1
|
Rossi F, Rydzyk MM, Barba L, Malucelli E, Palamà MEF, Gentili C, Mastrogiacomo M, Cedola A, Mancini L, Salomé M, Castillo-Michel H, Donati DM, Gambarotti M, Lucarelli E, Fratini M, Iotti S. Insights into the osteosarcoma microenvironment: Multiscale analysis of structural and mineral heterogeneity. Acta Biomater 2025:S1742-7061(25)00310-1. [PMID: 40318747 DOI: 10.1016/j.actbio.2025.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Osteosarcoma (OS) is a malignant and heterogeneous disease that typically originates in the long bones of children and adolescents. It is characterized by the presence of immature cells having an aggressive phenotype and rapid uncontrolled proliferation. OS progression induces significant molecular and cellular changes locally within the bone, resulting in the development of an abnormal tumor microenvironment (TME). The OS TME plays a crucial role in tumor progression and development, however, the precise effects of OS on bone structure and mineralization still remain poorly understood. In this study, we examined the OS TME by analyzing samples from osteoblastic, parosteal, and periosteal osteosarcomas. Employing advanced synchrotron-based X-ray techniques, we performed a multiscale analysis to evaluate the structural and mineral complexity of tumor-affected bone. Our results revealed marked morphological differences among the osteosarcoma subtypes, while confirming that biomineralization remains active through the production of hydroxyapatite (HA). X-ray diffraction identified two distinct hydroxyapatite crystalline phases across all samples, suggesting a critical behavior of minerals in bone. Additionally, we observed that the bone mineral structure in periosteal and parosteal osteosarcomas exhibited crystal deformations along the c-axis, whereas the osteoblastic osteosarcoma displayed a mineral profile comparable to control bone. Micro-X-ray absorption near-edge spectroscopy revealed the occurrence of a dysregulated biomineralization in the parosteal and periosteal subtypes, marked by the presence of calcium compounds different from HA, in contrast to the mature mineral state found in the osteoblastic variant. These findings highlight the complexity of osteosarcoma repercussion on bone tissue, offering new insights into the interactions within the OS TME. STATEMENT OF SIGNIFICANCE: This study investigates the tumor microenvironment (TME) of osteosarcoma (OS), a rare and aggressive bone cancer mainly affecting children and adolescents. Using advanced synchrotron-based X-ray techniques, we analyzed structural and mineral alterations in bone from three OS subtypes: osteoblastic, parosteal, and periosteal. The results reveal distinct subtype-specific differences in bone mineralization and crystallinity, highlighting the heterogeneity of OS and the pivotal role of its microenvironment in driving disease progression. This research contributes to our understanding of OS pathophysiology and provides foundation for future studies aimed at developing targeted therapies and improving diagnostic approaches.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, 40127, Bologna 33-40126, Italy
| | - Martyna Malgorzata Rydzyk
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, 40127, Bologna 33-40126, Italy
| | - Luisa Barba
- CNR-IC, Area Science Park, SS14 km 163.5, Basovizza, Trieste 34142, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, 40127, Bologna 33-40126, Italy.
| | | | - Chiara Gentili
- Department of Experimental Medicine, University of Genoa, Genova, Italy; UO. Oncologia Cellulare-IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maddalena Mastrogiacomo
- Department of Internal Medicine and Medical Specialities (DIMI), University of Genoa, viale Benedetto XV 6, 16132 Genoa, Italy; UO. Bioterapie-IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Alessia Cedola
- Institute of Nanotechnology - CNR, c/o Dept of Physics, Sapienza University Piazzale Aldo Moro 5, Rome, Italy
| | - Lucia Mancini
- Department of Materials, Slovenian National Building and Civil Engineering Institute (ZAG), Dimičeva ulica 12, Ljubljana 1000, Slovenia
| | - Murielle Salomé
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble CEDEX 9, France
| | - Hiram Castillo-Michel
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble CEDEX 9, France
| | - Davide Maria Donati
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, Bologna 40136, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - Marco Gambarotti
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Via Pupilli 1, Bologna 40136, Italy
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Fratini
- Department of Internal Medicine and Medical Specialities (DIMI), University of Genoa, viale Benedetto XV 6, 16132 Genoa, Italy; Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Roma, Italy
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 15, 40127, Bologna 33-40126, Italy; National Institute of Biostructures and Biosystems (NIBB), Rome 00136, Italy
| |
Collapse
|
2
|
Rehman HU, Arooj A, Aslam MA, Cholistani MS, Farhan M, Kareem K, Ashraf MA, Pervaiz M. Methods of extraction of genetic material from hard tissues: A review of the 21st century advancements. Forensic Sci Int 2025; 367:112382. [PMID: 39864397 DOI: 10.1016/j.forsciint.2025.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Skeletal remains are the only source of the genetic material of decomposed organisms or once-lived species. Unlike, soft tissues they are highly mineralized, and their anatomical and morphological structure prevents their deformation in the presence of adverse environmental factors. Therefore, bones and teeth protect the Deoxyribonucleic Acid (DNA) inside them. Obtaining DNA from hard tissues comes with challenges like contamination, degradation, PCR inhibitors, damage done by the environment on remains, etc. Traditional methods have been in use for a long time. To overcome the challenges in extracting DNA from hard tissues, researchers introduced various modifications, with time, to the standard procedures. We have reviewed the innovative approaches developed during the period ranging from 2000 to 2024, using the Google Scholar search engine. The last innovative method was discovered in 2021. Each method solves a particular challenge and makes it easier for future researchers to opt for a suitable protocol according to the specific requirements of their study. The methods were renamed based on their core specification, such as Carrier-Mediated Precipitation Method, CTAB Method, Buffered-Nondestructive Extraction Method, MDNAMI Method, Demineralization protocol, Rapid Column-based DNA Extraction, Bone Powdering and Bone Slicing, Short Fragmented DNA Extraction, Highly Degraded DNA Extraction, and Non-destructive Tooth DNA Extraction. A collaboration of researchers from forensic science, anthropology, archeology, evolutionary biology, molecular biology, etc. may develop more sophisticated techniques that ease extraction, increase yield, and reduce contamination of DNA from hard tissues.
Collapse
Affiliation(s)
- Hifz Ur Rehman
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | - Amna Arooj
- Department of Forensic Science, Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Muhammad Adeel Aslam
- Department of Forensic Science, Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Muhammad Shahid Cholistani
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | - Muhammad Farhan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | - Kashif Kareem
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | | | - Muhammad Pervaiz
- Department of Chemistry Government College University, Lahore, Pakistan.
| |
Collapse
|
3
|
Berni M, Marchiori G, Baleani M, Giavaresi G, Lopomo NF. Biomechanics of the Human Osteochondral Unit: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1698. [PMID: 38612211 PMCID: PMC11012636 DOI: 10.3390/ma17071698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The damping system ensured by the osteochondral (OC) unit is essential to deploy the forces generated within load-bearing joints during locomotion, allowing furthermore low-friction sliding motion between bone segments. The OC unit is a multi-layer structure including articular cartilage, as well as subchondral and trabecular bone. The interplay between the OC tissues is essential in maintaining the joint functionality; altered loading patterns can trigger biological processes that could lead to degenerative joint diseases like osteoarthritis. Currently, no effective treatments are available to avoid degeneration beyond tissues' recovery capabilities. A thorough comprehension on the mechanical behaviour of the OC unit is essential to (i) soundly elucidate its overall response to intra-articular loads for developing diagnostic tools capable of detecting non-physiological strain levels, (ii) properly evaluate the efficacy of innovative treatments in restoring physiological strain levels, and (iii) optimize regenerative medicine approaches as potential and less-invasive alternatives to arthroplasty when irreversible damage has occurred. Therefore, the leading aim of this review was to provide an overview of the state-of-the-art-up to 2022-about the mechanical behaviour of the OC unit. A systematic search is performed, according to PRISMA standards, by focusing on studies that experimentally assess the human lower-limb joints' OC tissues. A multi-criteria decision-making method is proposed to quantitatively evaluate eligible studies, in order to highlight only the insights retrieved through sound and robust approaches. This review revealed that studies on human lower limbs are focusing on the knee and articular cartilage, while hip and trabecular bone studies are declining, and the ankle and subchondral bone are poorly investigated. Compression and indentation are the most common experimental techniques studying the mechanical behaviour of the OC tissues, with indentation also being able to provide information at the micro- and nanoscales. While a certain comparability among studies was highlighted, none of the identified testing protocols are currently recognised as standard for any of the OC tissues. The fibril-network-reinforced poro-viscoelastic constitutive model has become common for describing the response of the articular cartilage, while the models describing the mechanical behaviour of mineralised tissues are usually simpler (i.e., linear elastic, elasto-plastic). Most advanced studies have tested and modelled multiple tissues of the same OC unit but have done so individually rather than through integrated approaches. Therefore, efforts should be made in simultaneously evaluating the comprehensive response of the OC unit to intra-articular loads and the interplay between the OC tissues. In this regard, a multidisciplinary approach combining complementary techniques, e.g., full-field imaging, mechanical testing, and computational approaches, should be implemented and validated. Furthermore, the next challenge entails transferring this assessment to a non-invasive approach, allowing its application in vivo, in order to increase its diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Matteo Berni
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gregorio Marchiori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Massimiliano Baleani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | | |
Collapse
|
4
|
Buccino F, Zagra L, Longo E, D'Amico L, Banfi G, Berto F, Tromba G, Vergani LM. Osteoporosis and Covid-19: Detected similarities in bone lacunar-level alterations via combined AI and advanced synchrotron testing. MATERIALS & DESIGN 2023; 231:112087. [PMID: 37323219 PMCID: PMC10257887 DOI: 10.1016/j.matdes.2023.112087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
While advanced imaging strategies have improved the diagnosis of bone-related pathologies, early signs of bone alterations remain difficult to detect. The Covid-19 pandemic has brought attention to the need for a better understanding of bone micro-scale toughening and weakening phenomena. This study used an artificial intelligence-based tool to automatically investigate and validate four clinical hypotheses by examining osteocyte lacunae on a large scale with synchrotron image-guided failure assessment. The findings indicate that trabecular bone features exhibit intrinsic variability related to external loading, micro-scale bone characteristics affect fracture initiation and propagation, osteoporosis signs can be detected at the micro-scale through changes in osteocyte lacunar features, and Covid-19 worsens micro-scale porosities in a statistically significant manner similar to the osteoporotic condition. Incorporating these findings with existing clinical and diagnostic tools could prevent micro-scale damages from progressing into critical fractures.
Collapse
Affiliation(s)
- Federica Buccino
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Italy
| | - Luigi Zagra
- I.R.C.C.S Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy
| | - Elena Longo
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste 34149, Italy
| | - Lorenzo D'Amico
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste 34149, Italy
| | - Giuseppe Banfi
- I.R.C.C.S Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy
| | - Filippo Berto
- Università La Sapienza, Rome 00185, Italy
- NTNU, Norway
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste 34149, Italy
| | | |
Collapse
|
5
|
Caron R, Londono I, Seoud L, Villemure I. Segmentation of trabecular bone microdamage in Xray microCT images using a two-step deep learning method. J Mech Behav Biomed Mater 2023; 137:105540. [PMID: 36327650 DOI: 10.1016/j.jmbbm.2022.105540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION One of the current approaches to improve our understanding of osteoporosis is to study the development of bone microdamage under mechanical loading. The current practice for evaluating bone microdamage is to quantify damage volume from images of bone samples stained with a contrast agent, often composed of toxic heavy metals and requiring long tissue preparation. This work aims to evaluate the potential of linear microcracks detection and segmentation in trabecular bone samples using well-known deep learning models, namely YOLOv4 and Unet, applied on microCT images. METHODS Six trabecular bovine bone cylinders underwent compression until ultimate stress and were subsequently imaged with a microCT at a resolution of 1.95 μm. Two of these samples (samples 1 and 2) were then stained using barium sulfate (BaSO4) and imaged again. The unstained samples (samples 3-6) were used to train two neural networks YOLOv4 to detect regions with microdamage further combined with Unet to segment the microdamage at the pixel level in the detected regions. Four different model versions of YOLOv4 were compared using the average Intersection over Union (IoU) and the mean average precision (mAP). The performance of Unet was also measured using two segmentation metrics, the Dice Score and the Intersection over Union (IoU). A qualitative comparison was finally done between the deep learning and the contrast agent approaches. RESULTS Among the four versions of YOLOv4, the YOLOv4p5 model resulted in the best performance with an average IoU of 45,32% and 51,12% and a mAP of 28.79% and 46.22%, respectively for samples 1 and 2. The segmentation performance of Unet provided better IoU and DICE score on sample 2 compared to sample 1. The poorer performance of the test on sample 1 could be explained by its poorer contrast to noise ratio (CNR). Indeed, sample 1 resulted in a CNR of 7,96, which was worse than the average CNR in the training samples, while sample 2 resulted in a CNR of 10,08. The qualitative comparison between the contrast agent and the deep learning segmentation showed that two different regions were segmented by the two techniques. Deep learning is segmenting the region inside the cracks while the contrast agent segments the region around it or even regions with no visible damage. CONCLUSION The combination of YOLOv4 for microdamage detection with Unet for damage segmentation showed a potential for the detection and segmentation of microdamage in trabecular bone. The accuracy of both neural networks achieved in this work is acceptable considering it is their first application in this specific field and the amount of data was limited. Even if the errors from both neural networks are accumulated, the two-steps approach is faster than the semantic segmentation of the whole volume.
Collapse
Affiliation(s)
- Rodrigue Caron
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada
| | - Irène Londono
- Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada
| | - Lama Seoud
- Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada; Institut de génie biomédical, Montréal, QC, Canada; Department of Computer Engineering and Software Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada; Institut de génie biomédical, Montréal, QC, Canada.
| |
Collapse
|
6
|
Characterizing the Mechanical Behavior of Bone and Bone Surrogates in Compression Using pQCT. MATERIALS 2022; 15:ma15145065. [PMID: 35888531 PMCID: PMC9320168 DOI: 10.3390/ma15145065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023]
Abstract
Many axial and appendicular skeleton bones are subjected to repetitive loading during daily activities. Until recently, the structural analysis of fractures has been limited to 2D sections, and the dynamic assessment of fracture progression has not been possible. The structural failure was analyzed using step-wise micro-compression combined with time-lapsed micro-computed tomographic imaging. The structural failure was investigated in four different sample materials (two different bone surrogates, lumbar vertebral bodies from bovine and red deer). The samples were loaded in different force steps based on uniaxial compression tests. The micro-tomography images were used to create three-dimensional models from which various parameters were calculated that provide information about the structure and density of the samples. By superimposing two 3D images and calculating the different surfaces, it was possible to precisely analyze which trabeculae failed in which area and under which load. According to the current state of the art, bone mineral density is usually used as a value for bone quality, but the question can be raised as to whether other values such as trabecular structure, damage accumulation, and bone mineralization can predict structural competence better than bone mineral density alone.
Collapse
|
7
|
Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. MATERIALS 2021; 14:ma14226763. [PMID: 34832165 PMCID: PMC8619049 DOI: 10.3390/ma14226763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The ever-growing field of materials with applications in the biomedical field holds great promise regarding the design and fabrication of devices with specific characteristics, especially scaffolds with personalized geometry and architecture. The continuous technological development pushes the limits of innovation in obtaining adequate scaffolds and establishing their characteristics and performance. To this end, computed tomography (CT) proved to be a reliable, nondestructive, high-performance machine, enabling visualization and structure analysis at submicronic resolutions. CT allows both qualitative and quantitative data of the 3D model, offering an overall image of its specific architectural features and reliable numerical data for rigorous analyses. The precise engineering of scaffolds consists in the fabrication of objects with well-defined morphometric parameters (e.g., shape, porosity, wall thickness) and in their performance validation through thorough control over their behavior (in situ visualization, degradation, new tissue formation, wear, etc.). This review is focused on the use of CT in biomaterial science with the aim of qualitatively and quantitatively assessing the scaffolds’ features and monitoring their behavior following in vivo or in vitro experiments. Furthermore, the paper presents the benefits and limitations regarding the employment of this technique when engineering materials with applications in the biomedical field.
Collapse
|
8
|
Reinhard C, Drakopoulos M, Ahmed SI, Deyhle H, James A, Charlesworth CM, Burt M, Sutter J, Alexander S, Garland P, Yates T, Marshall R, Kemp B, Warrick E, Pueyos A, Bradnick B, Nagni M, Winter AD, Filik J, Basham M, Wadeson N, King ONF, Aslani N, Dent AJ. Beamline K11 DIAD: a new instrument for dual imaging and diffraction at Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1985-1995. [PMID: 34738954 PMCID: PMC8570216 DOI: 10.1107/s1600577521009875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 05/28/2023]
Abstract
The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source is a new dual-beam instrument for full-field imaging/tomography and powder diffraction. This instrument provides the user community with the capability to dynamically image 2D and 3D complex structures and perform phase identification and/or strain mapping using micro-diffraction. The aim is to enable in situ and in operando experiments that require spatially correlated results from both techniques, by providing measurements from the same specimen location quasi-simultaneously. Using an unusual optical layout, DIAD has two independent beams originating from one source that operate in the medium energy range (7-38 keV) and are combined at one sample position. Here, either radiography or tomography can be performed using monochromatic or pink beam, with a 1.4 mm × 1.2 mm field of view and a feature resolution of 1.2 µm. Micro-diffraction is possible with a variable beam size between 13 µm × 4 µm and 50 µm × 50 µm. One key functionality of the beamline is image-guided diffraction, a setup in which the micro-diffraction beam can be scanned over the complete area of the imaging field-of-view. This moving beam setup enables the collection of location-specific information about the phase composition and/or strains at any given position within the image/tomography field of view. The dual beam design allows fast switching between imaging and diffraction mode without the need of complicated and time-consuming mode switches. Real-time selection of areas of interest for diffraction measurements as well as the simultaneous collection of both imaging and diffraction data of (irreversible) in situ and in operando experiments are possible.
Collapse
Affiliation(s)
- Christina Reinhard
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | | | - Sharif I Ahmed
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Hans Deyhle
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Andrew James
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Christopher M Charlesworth
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Martin Burt
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - John Sutter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Steven Alexander
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Peter Garland
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Thomas Yates
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Russell Marshall
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Ben Kemp
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Edmund Warrick
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Armando Pueyos
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Ben Bradnick
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Maurizio Nagni
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - A Douglas Winter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Jacob Filik
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Mark Basham
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Nicola Wadeson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Oliver N F King
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Navid Aslani
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Andrew J Dent
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
9
|
Barkaoui A, Ait Oumghar I, Ben Kahla R. Review on the use of medical imaging in orthopedic biomechanics: finite element studies. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2021. [DOI: 10.1080/21681163.2021.1888317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdelwahed Barkaoui
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
| | - Imane Ait Oumghar
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Rabeb Ben Kahla
- Laboratoire de Systémes et de Mécanique Appliquée, Ecole Polytechnique de Tunis, Université de Carthage, Tunis, Tunisia
- Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis el Manar, Campus Universitaire, Tunis, Tunisia
| |
Collapse
|
10
|
Smith AJ, Alcock SG, Davidson LS, Emmins JH, Hiller Bardsley JC, Holloway P, Malfois M, Marshall AR, Pizzey CL, Rogers SE, Shebanova O, Snow T, Sutter JP, Williams EP, Terrill NJ. I22: SAXS/WAXS beamline at Diamond Light Source - an overview of 10 years operation. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:939-947. [PMID: 33950002 PMCID: PMC8127364 DOI: 10.1107/s1600577521002113] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/23/2021] [Indexed: 05/04/2023]
Abstract
Beamline I22 at Diamond Light Source is dedicated to the study of soft-matter systems from both biological and materials science. The beamline can operate in the range 3.7 keV to 22 keV for transmission SAXS and 14 keV to 20 keV for microfocus SAXS with beam sizes of 240 µm × 60 µm [full width half-maximum (FWHM) horizontal (H) × vertical (V)] at the sample for the main beamline, and approximately 10 µm × 10 µm for the dedicated microfocusing platform. There is a versatile sample platform for accommodating a range of facilities and user-developed sample environments. The high brilliance of the insertion device source on I22 allows structural investigation of materials under extreme environments (for example, fluid flow at high pressures and temperatures). I22 provides reliable access to millisecond data acquisition timescales, essential to understanding kinetic processes such as protein folding or structural evolution in polymers and colloids.
Collapse
Affiliation(s)
- A. J. Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. G. Alcock
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - L. S. Davidson
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. H. Emmins
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. C. Hiller Bardsley
- King’s College London, Guy’s Campus, Great Maze Pond, London SE1 1UL, United Kingdom
| | - P. Holloway
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M. Malfois
- ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - A. R. Marshall
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - C. L. Pizzey
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. E. Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - O. Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - T. Snow
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. P. Sutter
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - E. P. Williams
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - N. J. Terrill
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
11
|
Llambrich S, Wouters J, Himmelreich U, Dierssen M, Sharpe J, Gsell W, Martínez-Abadías N, Vande Velde G. ViceCT and whiceCT for simultaneous high-resolution visualization of craniofacial, brain and ventricular anatomy from micro-computed tomography. Sci Rep 2020; 10:18772. [PMID: 33128010 PMCID: PMC7599226 DOI: 10.1038/s41598-020-75720-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Up to 40% of congenital diseases present disturbances of brain and craniofacial development resulting in simultaneous alterations of both systems. Currently, the best available method to preclinically visualize the brain and the bones simultaneously is to co-register micro-magnetic resonance (µMR) and micro-computed tomography (µCT) scans of the same specimen. However, this requires expertise and access to both imaging techniques, dedicated software and post-processing knowhow. To provide a more affordable, reliable and accessible alternative, recent research has focused on optimizing a contrast-enhanced µCT protocol using iodine as contrast agent that delivers brain and bone images from a single scan. However, the available methods still cannot provide the complete visualization of both the brain and whole craniofacial complex. In this study, we have established an optimized protocol to diffuse the contrast into the brain that allows visualizing the brain parenchyma and the complete craniofacial structure in a single ex vivo µCT scan (whiceCT). In addition, we have developed a new technique that allows visualizing the brain ventricles using a bilateral stereotactic injection of iodine-based contrast (viceCT). Finally, we have tested both techniques in a mouse model of Down syndrome, as it is a neurodevelopmental disorder with craniofacial, brain and ventricle defects. The combined use of viceCT and whiceCT provides a complete visualization of the brain and bones with intact craniofacial structure of an adult mouse ex vivo using a single imaging modality.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Jens Wouters
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Willy Gsell
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Neus Martínez-Abadías
- GREAB-Research Group in Biological Anthropology. Department of Evolutionary Biology, Ecology and Environmental Sciences, BEECA. Universitat de Barcelona, Barcelona, Spain
| | - Greetje Vande Velde
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Quantitative and qualitative bone imaging: A review of synchrotron radiation microtomography analysis in bone research. J Mech Behav Biomed Mater 2020; 110:103887. [DOI: 10.1016/j.jmbbm.2020.103887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/13/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
|
13
|
Ma S, Goh EL, Tay T, Wiles CC, Boughton O, Churchwell JH, Wu Y, Karunaratne A, Bhattacharya R, Terrill N, Cobb JP, Hansen U, Abel RL. Nanoscale mechanisms in age-related hip-fractures. Sci Rep 2020; 10:14208. [PMID: 32848149 PMCID: PMC7450077 DOI: 10.1038/s41598-020-69783-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023] Open
Abstract
Nanoscale mineralized collagen fibrils may be important determinants of whole-bone mechanical properties and contribute to the risk of age-related fractures. In a cross-sectional study nano- and tissue-level mechanics were compared across trabecular sections from the proximal femora of three groups (n = 10 each): ageing non-fractured donors (Controls); untreated fracture patients (Fx-Untreated); bisphosphonate-treated fracture patients (Fx-BisTreated). Collagen fibril, mineral and tissue mechanics were measured using synchrotron X-Ray diffraction of bone sections under load. Mechanical data were compared across groups, and tissue-level data were regressed against nano. Compared to controls fracture patients exhibited significantly lower critical tissue strain, max strain and normalized strength, with lower peak fibril and mineral strain. Bisphosphonate-treated exhibited the lowest properties. In all three groups, peak mineral strain coincided with maximum tissue strength (i.e. ultimate stress), whilst peak fibril strain occurred afterwards (i.e. higher tissue strain). Tissue strain and strength were positively and strongly correlated with peak fibril and mineral strains. Age-related fractures were associated with lower peak fibril and mineral strain irrespective of treatment. Indicating earlier mineral disengagement and the subsequent onset of fibril sliding is one of the key mechanisms leading to fracture. Treatments for fragility should target collagen-mineral interactions to restore nano-scale strain to that of healthy bone.
Collapse
Affiliation(s)
- Shaocheng Ma
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK.,MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - En Lin Goh
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Tabitha Tay
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Crispin C Wiles
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK.,Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Oliver Boughton
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - John H Churchwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, WCIE 6BT, UK
| | - Yong Wu
- Centre for Medicine, University of Leicester Medical School, Leicester, LE1 7HA, UK
| | - Angelo Karunaratne
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Rajarshi Bhattacharya
- St. Mary's Hospital, North West London Major Trauma Centre, Imperial College, London, W2 1NY, UK
| | - Nick Terrill
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Justin P Cobb
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Richard L Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK.
| |
Collapse
|
14
|
Turunen MJ, Le Cann S, Tudisco E, Lovric G, Patera A, Hall SA, Isaksson H. Sub-trabecular strain evolution in human trabecular bone. Sci Rep 2020; 10:13788. [PMID: 32796859 PMCID: PMC7429852 DOI: 10.1038/s41598-020-69850-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
To comprehend the most detrimental characteristics behind bone fractures, it is key to understand the material and tissue level strain limits and their relation to failure sites. The aim of this study was to investigate the three-dimensional strain distribution and its evolution during loading at the sub-trabecular level in trabecular bone tissue. Human cadaver trabecular bone samples were compressed in situ until failure, while imaging with high-resolution synchrotron radiation X-ray tomography. Digital volume correlation was used to determine the strains inside the trabeculae. Regions without emerging damage were compared to those about to crack. Local strains in close vicinity of developing cracks were higher than previously reported for a whole trabecular structure and similar to those reported for single isolated trabeculae. Early literature on bone fracture strain thresholds at the tissue level seem to underestimate the maximum strain magnitudes in trabecular bone. Furthermore, we found lower strain levels and a reduced ability to capture detailed crack-paths with increased image voxel size. This highlights the dependence between the observed strain levels and the voxel size and that high-resolution is needed to investigate behavior of individual trabeculae. Furthermore, low trabecular thickness appears to be one predictor of developing cracks. In summary, this study investigated the local strains in whole trabecular structure at sub-trabecular resolution in human bone and confirmed the high strain magnitudes reported for single trabeculae under loading and, importantly extends its translation to the whole trabecular structure.
Collapse
Affiliation(s)
- Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Box 1627, 70211, Kuopio, Finland. .,Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Lund, Sweden
| | - Goran Lovric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.,Centre D'Imagerie BioMédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Stephen A Hall
- Division of Solid Mechanics, Lund University, Lund, Sweden.,Lund Institute of advanced Neutron and X-ray Science (LINXS), Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Ovine Bone Morphology and Deformation Analysis Using Synchrotron X-ray Imaging and Scattering. QUANTUM BEAM SCIENCE 2020. [DOI: 10.3390/qubs4030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone is a natural hierarchical composite tissue incorporating hard mineral nano-crystals of hydroxyapatite (HAp) and organic binding material containing elastic collagen fibers. In the study, we investigated the structure and deformation of ovine bone by the combination of high-energy synchrotron X-ray tomographic imaging and scattering. X-ray experiments were performed prior to and under three-point bending loading by using a specially developed in situ load cell constructed from aluminium alloy frame, fast-drying epoxy resin for sample fixation, and a titanium bolt for contact loading. Firstly, multiple radiographic projection images were acquired and tomographic reconstruction was performed using SAVU software, following segmentation using Avizo. Secondly, Wide Angle X-ray Scattering (WAXS) and Small Angle X-ray Scattering (SAXS) 2D scattering patterns were collected from HAp and collagen. Both sample shape and deformation affect the observed scattering. Novel combined tomographic and diffraction analysis presented below paves the way for advanced characterization of complex shape samples using the Dual Imaging and Diffraction (DIAD) paradigm.
Collapse
|
16
|
Distribution of mechanical strain in equine distal metacarpal subchondral bone: A microCT-based finite element model. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Callefo F, Maldanis L, Teixeira VC, Abans RADO, Monfredini T, Rodrigues F, Galante D. Evaluating Biogenicity on the Geological Record With Synchrotron-Based Techniques. Front Microbiol 2019; 10:2358. [PMID: 31681221 PMCID: PMC6798071 DOI: 10.3389/fmicb.2019.02358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
The biogenicity problem of geological materials is one of the most challenging ones in the field of paleo and astrobiology. As one goes deeper in time, the traces of life become feeble and ambiguous, blending with the surrounding geology. Well-preserved metasedimentary rocks from the Archaean are relatively rare, and in very few cases contain structures resembling biological traces or fossils. These putative biosignatures have been studied for decades and many biogenicity criteria have been developed, but there is still no consensus for many of the proposed structures. Synchrotron-based techniques, especially on new generation sources, have the potential for contributing to this field of research, providing high sensitivity and resolution that can be advantageous for different scientific problems. Exploring the X-ray and matter interactions on a range of geological materials can provide insights on morphology, elemental composition, oxidation states, crystalline structure, magnetic properties, and others, which can measurably contribute to the investigation of biogenicity of putative biosignatures. Here, we provide an overview of selected synchrotron-based techniques that have the potential to be applied in different types of questions on the study of biosignatures preserved in the geological record. The development of 3rd and recently 4th generation synchrotron sources will favor a deeper understanding of the earliest records of life on Earth and also bring up potential analytical approaches to be applied for the search of biosignatures in meteorites and samples returned from Mars in the near future.
Collapse
Affiliation(s)
- Flavia Callefo
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Lara Maldanis
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Institute of Physics of São Carlos, University of São Paulo, São Paulo, Brazil
| | - Verônica C. Teixeira
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Rodrigo Adrián de Oliveira Abans
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Thiago Monfredini
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Fabio Rodrigues
- Fundamental Chemistry Department, University of São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
18
|
Tiyasatkulkovit W, Promruk W, Rojviriya C, Pakawanit P, Chaimongkolnukul K, Kengkoom K, Teerapornpuntakit J, Panupinthu N, Charoenphandhu N. Impairment of bone microstructure and upregulation of osteoclastogenic markers in spontaneously hypertensive rats. Sci Rep 2019; 9:12293. [PMID: 31444374 PMCID: PMC6707260 DOI: 10.1038/s41598-019-48797-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Hypertension and osteoporosis are the major non-communicable diseases in the elderly worldwide. Although clinical studies reported that hypertensive patients experienced significant bone loss and likelihood of fracture, the causal relationship between hypertension and osteoporosis has been elusive due to other confounding factors associated with these diseases. In this study, spontaneously hypertensive rats (SHR) were used to address this relationship and further explored the biophysical properties and the underlying mechanisms. Long bones of the hind limbs from 18-week-old female SHR were subjected to determination of bone mineral density (BMD) and their mechanical properties. Using synchrotron radiation X-ray tomographic microscopy (SRXTM), femoral heads of SHR displayed marked increase in porosity within trabecular area together with decrease in cortical thickness. The volumetric micro-computed tomography also demonstrated significant decreases in trabecular BMD, cortical thickness and total cross-sectional area of the long bones. These changes also led to susceptibility of the long bones to fracture indicated by marked decreases in yield load, stiffness and maximum load using three-point bending tests. At the cellular mechanism, an increase in the expression of osteoclastogenic markers with decrease in the expression of alkaline phosphatase was found in primary osteoblast-enriched cultures isolated from long bones of these SHR suggesting an imbalance in bone remodeling. Taken together, defective bone mass and strength in hypertensive rats were likely due to excessive bone resorption. Development of novel therapeutic interventions that concomitantly target hypertension and osteoporosis should be helpful in reduction of unwanted outcomes, such as bone fractures, in elderly patients.
Collapse
Affiliation(s)
- Wacharaporn Tiyasatkulkovit
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Worachet Promruk
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Phakkhananan Pakawanit
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | | | - Kanchana Kengkoom
- National Laboratory Animal Center, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nattapon Panupinthu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand. .,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand.
| |
Collapse
|
19
|
Next-generation imaging of the skeletal system and its blood supply. Nat Rev Rheumatol 2019; 15:533-549. [PMID: 31395974 DOI: 10.1038/s41584-019-0274-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Bone is organized in a hierarchical 3D architecture. Traditionally, analysis of the skeletal system was based on bone mass assessment by radiographic methods or on the examination of bone structure by 2D histological sections. Advanced imaging technologies and big data analysis now enable the unprecedented examination of bone and provide new insights into its 3D macrostructure and microstructure. These technologies comprise ex vivo and in vivo methods including high-resolution computed tomography (CT), synchrotron-based imaging, X-ray microscopy, ultra-high-field magnetic resonance imaging (MRI), light-sheet fluorescence microscopy, confocal and intravital two-photon imaging. In concert, these techniques have been used to detect and quantify a novel vascular system of trans-cortical vessels in bone. Furthermore, structures such as the lacunar network, which harbours and connects osteocytes, become accessible for 3D imaging and quantification using these methods. Next-generation imaging of the skeletal system and its blood supply are anticipated to contribute to an entirely new understanding of bone tissue composition and function, from macroscale to nanoscale, in health and disease. These insights could provide the basis for early detection and precision-type intervention of bone disorders in the future.
Collapse
|
20
|
Qasim M, Chae DS, Lee NY. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine 2019; 14:4333-4351. [PMID: 31354264 PMCID: PMC6580939 DOI: 10.2147/ijn.s209431] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Given the enormous increase in the risks of bone and cartilage defects with the rise in the aging population, the current treatments available are insufficient for handling this burden, and the supply of donor organs for transplantation is limited. Therefore, tissue engineering is a promising approach for treating such defects. Advances in materials research and high-tech optimized fabrication of scaffolds have increased the efficiency of tissue engineering. Electrospun nanofibrous scaffolds and hydrogel scaffolds mimic the native extracellular matrix of bone, providing a support for bone and cartilage tissue engineering by increasing cell viability, adhesion, propagation, and homing, and osteogenic isolation and differentiation, vascularization, host integration, and load bearing. The use of these scaffolds with advanced three- and four-dimensional printing technologies has enabled customized bone grafting. In this review, we discuss the different approaches used for cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| | - Dong Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| |
Collapse
|
21
|
Le Cann S, Tudisco E, Turunen MJ, Patera A, Mokso R, Tägil M, Belfrage O, Hall SA, Isaksson H. Investigating the Mechanical Characteristics of Bone-Metal Implant Interface Using in situ Synchrotron Tomographic Imaging. Front Bioeng Biotechnol 2019; 6:208. [PMID: 30719433 PMCID: PMC6348316 DOI: 10.3389/fbioe.2018.00208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Long-term stability of endosseous implants depends on successful bone formation, ingrowth and adaptation to the implant. Specifically, it will define the mechanical properties of the newly formed bone-implant interface. 3D imaging during mechanical loading tests (in situ loading) can improve the understanding of the local processes leading to bone damage and failure. In this study, titanium screws were implanted into rat tibiae and were allowed to integrate for 4 weeks with or without the addition of the growth factor Bone Morphogenetic Protein and the bisphosphonate Zoledronic Acid. Samples were subjected to in situ pullout using high-resolution synchrotron x-ray tomography at the Tomcat beamline (SLS, PSI, Switzerland) at 30 keV with 25 ms exposure time, resulting in a total acquisition time of 45 s per scan, with a 3.6 μm isotropic voxel size. Using a custom-made loading device positioned inside the beamline, screws were pulled out with 0.05 mm increment, acquiring multiple scans until rupture of the sample. The in situ loading protocol was adapted to ensure short imaging time, which enabled multiple samples to be tested with short loading steps, while keeping the total testing time low and reducing dose deposition. Higher trabecular bone content was quantified in the surrounding of the screw in the treated groups, which correlated with increased mechanical strength and stiffness. Differences in screw implantation, such as contact between threads and cortex as well as minor tilt of the screw were also correlated to the mechanical parameters. In situ loading enabled the investigation of crack propagation during the pullout, highlighting the mechanical behavior of the interface. Three typical crack types were observed: (1) rupture at the interface of trabecular and cortical bone tissues, close to the screw, (2) large crack inside the cortex connected to the implant, and (3) first failure away from the screw with cracks propagating toward the screw-bone interface. Mechanical properties of in vivo integrated bone-metal screws rely on a combination of multiple parameters that are difficult to identify and separate one from the other.
Collapse
Affiliation(s)
- Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Lund, Sweden
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | | | - Magnus Tägil
- Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| | - Ola Belfrage
- Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| | - Stephen A Hall
- Division of Solid Mechanics, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Peña Fernández M, Cipiccia S, Dall'Ara E, Bodey AJ, Parwani R, Pani M, Blunn GW, Barber AH, Tozzi G. Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation. J Mech Behav Biomed Mater 2018; 88:109-119. [PMID: 30165258 DOI: 10.1016/j.jmbbm.2018.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023]
Abstract
The use of synchrotron radiation micro-computed tomography (SR-microCT) is becoming increasingly popular for studying the relationship between microstructure and bone mechanics subjected to in situ mechanical testing. However, it is well known that the effect of SR X-ray radiation can considerably alter the mechanical properties of bone tissue. Digital volume correlation (DVC) has been extensively used to compute full-field strain distributions in bone specimens subjected to step-wise mechanical loading, but tissue damage from sequential SR-microCT scans has not been previously addressed. Therefore, the aim of this study is to examine the influence of SR irradiation-induced microdamage on the apparent elastic properties of trabecular bone using DVC applied to in situ SR-microCT tomograms obtained with different exposure times. Results showed how DVC was able to identify high local strain levels (> 10,000 µε) corresponding to visible microcracks at high irradiation doses (~ 230 kGy), despite the apparent elastic properties remained unaltered. Microcracks were not detected and bone plasticity was preserved for low irradiation doses (~ 33 kGy), although image quality and consequently, DVC performance were reduced. DVC results suggested some local deterioration of tissue that might have resulted from mechanical strain concentration further enhanced by some level of local irradiation even for low accumulated dose.
Collapse
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | | | - Enrico Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute For in Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Rachna Parwani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Martino Pani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon W Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Asa H Barber
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK; School of Engineering, London South Bank University, London, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
23
|
Boughton OR, Ma S, Zhao S, Arnold M, Lewis A, Hansen U, Cobb JP, Giuliani F, Abel RL. Measuring bone stiffness using spherical indentation. PLoS One 2018; 13:e0200475. [PMID: 30001364 PMCID: PMC6042739 DOI: 10.1371/journal.pone.0200475] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022] Open
Abstract
Objectives Bone material properties are a major determinant of bone health in older age, both in terms of fracture risk and implant fixation, in orthopaedics and dentistry. Bone is an anisotropic and hierarchical material so its measured material properties depend upon the scale of metric used. The scale used should reflect the clinical problem, whether it is fracture risk, a whole bone problem, or implant stability, at the millimetre-scale. Indentation, an engineering technique involving pressing a hard-tipped material into another material with a known force, may be able to assess bone stiffness at the millimetre-scale (the apparent elastic modulus). We aimed to investigate whether spherical-tip indentation could reliably measure the apparent elastic modulus of human cortical bone. Materials and methods Cortical bone samples were retrieved from the femoral necks of nineteen patients undergoing total hip replacement surgery (10 females, 9 males, mean age: 69 years). The samples underwent indentation using a 1.5 mm diameter, ruby, spherical indenter tip, with sixty indentations per patient sample, across six locations on the bone surfaces, with ten repeated indentations at each of the six locations. The samples then underwent mechanical compression testing. The repeatability of indentation measurements of elastic modulus was assessed using the co-efficient of repeatability and the correlation between the bone elastic modulus measured by indentation and compression testing was analysed by least-squares regression. Results In total, 1140 indentations in total were performed. Indentation was found to be repeatable for indentations performed at the same locations on the bone samples with a mean co-efficient of repeatability of 0.4 GigaPascals (GPa), confidence interval (C.I): 0.33–0.42 GPa. There was variation in the indentation modulus results between different locations on the bone samples (mean co-efficient of repeatability: 3.1 GPa, C.I: 2.2–3.90 GPa). No clear correlation was observed between indentation and compression values of bone elastic modulus (r = 0.33, p = 0.17). The mean apparent elastic modulus obtained by spherical indentation was 9.9 GPa, the standard deviation for each indent cycle was 0.11 GPa, and the standard deviation between locations on the same sample was 1.01 GPa. The mean compression apparent elastic modulus was 4.42 GPa, standard deviation 1.02 GPa. Discussion Spherical-tip indentation was found to be a repeatable test for measuring the elastic modulus of human cortical bone, demonstrated by a low co-efficient of repeatability in this study. It could not, however, reliably predict cortical bone elastic modulus determined by platens compression testing in this study. This may be due to indentation only probing mechanical properties at the micro-scale while platens compression testing assesses millimetre length-scale properties. Improvements to the testing technique, including the use of a larger diameter spherical indenter tip, may improve the measurement of bone stiffness at the millimetre scale and should be investigated further.
Collapse
Affiliation(s)
- Oliver R. Boughton
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
- * E-mail:
| | - Shaocheng Ma
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Sarah Zhao
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Matthew Arnold
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Angus Lewis
- Orthopaedic Surgery Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ulrich Hansen
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Justin P. Cobb
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Finn Giuliani
- Centre for Advanced Structural Ceramics, Department of Mechanical Engineering and Materials, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Richard L. Abel
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
| |
Collapse
|
24
|
Jin A, Cobb J, Hansen U, Bhattacharya R, Reinhard C, Vo N, Atwood R, Li J, Karunaratne A, Wiles C, Abel R. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017; 6:602-609. [PMID: 29066534 PMCID: PMC5670367 DOI: 10.1302/2046-3758.610.bjr-2016-0321.r1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2vs 6.55/cm2vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1.
Collapse
Affiliation(s)
- A Jin
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - J Cobb
- Imperial College London, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - U Hansen
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - R Bhattacharya
- Musculoskeletal Sciences, Surgery and Cancer, Imperial College London, Charing Cross Hospital, 7L21, East Lab Block MSk Lab, Margravine Road, London W6 8RP, UK
| | - C Reinhard
- Diamond Light Source Ltd, Fermi Avenue, Didcot OX11 0DE, Oxfordshire, UK
| | - N Vo
- Diamond Light Source Ltd, Fermi Avenue, Didcot OX11 0DE, Oxfordshire, UK
| | - R Atwood
- Diamond Light Source Ltd, Fermi Avenue, Didcot OX11 0DE, Oxfordshire, UK
| | - J Li
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - A Karunaratne
- Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - C Wiles
- Musculoskeletal Sciences, Surgery and Cancer, Imperial College London, Charing Cross Hospital, 7L21, East Lab Block MSk Lab, Margravine Road, London W6 8RP, UK
| | - R Abel
- Musculoskeletal Sciences, Surgery and Cancer, Imperial College London, Charing Cross Hospital, 7L21, East Lab Block MSk Lab, Margravine Road, London W6 8RP, UK
| |
Collapse
|
25
|
Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int 2017; 28:2275-2291. [PMID: 28378291 DOI: 10.1007/s00198-017-4019-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Although musculoskeletal diseases such as osteoporosis are diagnosed and treatment outcome is evaluated based mainly on routine clinical outcomes of bone mineral density (BMD) by DXA and biochemical markers, it is recognized that these two indicators, as valuable as they have proven to be in the everyday clinical practice, do not fully account for manifested bone strength. Thus, the term bone quality was introduced, to complement considerations based on bone turnover rates and BMD. Bone quality is an "umbrella" term that incorporates the structural and material/compositional characteristics of bone tissue. Vibrational spectroscopic techniques such as Fourier transform infrared microspectroscopy (FTIRM) and imaging (FTIRI), and Raman spectroscopy, are suitable analytical tools for the determination of bone quality as they provide simultaneous, quantitative, and qualitative information on all main bone tissue components (mineral, organic matrix, tissue water), in a spatially resolved manner. Moreover, the results of such analyses may be readily combined with the outcomes of other techniques such as histology/histomorphometry, small angle X-ray scattering, quantitative backscattered electron imaging, and nanoindentation.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| |
Collapse
|
26
|
Ma S, Goh EL, Jin A, Bhattacharya R, Boughton OR, Patel B, Karunaratne A, Vo NT, Atwood R, Cobb JP, Hansen U, Abel RL. Long-term effects of bisphosphonate therapy: perforations, microcracks and mechanical properties. Sci Rep 2017; 7:43399. [PMID: 28262693 PMCID: PMC5338252 DOI: 10.1038/srep43399] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is characterised by trabecular bone loss resulting from increased osteoclast activation and unbalanced coupling between resorption and formation, which induces a thinning of trabeculae and trabecular perforations. Bisphosphonates are the frontline therapy for osteoporosis, which act by reducing bone remodelling, and are thought to prevent perforations and maintain microstructure. However, bisphosphonates may oversuppress remodelling resulting in accumulation of microcracks. This paper aims to investigate the effect of bisphosphonate treatment on microstructure and mechanical strength. Assessment of microdamage within the trabecular bone core was performed using synchrotron X-ray micro-CT linked to image analysis software. Bone from bisphosphonate-treated fracture patients exhibited fewer perforations but more numerous and larger microcracks than both fracture and non-fracture controls. Furthermore, bisphosphonate-treated bone demonstrated reduced tensile strength and Young's Modulus. These findings suggest that bisphosphonate therapy is effective at reducing perforations but may also cause microcrack accumulation, leading to a loss of microstructural integrity and consequently, reduced mechanical strength.
Collapse
Affiliation(s)
- Shaocheng Ma
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - En Lin Goh
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Andi Jin
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Rajarshi Bhattacharya
- St. Mary’s Hospital, North West London Major Trauma Centre, Imperial College, London, W2 1NY, United Kingdom
| | - Oliver R. Boughton
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Bhavi Patel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Angelo Karunaratne
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Nghia T. Vo
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Robert Atwood
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Justin P. Cobb
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| | - Ulrich Hansen
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Richard L. Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, United Kingdom
| |
Collapse
|
27
|
Lee SY, Kwon SS, Kim TH, Shin SJ. Is central skeleton bone quality a predictor of the severity of proximal humeral fractures? Injury 2016; 47:2777-2782. [PMID: 27802889 DOI: 10.1016/j.injury.2016.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The objectives of this study were to evaluate the correlation between bone attenuation around the shoulder joint assessed on conventional computed tomography (CT) and bone mineral density (BMD) based on dual-energy X-ray absorptiometry (DEXA) of the central skeleton and the correlation between the bone quality around the shoulder joint and the severity of the fracture pattern of the proximal humerus. MATERIALS AND METHODS A total of 200 patients with proximal humeral fracture who underwent preoperative 3-dimensional shoulder CT as well as DEXA within 3 months of the CT examination were included. Fracture types were divided into simple and comminuted fracture based on the Neer classification. After reliability testing, bone attenuation of the glenoid, three portions of the humeral head, and metaphysis was measured by placing a circular region of interest on the center of each bony region on CT images. Partial correlation analysis was used to assess the correlation between the bone quality around the shoulder joint on CT and the BMD on the central skeleton after adjusting for age and body mass index. Partial correlations between fracture classification and CT/DEXA results were also evaluated. RESULTS Bone attenuation measurements of the glenoid and humeral head showed good to excellent reliability (intraclass correlation coefficient, 0.623-0.998). Bone attenuation of the central portion of the humeral head on CT showed a significant correlation with the BMD of L1, L4, the femoral neck, and femoral trochanter (correlation coefficient, 0.269-0.431). Bone attenuation of other areas showed a lower correlation with BMD by DEXA. As the level of the Neer classification increased from a 2 to 4-part fracture, bone attenuation of the central humeral head decreased significantly (r=-0.150, p=0.034). However, the BMD on DEXA was not a predictive factor for comminuted fracture of the proximal humerus. CONCLUSIONS DEXA examination of the central skeleton may not reflect the bone quality of the proximal humerus and severity of proximal humeral fracture. Direct assessment of the bone quality of the proximal humerus is recommended to determine the osteoporotic nature of the fracture.
Collapse
Affiliation(s)
- Seung Yeol Lee
- Department of Orthopaedic Surgery, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Soon-Sun Kwon
- Department of Mathematics, College of Natural Science, Ajou University, Gyeonggi, South Korea
| | - Tae Hoon Kim
- Department of Orthopaedic Surgery, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Sang-Jin Shin
- Department of Orthopaedic Surgery, Ewha Womans University Mokdong Hospital, Seoul, South Korea.
| |
Collapse
|