathogens, appropriate activation of the complement system is pivotal to the maintenance of normal brain function. Moreover, overactivation or dysregulation may cause synaptic dysfunction and promote excessive pro-inflammatory responses. Recent studies have provided insights into the various responses of complement components in different neurological diseases and the regulatory mechanisms involved in their pathophysiology, as well as a glimpse into targeting complement factors as a potential therapeutic modality. However, there remain significant knowledge gaps in the relationship between the complement system and different brain disorders. This review summarizes recent key findings regarding the role of different components of the complement system in health and pathology of the CNS and discusses the therapeutic potential of anti-complement strategies for the treatment of neurodegenerative conditions.
Collapse
|
6
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 377] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
7
|
Mercurio D, Piotti A, Valente A, Oggioni M, Ponstein Y, Van Amersfoort E, Gobbi M, Fumagalli S, De Simoni MG. Plasma-derived and recombinant C1 esterase inhibitor: Binding profiles and neuroprotective properties in brain ischemia/reperfusion injury. Brain Behav Immun 2021; 93:299-311. [PMID: 33444732 DOI: 10.1016/j.bbi.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022] Open
Abstract
C1 esterase inhibitor (C1INH) is known to exert its inhibitory effect by binding to several target proteases of the contact and complement systems. One of C1INH's targets comprise mannose-binding lectin (MBL), a critical player in post-stroke pathophysiology. We therefore explored the effects of recombinant human (rh) and plasma derived (pd) C1INH in C57BL/6J mice subjected to transient occlusion of the middle cerebral artery (tMCAo), receiving 15U/mouse of pd or rhC1INH intravenously, at reperfusion. We analyzed the compounds' (i)neuroprotective effects, (ii) plasma presence, (iii)effects on circulating and brain MBL, (iv)time course of endothelial deposition, and (v) effects on the formation of active complement products. rhC1INH-treated mice had neuroprotective effects, including reduced behavioral deficits and neuronal loss, associated with decreased MBL brain deposition and decreased formation of complement C4b active fragments. In contrast, pdC1INH did not show these neuroprotective effects despite its longer plasma residence time. We also analyzed the response to tMCAo in C1INH-deficient mice, observing a poorer ischemic outcome compared to the wild type mice, which could be partially prevented by rhC1INH administration. In conclusion, we show that rhC1INH exhibits stronger neuroprotective effects than the corresponding plasma-derived protein after experimental ischemia/reperfusion injury in the brain, placing it as a promising drug for stroke. Differential effects are likely related to more effective MBL inhibition which further confirms it as a useful pharmacological target for stroke.
Collapse
Affiliation(s)
- Domenico Mercurio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | - Arianna Piotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Biochemistry and Molecular Pharmacology, Milan, Italy
| | - Alessia Valente
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | - Marco Oggioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| | | | | | - Marco Gobbi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Biochemistry and Molecular Pharmacology, Milan, Italy
| | - Stefano Fumagalli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy.
| | - Maria-Grazia De Simoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Neuroscience, Milan, Italy
| |
Collapse
|
8
|
Gavriilaki M, Kimiskidis VK, Gavriilaki E. Precision Medicine in Neurology: The Inspirational Paradigm of Complement Therapeutics. Pharmaceuticals (Basel) 2020; 13:E341. [PMID: 33114553 PMCID: PMC7693884 DOI: 10.3390/ph13110341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Precision medicine has emerged as a central element of healthcare science. Complement, a component of innate immunity known for centuries, has been implicated in the pathophysiology of numerous incurable neurological diseases, emerging as a potential therapeutic target and predictive biomarker. In parallel, the innovative application of the first complement inhibitor in clinical practice as an approved treatment of myasthenia gravis (MG) and neuromyelitis optica spectrum disorders (NMOSD) related with specific antibodies raised hope for the implementation of personalized therapies in detrimental neurological diseases. A thorough literature search was conducted through May 2020 at MEDLINE, EMBASE, Cochrane Library and ClinicalTrials.gov databases based on medical terms (MeSH)" complement system proteins" and "neurologic disease". Complement's role in pathophysiology, monitoring of disease activity and therapy has been investigated in MG, multiple sclerosis, NMOSD, spinal muscular atrophy, amyotrophic lateral sclerosis, Parkinson, Alzheimer, Huntington disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, stroke, and epilepsy. Given the complexity of complement diagnostics and therapeutics, this state-of-the-art review aims to provide a brief description of the complement system for the neurologist, an overview of novel complement inhibitors and updates of complement studies in a wide range of neurological disorders.
Collapse
Affiliation(s)
- Maria Gavriilaki
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece;
| |
Collapse
|
9
|
The Effect of Exosomes Derived from Bone Marrow Stem Cells in Combination with Rosuvastatin on Functional Recovery and Neuroprotection in Rats After Ischemic Stroke. J Mol Neurosci 2020; 70:724-737. [PMID: 31974756 DOI: 10.1007/s12031-020-01483-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Rosuvastatin, known as a cholesterol-lowering agent, has been used as an alternative therapy after the onset of stroke. In this study, neuroprotection and functional recovery of exosomes in combination with rosuvastatin have been investigated. Sixty adult male Wistar rats were subjected to middle cerebral artery occlusion (MCAO). Exosome at the dose of 100 μg and/or rosuvastatin at the dose of 20 mg/kg/day for 7 days were administered to rats as a therapeutic strategy. The elevated body swing test (EBST) and Garcia score were conducted as behavioral tests for the measurement of functional recovery. The histopathological and immunohistochemical analyses were also performed for the assessment of infarcted volume and neuroprotection in the brain of rats. The real-time PCR method was carried out to determine the relative expressions of the NLRP-3 and NLRP1 genes. After 7 days of treatment with exosome and rosuvastatin in rats which underwent MCAO, the decrease in infarct volume of the animals treated with exosome was more pronounced compared with those treated only with exosome. The combination therapy remarkably lowered the size of infarct volume. Our observation was confirmed by the downregulation of the NLRP1 and NLRP3 genes in response to combinatory treatment of rats induced by MCOA, denoting a lower rate of cell death. The number of GFAP-positive cells were reduced in the exosome-treated group compared with the MCAO group. The rate of lipid peroxidation was measured by malondialdehyde (MDA) levels which demonstrated a significant reduction of MDA in the exosome- and rotuvastatin-treated groups when compared with the MCAO group. However, the levels of the SOD enzyme did not significantly alter when the treatment groups were compared with the MCAO group. According to our findings, it seems that the use of exosomes and rosuvastatin, as a novel treatment regimen, might promote neurological recovery after the onset of stroke.
Collapse
|
10
|
Chen Y, Wang C, Xu F, Ming F, Zhang H. Efficacy and Tolerability of Intravenous Immunoglobulin and Subcutaneous Immunoglobulin in Neurologic Diseases. Clin Ther 2019; 41:2112-2136. [PMID: 31445679 DOI: 10.1016/j.clinthera.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/01/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE IV immunoglobulin (Ig) therapy has been widely used for the treatment of neurologic disorders, autoimmune diseases, immunodeficiency-related diseases, blood system diseases, and cancers. In this review, we summarize the efficacy and tolerability of IVIg and SCIg therapy in neurologic diseases. METHODS We summarized and analyzed the efficacy and tolerability of IVIg and SCIg in neurologic diseases, by analyzing the literature pertaining to the use of IVIg and SCIg to treat nervous system diseases. FINDINGS In clinical neurology practice, IVIg has been shown to be useful for the treatment of new-onset or recurrent immune diseases and for long-term maintenance treatment of chronic diseases. Moreover, IVIg may have applications in the management of intractable autoimmune epilepsy, paraneoplastic syndrome, autoimmune encephalitis, and neuromyelitis optica. SCIg is emerging as an alternative to IVIg treatment. Although SCIg has a composition similar to that of IVIg, the applications of this therapy are different. Notably, the bioavailability of SCIg is lower than that of IVIg, but the homeostasis level is more stable. Current studies have shown that these 2 therapies have pharmacodynamic equivalence. IMPLICATIONS In this review, we explored the efficacy of IVIg in the treatment of various neurologic disorders. IVIg administration still faces many challenges. Thus, it will be necessary to standardize the use of IVIg in the clinical setting. SCIg administration is a novel and feasible treatment option for neurologic and immune-related diseases, such as chronic inflammatory demyelinating polyradiculoneuropathy and idiopathic inflammatory myopathies. As our understanding of the mechanisms of action of IVIg improve, potential next-generation biologics can being developed.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fanxi Xu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fengyu Ming
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
C1 Esterase Inhibitor Reduces BBB Leakage and Apoptosis in the Hypoxic Developing Mouse Brain. Neuromolecular Med 2019; 22:31-44. [DOI: 10.1007/s12017-019-08560-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
|
12
|
Parrella E, Porrini V, Benarese M, Pizzi M. The Role of Mast Cells in Stroke. Cells 2019; 8:cells8050437. [PMID: 31083342 PMCID: PMC6562540 DOI: 10.3390/cells8050437] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.
Collapse
Affiliation(s)
- Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
13
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Reis ES, Berger N, Wang X, Koutsogiannaki S, Doot RK, Gumas JT, Foukas PG, Resuello RRG, Tuplano JV, Kukis D, Tarantal AF, Young AJ, Kajikawa T, Soulika AM, Mastellos DC, Yancopoulou D, Biglarnia AR, Huber-Lang M, Hajishengallis G, Nilsson B, Lambris JD. Safety profile after prolonged C3 inhibition. Clin Immunol 2018; 197:96-106. [PMID: 30217791 DOI: 10.1016/j.clim.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 01/21/2023]
Abstract
The central component of the complement cascade, C3, is involved in various biological functions, including opsonization of foreign bodies, clearance of waste material, activation of immune cells, and triggering of pathways controlling development. Given its broad role in immune responses, particularly in phagocytosis and the clearance of microbes, a deficiency in complement C3 in humans is often associated with multiple bacterial infections. Interestingly, an increased susceptibility to infections appears to occur mainly in the first two years of life and then wanes throughout adulthood. In view of the well-established connection between C3 deficiency and infections, therapeutic inhibition of complement at the level of C3 is often considered with caution or disregarded. We therefore set out to investigate the immune and biochemical profile of non-human primates under prolonged treatment with the C3 inhibitor compstatin (Cp40 analog). Cynomolgus monkeys were dosed subcutaneously with Cp40, resulting in systemic inhibition of C3, for 1 week, 2 weeks, or 3 months. Plasma concentrations of both C3 and Cp40 were measured periodically and complete saturation of plasma C3 was confirmed. No differences in hematological, biochemical, or immunological parameters were identified in the blood or tissues of animals treated with Cp40 when compared to those injected with vehicle alone. Further, skin wounds showed no signs of infection in those treated with Cp40. In fact, Cp40 treatment was associated with a trend toward accelerated wound healing when compared with the control group. In addition, a biodistribution study in a rhesus monkey indicated that the distribution of Cp40 in the body is associated with the presence of C3, concentrating in organs that accumulate blood and produce C3. Overall, our data suggest that systemic C3 inhibition in healthy adult non-human primates is not associated with a weakened immune system or susceptibility to infections.
Collapse
Affiliation(s)
- Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nadja Berger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xin Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophia Koutsogiannaki
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin T Gumas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Ranillo R G Resuello
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - Joel V Tuplano
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - David Kukis
- Center for Molecular and Genomic Imaging, University of California, Davis, CA 95616, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tetsuhiro Kajikawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Athena M Soulika
- Department of Dermatology, University of California, Davis, CA 95616, USA
| | | | | | - Ali-Reza Biglarnia
- Department of Transplantation, Skane University Hospital, Lund University, Lund, Sweden
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol 2018; 9:617. [PMID: 30131754 PMCID: PMC6090140 DOI: 10.3389/fneur.2018.00617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke contributes to ~80% of all stroke cases. Recanalization with thrombolysis or endovascular thrombectomy are currently critical therapeutic strategies for rebuilding the blood supply following ischemic stroke. However, recanalization is often accompanied by cerebral ischemia reperfusion injury that is mediated by oxidative stress and inflammation. Resolution of inflammation belongs to the end stage of inflammation where inflammation is terminated and the repair of damaged tissue is started. Resolution of inflammation is mediated by a group of newly discovered lipid mediators called specialized pro-resolving lipid mediators (SPMs). Accumulating evidence suggests that SPMs decrease leukocyte infiltration, enhance efferocytosis, reduce local neuronal injury, and decrease both oxidative stress and the production of inflammatory cytokines in various in vitro and in vivo models of ischemic stroke. In this review, we summarize the mechanisms of reperfusion injury and the various roles of SPMs in stroke therapy.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China.,First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Yafen Wei
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Mattson MP, Arumugam TV. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab 2018; 27:1176-1199. [PMID: 29874566 PMCID: PMC6039826 DOI: 10.1016/j.cmet.2018.05.011] [Citation(s) in RCA: 720] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
During aging, the cellular milieu of the brain exhibits tell-tale signs of compromised bioenergetics, impaired adaptive neuroplasticity and resilience, aberrant neuronal network activity, dysregulation of neuronal Ca2+ homeostasis, the accrual of oxidatively modified molecules and organelles, and inflammation. These alterations render the aging brain vulnerable to Alzheimer's and Parkinson's diseases and stroke. Emerging findings are revealing mechanisms by which sedentary overindulgent lifestyles accelerate brain aging, whereas lifestyles that include intermittent bioenergetic challenges (exercise, fasting, and intellectual challenges) foster healthy brain aging. Here we provide an overview of the cellular and molecular biology of brain aging, how those processes interface with disease-specific neurodegenerative pathways, and how metabolic states influence brain health.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|