1
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
2
|
Bradford BJ, Contreras GA. Adipose Tissue Inflammation: Linking Physiological Stressors to Disease Susceptibility. Annu Rev Anim Biosci 2024; 12:261-281. [PMID: 38064480 DOI: 10.1146/annurev-animal-021122-113212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The study of adipose tissue (AT) is enjoying a renaissance. White, brown, and beige adipocytes are being investigated in adult animals, and the critical roles of small depots like perivascular AT are becoming clear. But the most profound revision of the AT dogma has been its cellular composition and regulation. Single-cell transcriptomic studies revealed that adipocytes comprise well under 50% of the cells in white AT, and a substantial portion of the rest are immune cells. Altering the function of AT resident leukocytes can induce or correct metabolic syndrome and, more surprisingly, alter adaptive immune responses to infection. Although the field is dominated by obesity research, conditions such as rapid lipolysis, infection, and heat stress impact AT immune dynamics as well. Recent findings in rodents lead to critical questions that should be explored in domestic livestock as potential avenues for improved animal resilience to stressors, particularly as animals age.
Collapse
Affiliation(s)
- Barry J Bradford
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA;
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
3
|
Abstract
Oncostatin M (OSM) is a member of the glycoprotein 130 cytokine family that is involved in chronic inflammation and increased in adipose tissue under obesity and insulin resistance. OSM was shown to inhibit adipogenesis, suppress browning, and contribute to insulin resistance in cultured white adipocytes. In contrast, OSM may have a metabolically favourable role on adipocytes in mouse models of obesity and insulin resistance. However, a putative role of OSM in modulating lipolysis has not been investigated in detail to date. To address this, cultured white adipocytes of mouse or human origin were exposed to 10 or 100 ng/ml of OSM for various time periods. In murine 3T3-L1 cells, OSM stimulation directly activated hormone-sensitive lipase (HSL) and other players of the lipolytic machinery, and dose-dependently increased free fatty acid and glycerol release. In parallel, OSM attenuated insulin-mediated suppression of lipolysis and induced phosphorylation of serine-residues on the insulin receptor substrate-1 (IRS1) protein. Key experiments were verified in a second murine and a human adipocyte cell line. Inhibiton of extracellular signal-regulated kinase (ERK)-1/2 activation, abolished OSM-mediated HSL phosphorylation and lipolysis. In conclusion, OSM signalling directly promotes lipolysis in white adipocytes in an ERK1/2-dependent manner.
Collapse
Affiliation(s)
- Pim P. van Krieken
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, University of Zurich, Zurich, Switzerland
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Mistry JJ, Hellmich C, Moore JA, Jibril A, Macaulay I, Moreno-Gonzalez M, Di Palma F, Beraza N, Bowles KM, Rushworth SA. Free fatty-acid transport via CD36 drives β-oxidation-mediated hematopoietic stem cell response to infection. Nat Commun 2021; 12:7130. [PMID: 34880245 PMCID: PMC8655073 DOI: 10.1038/s41467-021-27460-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/23/2021] [Indexed: 11/09/2022] Open
Abstract
Acute infection is known to induce rapid expansion of hematopoietic stem cells (HSCs), but the mechanisms supporting this expansion remain incomplete. Using mouse models, we show that inducible CD36 is required for free fatty acid uptake by HSCs during acute infection, allowing the metabolic transition from glycolysis towards β-oxidation. Mechanistically, high CD36 levels promote FFA uptake, which enables CPT1A to transport fatty acyl chains from the cytosol into the mitochondria. Without CD36-mediated FFA uptake, the HSCs are unable to enter the cell cycle, subsequently enhancing mortality in response to bacterial infection. These findings enhance our understanding of HSC metabolism in the bone marrow microenvironment, which supports the expansion of HSCs during pathogenic challenge.
Collapse
Affiliation(s)
- Jayna J Mistry
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK.,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, UK
| | - Jamie A Moore
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Aisha Jibril
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mar Moreno-Gonzalez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute, Norwich, UK
| | - Federica Di Palma
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute, Norwich, UK.
| | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK. .,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, NR4 7UY, UK.
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK.
| |
Collapse
|
5
|
Rajesh Y, Sarkar D. Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer. Int J Mol Sci 2021; 22:ijms22042163. [PMID: 33671547 PMCID: PMC7926723 DOI: 10.3390/ijms22042163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is rapidly dispersing all around the world and is closely associated with a high risk of metabolic diseases such as insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD), leading to carcinogenesis, especially hepatocellular carcinoma (HCC). It results from an imbalance between food intake and energy expenditure, leading to an excessive accumulation of adipose tissue (AT). Adipocytes play a substantial role in the tumor microenvironment through the secretion of several adipokines, affecting cancer progression, metastasis, and chemoresistance via diverse signaling pathways. AT is considered an endocrine organ owing to its ability to secrete adipokines, such as leptin, adiponectin, resistin, and a plethora of inflammatory cytokines, which modulate insulin sensitivity and trigger chronic low-grade inflammation in different organs. Even though the precise mechanisms are still unfolding, it is now established that the dysregulated secretion of adipokines by AT contributes to the development of obesity-related metabolic disorders. This review focuses on several obesity-associated adipokines and their impact on obesity-related metabolic diseases, subsequent metabolic complications, and progression to HCC, as well as their role as potential therapeutic targets. The field is rapidly developing, and further research is still required to fully understand the underlying mechanisms for the metabolic actions of adipokines and their role in obesity-associated HCC.
Collapse
Affiliation(s)
- Yetirajam Rajesh
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Massey Cancer Center, Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
6
|
Čolak E, Pap D. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. J Med Biochem 2021; 40:1-9. [PMID: 33584134 PMCID: PMC7857849 DOI: 10.5937/jomb0-24652] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a serious medical condition, defined as excessive accumulation of fat. Abdominal fat is recognized as the major risk for obesity related diseases such as: hypertension, dyslipidemia, type 2 diabetes mellitus, coronary heart disease, stroke, non-alcoholic fatty liver disease etc. Fat accumulation is also related to pro-oxidant and pro-inflammatory states. Recently published articles suggest that oxidative stress may be a link between obesity and related complications. Adiposity leads to increased oxidative stress via several multiple biochemical processes such as superoxide generation through the action of NADPH oxidase, glyceraldehyde auto-oxidation, oxidative phosphorylation, protein kinase C (PKC) activation, and polyol and hexosamine pathways. On the other hand, oxidative stress plays a causative role in the development of obesity, by stimulating the deposition of adipose tissue, including preadipocyte proliferation, adipocyte differentiation and growth. Exercise-induced weight loss can improve the redox state by modulating both oxidative stress and antioxidant promoters, which reduce endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- Emina Čolak
- Clinical Center of Serbia, Institute of Medical Biochemistry, Department for Scientific Research and Education, Belgrade
| | - Dragana Pap
- Students Health Protection Institute, Department of Laboratory Diagnostics, Novi Sad
| |
Collapse
|
7
|
Villar-Fincheira P, Sanhueza-Olivares F, Norambuena-Soto I, Cancino-Arenas N, Hernandez-Vargas F, Troncoso R, Gabrielli L, Chiong M. Role of Interleukin-6 in Vascular Health and Disease. Front Mol Biosci 2021; 8:641734. [PMID: 33786327 PMCID: PMC8004548 DOI: 10.3389/fmolb.2021.641734] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
IL-6 is usually described as a pleiotropic cytokine produced in response to tissue injury or infection. As a pro-inflammatory cytokine, IL-6 activates innate and adaptative immune responses. IL-6 is released in the innate immune response by leukocytes as well as stromal cells upon pattern recognition receptor activation. IL-6 then recruits immune cells and triggers B and T cell response. Dysregulated IL-6 activity is associated with pathologies involving chronic inflammation and autoimmunity, including atherosclerosis. However, IL-6 is also produced and released under beneficial conditions, such as exercise, where IL-6 is associated with the anti-inflammatory and metabolic effects coupled with physical adaptation to intense training. Exercise-associated IL-6 acts on adipose tissue to induce lipogenesis and on arteries to induce adaptative vascular remodeling. These divergent actions could be explained by complex signaling networks. Classical IL-6 signaling involves a membrane-bound IL-6 receptor and glycoprotein 130 (gp130), while trans-signaling relies on a soluble version of IL-6R (sIL-6R) and membrane-bound gp130. Trans-signaling, but not the classical pathway, is regulated by soluble gp130. In this review, we discuss the similarities and differences in IL-6 cytokine and myokine signaling to explain the differential and opposite effects of this protein during inflammation and exercise, with a special focus on the vascular system.
Collapse
Affiliation(s)
- Paulina Villar-Fincheira
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Hernandez-Vargas
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Luigi Gabrielli, ; Mario Chiong,
| | - Mario Chiong
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- *Correspondence: Luigi Gabrielli, ; Mario Chiong,
| |
Collapse
|
8
|
Kölbl H, Bartl T. Obesity in Gynecologic Oncology. Geburtshilfe Frauenheilkd 2020; 80:1205-1211. [PMID: 33293728 PMCID: PMC7714555 DOI: 10.1055/a-1124-7139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022] Open
Abstract
The decades-long global obesity epidemic has resulted in steady increase in the incidence of obesity-related malignancies. The associated diagnostic and therapeutic implications present a clinical challenge for gynecologic oncology treatment strategies. Recent studies have provided solid evidence for an independent, linear, positive correlation between a pathologically increased body mass index and the probability of developing endometrial or postmenopausal breast cancer. The pathogenesis is complex and the subject of current research. Proposed causes include pathologically increased serum levels of sexual steroids and adiponectin, obesity-induced insulin resistance, and systemic inflammatory processes. The scientific evidence for an association between obesity and other gynecological malignancies is, however, less solid. The clinical relevance of obesity as a risk factor for epithelial ovarian cancer, cervical cancer and vulvar cancer appears to be negligible.
Nevertheless, obesity appears to have a negative impact on prognosis and oncologic outcomes for all gynecological cancers. Whether or not this effect can be interpreted as correlative or causal is still a subject of ongoing debate.
Collapse
Affiliation(s)
- Heinz Kölbl
- Klinische Abteilung für Allgemeine Gynäkologie und Gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde, Medizinische Universität Wien, Wien, Austria
| | - Thomas Bartl
- Klinische Abteilung für Allgemeine Gynäkologie und Gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde, Medizinische Universität Wien, Wien, Austria
| |
Collapse
|
9
|
Cooper DM, Girolami GL, Kepes B, Stehli A, Lucas CT, Haddad F, Zalidvar F, Dror N, Ahmad I, Soliman A, Radom-Aizik S. Body composition and neuromotor development in the year after NICU discharge in premature infants. Pediatr Res 2020; 88:459-465. [PMID: 31926484 PMCID: PMC7351612 DOI: 10.1038/s41390-020-0756-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Hypothesis: neuromotor development correlates to body composition over the first year of life in prematurely born infants and can be influenced by enhancing motor activity. METHODS Forty-six female and 53 male infants [27 ± 1.8 (sd) weeks] randomized to comparison or exercise group (caregiver provided 15-20 min daily of developmentally appropriate motor activities) completed the year-long study. Body composition [lean body and fat mass (LBM, FM)], growth/inflammation predictive biomarkers, and Alberta Infant Motor Scale (AIMS) were assessed. RESULTS AIMS at 1 year correlated with LBM (r = 0.32, p < 0.001) in the whole cohort. However, there was no effect of the intervention. LBM increased by ~3685 g (p < 0.001)); insulin-like growth factor-1 (IGF-1) was correlated with LBM (r = 0.36, p = 0.002). IL-1RA (an inflammatory biomarker) decreased (-75%, p < 0.0125). LBM and bone mineral density were significantly lower and IGF-1 higher in the females at 1 year. CONCLUSIONS We found an association between neuromotor development and LBM suggesting that motor activity may influence LBM. Our particular intervention was ineffective. Whether activities provided largely by caregivers to enhance motor activity in prematurely born infants can affect the interrelated (1) balance of growth and inflammation mediators, (2) neuromotor development, (3) sexual dimorphism, and/or (4) body composition early in life remains unknown.
Collapse
Affiliation(s)
- Dan M Cooper
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, USA.
| | - Gay L Girolami
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Brenda Kepes
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, USA
| | - Annamarie Stehli
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, USA
| | - Candice Taylor Lucas
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, USA
| | - Fadia Haddad
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, USA
| | - Frank Zalidvar
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, USA
| | - Nitzan Dror
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, USA
| | - Irfan Ahmad
- Children's Hospital of Orange County, Orange, CA, USA
| | | | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
10
|
Ferver A, Dridi S. Regulation of avian uncoupling protein (av-UCP) expression by cytokines and hormonal signals in quail myoblast cells. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110747. [PMID: 32565233 DOI: 10.1016/j.cbpa.2020.110747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 06/16/2020] [Indexed: 01/20/2023]
Abstract
Uncoupling proteins (UCPs), members of the mitochondrial anion carrier family, play a pivotal role in thermogenesis, redox balance, reactive oxygen species and many other cellular processes. They were extensively studied in mammalian species and have been shown to be tightly regulated at transcriptional and translational levels by various environmental and hormonal factors. Such studies are very limited in avian species which represent a unique model because they lack brown adipose tissue and they contain only one UCP (av-UCP) predominantly expressed in the muscle. The present study aimed, therefore, to determine the effects of pro-inflammatory cytokines (IL-6 and TNFα) and energy homeostasis-related hormones (leptin and T3) on the expression of av-UCP and its related transcription factors in quail myoblast (QM7) cells. Leptin treatment for 24 h significantly down-regulated av-UCP, and up-regulated PGC-1α, PPARα, and PPARγ expression in QM7 cells. IL-6 and TNFα administration significantly up-regulated the expression of av-UCP, however T3 had a biphasic effects (up-regulation with low dose and down-regulation with high dose) on av-UCP mRNA levels (P < .05). TNFα significantly induced PPARα and PPARγ mRNA abundances, however T3 and IL-6 down-regulated PPARα expression (P < .05). Together, these data are the first to report cytokine and hormonal regulation of av-UCP in avian muscle cells, suggesting that these effects are mediated through PPARs and PGC-1α, and opening a new vista for future functional and mechanistic studies.
Collapse
Affiliation(s)
- Alison Ferver
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States of America
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States of America.
| |
Collapse
|
11
|
Wang X, Yang J, Yao Y, Shi X, Yang G, Li X. AQP3 Facilitates Proliferation and Adipogenic Differentiation of Porcine Intramuscular Adipocytes. Genes (Basel) 2020; 11:genes11040453. [PMID: 32331274 PMCID: PMC7230797 DOI: 10.3390/genes11040453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
The meat quality of animal products is closely related to the intramuscular fat content. Aquaglyceroporin (AQP) defines a class of water/glycerol channels that primarily facilitate the passive transport of glycerol and water across biological membranes. In this study, the AQP3 protein of the AQP family was mainly studied in the adipogenic function of intramuscular adipocytes in pigs. Here, we found that AQP3 was increased at both mRNA and protein levels upon adipogenic stimuli in porcine intramuscular adipocytes in vitro. Western blot results showed knockdown of AQP3 by siRNA significantly suppressed the expression of adipogenic genes (PPARγ, aP2, etc.), repressed Akt phosphorylation, as well as reducing lipid accumulation. Furthermore, deletion of AQP3 by siRNA significantly downregulated expression of cell cycle genes (cyclin D, E), and decreased the number of EdU-positive cells as well as cell viability. Collectively, our data indicate that AQP3 is of great importance in both adipogenic differentiation and proliferation in intramuscular adipocytes, providing a potential target for modulating fat infiltration in skeletal muscles.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Li
- Correspondence: ; Tel.: +86-29-870-81531
| |
Collapse
|
12
|
Yang Y, Lu R, Gao F, Zhang J, Liu F. Berberine induces lipolysis in porcine adipocytes by activating the AMP‑activated protein kinase pathway. Mol Med Rep 2020; 21:2603-2614. [DOI: 10.3892/mmr.2020.11070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 03/17/2020] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yongqing Yang
- Department of Biological Science, College of Life Science, Shanxi Normal University, Linfen, Shanxi 041000, P.R. China
| | - Rongsheng Lu
- Department of Biological Science, College of Life Science, Shanxi Normal University, Linfen, Shanxi 041000, P.R. China
| | - Fangfang Gao
- Department of Biological Science, College of Life Science, Shanxi Normal University, Linfen, Shanxi 041000, P.R. China
| | - Jie Zhang
- Department of Biological Science, College of Life Science, Shanxi Normal University, Linfen, Shanxi 041000, P.R. China
| | - Fenglan Liu
- Department of Biological Science, College of Life Science, Shanxi Normal University, Linfen, Shanxi 041000, P.R. China
| |
Collapse
|
13
|
Kilicarslan M, de Weijer BA, Simonyté Sjödin K, Aryal P, Ter Horst KW, Cakir H, Romijn JA, Ackermans MT, Janssen IM, Berends FJ, van de Laar AW, Houdijk AP, Kahn BB, Serlie MJ. RBP4 increases lipolysis in human adipocytes and is associated with increased lipolysis and hepatic insulin resistance in obese women. FASEB J 2020; 34:6099-6110. [PMID: 32167208 PMCID: PMC7317205 DOI: 10.1096/fj.201901979rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
Retinol‐binding protein‐4 (RBP4) is elevated in serum and adipose tissue (AT) in obesity‐induced insulin resistance and correlates inversely with insulin‐stimulated glucose disposal. But its role in insulin‐mediated suppression of lipolysis, free fatty acids (FFA), and endogenous glucose production (EGP) in humans is unknown. RBP4 mRNA or protein levels were higher in liver, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) in morbidly obese subjects undergoing Roux‐en‐Y gastric bypass surgery compared to lean controls undergoing elective laparoscopic cholecystectomy. RBP4 mRNA expression in SAT correlated with the expression of several macrophage and other inflammation markers. Serum RBP4 levels correlated inversely with glucose disposal and insulin‐mediated suppression of lipolysis, FFA, and EGP. Mechanistically, RBP4 treatment of human adipocytes in vitro directly stimulated basal lipolysis. Treatment of adipocytes with conditioned media from RBP4‐activated macrophages markedly increased basal lipolysis and impaired insulin‐mediated lipolysis suppression. RBP4 treatment of macrophages increased TNFα production. These data suggest that elevated serum or adipose tissue RBP4 levels in morbidly obese subjects may cause hepatic and systemic insulin resistance by stimulating basal lipolysis and by activating macrophages in adipose tissue, resulting in release of pro‐inflammatory cytokines that impair lipolysis suppression. While we have demonstrated this mechanism in human adipocytes in vitro, and correlations from our flux studies in humans strongly support this, further studies are needed to determine whether this mechanism explains RBP4‐induced insulin resistance in humans.
Collapse
Affiliation(s)
- Murat Kilicarslan
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Barbara A de Weijer
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Kotryna Simonyté Sjödin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kasper W Ter Horst
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Hamit Cakir
- Department of Surgery, Northwest Clinics, Alkmaar, the Netherlands
| | - Johannes A Romijn
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Mariëtte T Ackermans
- Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Ignace M Janssen
- Department of Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | - Frits J Berends
- Department of Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | | | | | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mireille J Serlie
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am J Physiol Regul Integr Comp Physiol 2020; 318:R296-R310. [DOI: 10.1152/ajpregu.00147.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a complicated disorder of extreme, progressive skeletal muscle wasting. It is directed by metabolic alterations and systemic inflammation dysregulation. Numerous studies have demonstrated that increased systemic inflammation promotes this type of cachexia and have suggested that cytokines are implicated in the skeletal muscle loss. Exercise is firmly established as an anti-inflammatory therapy that can attenuate or even reverse the process of muscle wasting in cancer cachexia. The interleukin IL-6 is generally considered to be a key player in the development of the microenvironment of malignancy; it promotes tumor growth and metastasis by acting as a bridge between chronic inflammation and cancerous tissue and it also induces skeletal muscle atrophy and protein breakdown. Paradoxically, a beneficial role for IL-6 has also been identified recently, and that is its status as a “founding member” of the myokine class of proteins. Skeletal muscle is an important source of circulating IL-6 in people who participate in exercise training. IL-6 acts as an anti-inflammatory myokine by inhibiting TNFα and improving glucose uptake through the stimulation of AMPK signaling. This review discusses the action of IL-6 in skeletal muscle tissue dysfunction and the role of IL-6 as an “exercise factor” that modulates the immune system. This review also sheds light on the main considerations related to the treatment of muscle wasting in cancer cachexia.
Collapse
|
15
|
Ma D, Wang Y, Zhou G, Wang Y, Li X. Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function. Inflammation 2019; 42:790-798. [PMID: 30661143 DOI: 10.1007/s10753-019-00959-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic low-grade inflammation is now widely accepted as one of the most important contributors to metabolic disorders. Glycoprotein 130 (gp130) cytokines are involved in the regulation of metabolic activity. Studies have shown that several gp130 cytokines, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), have divergent effects on adipogenesis, lipolysis, and insulin sensitivity as well as food intake. In this review, we will summarize the present knowledge about gp130 cytokines, including IL-6, LIF, CNTF, CT-1, and OSM, in adipocyte biology and metabolic activities in conditions such as obesity, cachexia, and type 2 diabetes. It is valuable to explore the diverse actions of these gp130 cytokines on the regulation of the biological functions of adipocytes, which will provide potential therapeutic targets for the treatment of obesity and cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guofeng Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
16
|
Tanaka Y, Hirose Y, Yamamoto Y, Yoshikai Y, Murosaki S. Daily intake of heat-killed Lactobacillus plantarum L-137 improves inflammation and lipid metabolism in overweight healthy adults: a randomized-controlled trial. Eur J Nutr 2019; 59:2641-2649. [PMID: 31620886 PMCID: PMC7413902 DOI: 10.1007/s00394-019-02112-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE The effects of heat-killed Lactobacillus plantarum L-137 (HK L-137) on inflammation and lipid metabolism were investigated in overweight volunteers. METHODS One hundred healthy subjects with a body mass index from 23.0 to 29.9 (51 men and 49 women; mean age: 41.4 years) were enrolled in this randomized, double-blind, placebo-controlled, parallel group study. Subjects were randomly assigned to daily administration of a tablet containing HK L-137 (10 mg) or a placebo tablet for 12 weeks. Blood samples were collected every 4 weeks to measure biomarkers of lipid metabolism and inflammatory mediators. RESULTS The percent change of concanavalin A-induced proliferation of peripheral blood mononuclear cells was significantly larger in the HK L-137 group than in the control group, similar to previous studies. The decreases of aspartate aminotransferase and alanine aminotransferase over time were significantly larger in the HK L-137 group than in the control group, as were the decreases of total cholesterol, low-density lipoprotein cholesterol, and the leukocyte count at one time point. These effects of HK L-137 were stronger in the subjects with higher C-reactive protein levels. CONCLUSIONS These findings suggest that daily intake of HK L-137 can improve inflammation and lipid metabolism in subjects at risk of inflammation.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Research Division, Research and Development Institute, House Wellness Foods Corp., Imoji 3-20, Itami, Hyogo, 664-0011, Japan.
| | - Yoshitaka Hirose
- Research Division, Research and Development Institute, House Wellness Foods Corp., Imoji 3-20, Itami, Hyogo, 664-0011, Japan
| | - Yoshihiro Yamamoto
- Research Division, Research and Development Institute, House Wellness Foods Corp., Imoji 3-20, Itami, Hyogo, 664-0011, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shinji Murosaki
- Research Division, Research and Development Institute, House Wellness Foods Corp., Imoji 3-20, Itami, Hyogo, 664-0011, Japan
| |
Collapse
|
17
|
Smith JK. IL-6 and the dysregulation of immune, bone, muscle, and metabolic homeostasis during spaceflight. NPJ Microgravity 2018; 4:24. [PMID: 30534586 PMCID: PMC6279793 DOI: 10.1038/s41526-018-0057-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that exercise-related secretion of IL-6 by peripheral blood mononuclear cells is proportionate to body weight, suggesting that IL-6 is gravisensitive and that suboptimal production of this key cytokine may contribute to homeostatic dysregulations that occur during spaceflight. This review details what is known about the role of this key cytokine in innate and adaptive immunity, hematopoiesis, and in bone, muscle and metabolic homeostasis on Earth and in the microgravity of space and suggests an experimental approach to confirm or disavow the role of IL-6 in space-related dysregulations.
Collapse
Affiliation(s)
- John Kelly Smith
- Departments of Academic Affairs and Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
18
|
Abstract
High secretion of interleukin (IL)-6 from white adipose tissue may contribute to metabolic complications in obesity. We have recently shown that IL-6-type cytokine signaling in adipocytes is involved in the development of obesity-associated hepatic insulin resistance and steatosis. In addition, we revealed that adipocyte-specific IL-6 signaling ameliorates glucose metabolism in obesity via enhancing insulin secretion. Mechanistically, IL-6 induces the release of free fatty acid (FFA) and leptin from adipocytes thereby affecting liver metabolism and pancreatic β-cell function, respectively. This commentary further discusses the role of adipocyte-specific IL-6-type cytokine signaling in the regulation of FFA and leptin release. In particular, we outline depot-specific differences in IL-6-induced basal release of the two aforementioned factors. Moreover, we provide evidence that insulin's effect on the release of FFA and leptin is adipose depot-dependent. We conclude that adipose depot-specific targeting of the IL-6 signaling pathway may be a novel approach to blunt obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Sun S, Wang R, Song J, Guan M, Li N, Zhang X, Zhao Z, Zhang J. Blocking gp130 signaling suppresses autotaxin expression in adipocytes and improves insulin sensitivity in diet-induced obesity. J Lipid Res 2017; 58:2102-2113. [PMID: 28874440 DOI: 10.1194/jlr.m075655] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
Autotaxin (ATX), which is highly expressed and secreted by adipocytes, functions as the key enzyme to generate lysophosphatidic acid (LPA) from lysophosphatidylcholine. Adipose tissue is the main source of circulating ATX that modulates plasma LPA levels. Upregulation of ATX expression in obese patients and mice is closely related with insulin resistance and impaired glucose tolerance. However, the mechanism of ATX expression in adipocytes remains largely unknown. In this study, we found that glycoprotein 130 (gp130)-mediated Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) activation was required for abundant ATX expression in adipocytes. Through gp130, the interleukin 6 (IL-6) family cytokines, such as IL-6, leukemia inhibitory factor, cardiotrophin-1, and ciliary neurotrophic factor, upregulated ATX expression in adipocytes. ATX contributes to the induction of insulin resistance and lipolysis in IL-6-stimulated adipocytes. Oral administration of gp130 inhibitor SC144 suppressed ATX expression in adipose tissue, decreased plasma ATX, LPA, and FFA levels, and significantly improved insulin sensitivity and glucose tolerance in high-fat diet-fed obese mice. In summary, our results indicate that the activation of gp130-JAK-STAT3 pathway by IL-6 family cytokines has an important role in regulating ATX expression in adipocytes and that gp130 is a promising target in the management of obesity-associated glucose metabolic diseases.
Collapse
Affiliation(s)
- Shuhong Sun
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ran Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jianwen Song
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ming Guan
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Na Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaotian Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhenwen Zhao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Global transcriptome analysis identifies differentially expressed genes related to lipid metabolism in Wagyu and Holstein cattle. Sci Rep 2017; 7:5278. [PMID: 28706200 PMCID: PMC5509646 DOI: 10.1038/s41598-017-05702-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/01/2017] [Indexed: 11/22/2022] Open
Abstract
Fat deposition of beef cattle varies between breeds. However, the regulation mechanism is still not elucidated completely at molecular level. In the present study, we comparatively analyzed transcriptome of subcutaneous adipose tissue between Wagyu and Holstein cattle with a significant difference in fat deposition to identify key genes associated with fat metabolism and adipogenesis by high-throughput RNA-seq technology. A total of 59,149,852 and 69,947,982 high quality reads were generated, respectively. With further analysis, 662 differentially expressed genes were identified. Gene Ontology and KEGG pathway analysis revealed that many differentially expressed genes were enriched in several biological processes and pathways relevant to adipogenesis and lipid metabolism, in which PPAR and fatty acid metabolism signaling pathways with related genes such as PPARγ, PLIN2 and ELOVL6 et al. play a critical role. Protein-protein interaction network analysis showed EGR1, FOS, SERPINE1, AGT, MMP2 may have great impact on adipocyte differentiation and adipogenesis. Moreover, potential alternative splicing events and single nucleotide polymorphisms (SNPs) were also identified. In summary, we comprehensively analyzed and discussed the transcriptome of subcutaneous adipose tissue of Wagyu and Holstein cattle, which might provide a theoretical basis for better understanding molecular mechanism of fat metabolism and deposition in beef cattle.
Collapse
|
21
|
Yu Y, Tamai M, Tagawa YI. Nitric oxide is critical for avoiding hepatic lipid overloading via IL-6 induction during liver regeneration after partial hepatectomy in mice. Exp Anim 2017; 66:293-302. [PMID: 28515388 PMCID: PMC5682341 DOI: 10.1538/expanim.17-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO), generated from L-arginine by three different isoforms of nitric oxide synthase (NOS), is a pleiotropic factor to regulate physiological functions in almost every organ and tissue. Each knockout mouse of iNOS or eNOS has been used to suggest that NO has a crucial role in liver regeneration after partial hepatectomy (PH), for NO may inhibit caspase 3 activity and is required for EGFR signaling. In previous reports, defective mitochondrial β-oxidation was observed in eNOS KO mice, and hepatic steatosis was often correlated to deficient liver regeneration, so we focused on metabolic perspective and hypothesized that NO depletion in PH mice would affect hepatocytic lipolysis and impair hepatocytes proliferation. We inhibited all NOS isoforms by administrating L-NG-nitroarginine methyl ester (L-NAME) to PH mice, and hepatocyte DNA synthesis was severely inhibited at 40-44 h post PH in L-NAME (+) group. IL-6 was robustly secreted into circulating blood in L-NAME (-) group, but not in L-NAME (+) group. Down-regulation of carnitine palmytoyltransferase 1A, massive lipid accumulation and elevated endoplasmic reticulum (ER) stress relative genes expression level were observed in L-NAME (+) group mouse liver. The expression level of C/EBP homologous protein, a mediator of ER stress induced apoptosis, significantly increased in L-NAME (+) group. Our findings suggest the lack of NO affected IL-6 induction and hepatocyte lipolysis after PH, consequently leading to excessive hepatic lipid accumulation, elevated ER stress and impaired hepatocyte proliferation.
Collapse
Affiliation(s)
- Yue Yu
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Miho Tamai
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Course of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13-jo, Nishi 7-chome, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| | - Yoh-Ichi Tagawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
22
|
Vailati-Riboni M, Zhou Z, Jacometo CB, Minuti A, Trevisi E, Luchini DN, Loor JJ. Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. J Dairy Sci 2017; 100:3958-3968. [PMID: 28318590 DOI: 10.3168/jds.2016-11812] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/29/2017] [Indexed: 12/25/2022]
Abstract
Methionine, together with Lys, is the most limiting AA for milk production in dairy cows. Besides its crucial role in milk production, Met and its derivate metabolites (e.g., glutathione, taurine, polyamines) are well-known immunonutrients in nonruminants, helping support and boost immune function and activity. In the present study, the effects of Met or choline, as its precursor, were investigated using an ex vivo whole blood challenge. The study involved 33 multiparous Holstein cows (from a larger cohort with a factorial arrangement of treatments) assigned from d -21 to +30 relative to parturition to a basal control (CON) diet, CON plus rumen-protected Met (MET, Smartamine M, Adisseo NA, Alpharetta, GA) at a rate of 0.08% of dry matter, or CON plus rumen-protected choline (CHOL, ReaShure, Balchem Inc., New Hampton, NY) at 60 g/d. Blood was sampled on d -15, -7, 2, 7, and 20 for ex vivo lipopolysaccharide (LPS) challenge, and on d 1, 4, 14, and 28 relative to parturition for phagocytosis and oxidative burst assays. The MET cows had greater energy-corrected milk production and milk protein content. Overall, IL-6 response to LPS increased around parturition, whereas IL-1β remained constant, casting doubt on the existence of systemic immunosuppression in the peripartal period. Supplementation with MET dampened the postpartal blood response to LPS (lower IL-1β), while improving postpartum neutrophil and monocyte phagocytosis capacity and oxidative burst activity. In contrast, CHOL supplementation increased monocyte phagocytosis capacity. Overall, the data revealed a peripartal immune hyper-response, which appeared to have been mitigated by MET supplementation. Both MET and CHOL effectively improved immune function; however, MET affected the immune and antioxidant status before parturition, which might have been beneficial to prepare the cow to respond to metabolic challenges after parturition. These results provide insights on potential differences in the immunomodulatory action of methionine and choline in dairy cows. As such, the effects observed could have implications for ration formulation and dietary strategies.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Z Zhou
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C B Jacometo
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Programa de Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de La Salle, 110231, Bogotá DC, Colombia; NUPEEC, Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil
| | - A Minuti
- Istituto di Zootecnica, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - E Trevisi
- Istituto di Zootecnica, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | | | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
23
|
Vailati-Riboni M, Farina G, Batistel F, Heiser A, Mitchell MD, Crookenden MA, Walker CG, Kay JK, Meier S, Roche JR, Loor JJ. Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. J Dairy Sci 2017; 100:2334-2350. [PMID: 28088407 DOI: 10.3168/jds.2016-11790] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
The common practice of increasing dietary energy density during the close-up dry period (last ∼3 wk prepartum) has been recently associated with a higher incidence of metabolic disorders after calving. Despite these reports, over-feeding of metabolizable energy (ME) during the far-off, nonlactating period is a common management policy aimed at achieving optimum calving body condition score (BCS) in pasture-based systems, as cows are generally thinner than total mixed ration cows at the end of lactation. Our hypothesis was that both far-off and close-up overfeeding influence the peripartum adipose tissue changes associated with energy balance and inflammatory state. Sixty mid-lactation, grazing dairy cows of mixed age and breed were randomly allocated to 1 of 2 groups that were managed through late lactation to achieve a low and high BCS (approximately 4.25 and 5.0 on a 10-point scale) at dry-off. The low BCS cows were then overfed ME to ensure that they achieved the same BCS as the higher BCS group by calving. Within each rate of BCS gain treatment, cows were offered 65, 90, or 120% of their pre-calving ME requirements for 3 wk pre-calving in a 2 × 3 factorial arrangement of treatments (i.e., 10 cows/treatment). Subcutaneous adipose tissue was collected via biopsy at -1, 1, and 4 wk relative to parturition. Quantitative PCR was used to measure mRNA and microRNA expression of targets related to adipogenesis and inflammation. Cows overfed in the far-off period had increased expression of miR-143 and miR-378 prepartum (-1 wk) indicating greater adipogenesis, consistent with their rapid gain in BCS following dry-off. Furthermore, the lower postpartum expression of IL6, TNF, TLR4, TLR9, and miR-145, and a higher abundance of miR-99a indicated lower body fat mobilization in early lactation in the same group. In the close-up period, feeding either 65 or 120% of ME requirements caused changes in FASN, IL1B, IL6R, TLR9, and the microRNA miR-143, miR-155, and miR-378. Their respective expression patterns indicate a tentative negative-feedback mechanism in metabolically compromised, feed-restricted cows, and a possible immune-related stimulation of lipolysis in apparently static adipocytes in overfed cows. Data from cows fed 90% of ME requirements indicate the existence of a balance between lipolytic (inflammatory-related) and anti-lipolytic signals, to prime the mobilization machinery in light of imminent lactation. Overall, results indicate that far-off dry cow nutrition influences peripartum adipose tissue metabolism, with neither strategy negatively affecting the physiological adaptation to lactation. Furthermore, to ensure a favorable transition, cows should be subjected to a small feed restriction in the close-up period, irrespective of far-off nutritional management.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - G Farina
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Dipartimento di Scienze Veterinarie per la salute, la produzione animale e la sicurezza alimentare (VESPA), Università di Milano, Milan, Italy 20122
| | - F Batistel
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A Heiser
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand 4442
| | - M D Mitchell
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Herston, Queensland, Australia 4029
| | - M A Crookenden
- DairyNZ Limited, c/o University of Auckland, 3A Symonds St., Auckland, New Zealand 1010
| | - C G Walker
- DairyNZ Limited, c/o University of Auckland, 3A Symonds St., Auckland, New Zealand 1010
| | - J K Kay
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - S Meier
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - J R Roche
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
24
|
Chen X, Gong Q, Wang CY, Zhang K, Ji X, Chen YX, Yu XJ. High-Fat Diet Induces Distinct Metabolic Response in Interleukin-6 and Tumor Necrosis Factor-α Knockout Mice. J Interferon Cytokine Res 2016; 36:580-588. [PMID: 27610743 DOI: 10.1089/jir.2016.0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Quan Gong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chun-Yu Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Ji
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Xi Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Jie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Polyinosinic-polycytidylic acid inhibits the differentiation of mouse preadipocytes through pattern recognition receptor-mediated secretion of tumor necrosis factor-α. Immunol Cell Biol 2016; 94:875-885. [PMID: 27311810 DOI: 10.1038/icb.2016.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Viral infections can disturb the functions of adipose tissues and thus result in metabolic diseases. Polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analog of viral double-stranded RNA, induces innate antiviral responses by mimicking viral infection through the activation of pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Poly(I:C) also inhibits the differentiation of mouse preadipocytes but the mechanism underlying this process remains unclear. In this study, poly(I:C) inhibited preadipocyte differentiation in a dose-dependent manner, but not in a time-dependent manner. Endogenously transfected poly(I:C) severely impaired the adipogenesis of preadipocytes compared with exogenously added poly(I:C). Low concentration of tumor necrosis factor-α (TNF-α) could effectively inhibit the preadipocyte differentiation. The effect of exogenously added poly(I:C) on inhibition of differentiation was significantly diminished in the preadipocytes of TLR3 knockout mice. By contrast, endogenously transfected poly(I:C) still inhibited the differentiation of TLR3-deficient preadipocytes. Hence, MDA5/RIG-I signaling was involved in the poly(I:C)-induced inhibition of preadipocyte differentiation. The effect of poly(I:C) stimulation, either through endogenous transfection or exogenous addition, on inhibition of differentiation was significantly diminished in the preadipocytes of TNF-α knockout mice. These results confirmed the evidence that poly(I:C) inhibited the differentiation of mouse preadipocytes through PRR-mediated secretion of TNF-α.
Collapse
|
26
|
Abstract
Although discussion of the obesity epidemic had become a cocktail party cliché, its impact on public health cannot be dismissed. In the past decade, cancer had joined the list of chronic debilitating diseases whose risk is substantially increased by hypernutrition. Here we discuss recent advances in understanding how obesity increases cancer risk and propose a unifying hypothesis according to which the major tumor-promoting mechanism triggered by hypernutrition is the indolent inflammation that takes place at particular organ sites, including liver, pancreas, and gastrointestinal tract. The mechanisms by which excessive fat deposition feeds this tumor-promoting inflammatory flame are diverse and tissue specific.
Collapse
Affiliation(s)
- Joan Font-Burgada
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA
| | - Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA.
| |
Collapse
|
27
|
Vailati-Riboni M, Kanwal M, Bulgari O, Meier S, Priest NV, Burke CR, Kay JK, McDougall S, Mitchell MD, Walker CG, Crookenden M, Heiser A, Roche JR, Loor JJ. Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. J Dairy Sci 2015; 99:758-70. [PMID: 26601585 DOI: 10.3168/jds.2015-10046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
Recent studies demonstrating a higher incidence of metabolic disorders after calving have challenged the management practice of increasing dietary energy density during the last ~3 wk prepartum. Despite our knowledge at the whole-animal level, the tissue-level mechanisms that are altered in response to feeding management prepartum remain unclear. Our hypothesis was that prepartum body condition score (BCS), in combination with feeding management, plays a central role in the peripartum changes associated with energy balance and inflammatory state. Twenty-eight mid-lactation grazing dairy cows of mixed age and breed were randomly allocated to 1 of 4 treatment groups in a 2 × 2 factorial arrangement: 2 prepartum BCS categories (4.0 and 5.0, based on a 10-point scale; BCS4, BCS5) obtained via differential feeding management during late-lactation, and 2 levels of energy intake during the 3 wk preceding calving (75 and 125% of estimated requirements). Subcutaneous adipose tissue was harvested via biopsy at -1, 1, and 4 wk relative to parturition. Quantitative polymerase chain reaction was used to measure mRNA and microRNA (miRNA) expression of targets related to fatty acid metabolism (lipogenesis, lipolysis), adipokine synthesis, and inflammation. Both prepartum BCS and feeding management had a significant effect on mRNA and miRNA expression throughout the peripartum period. Overfed BCS5 cows had the greatest prepartum expression of fatty acid synthase (FASN) and an overall greater expression of leptin (LEP); BCS5 was also associated with greater overall adiponectin (ADIPOQ) and peroxisome proliferator-activated receptor gamma (PPARG), whereas overfeeding upregulated expression of proadipogenic miRNA. Higher postpartum expression of chemokine ligand 5 (CCL5) and the cytokines interleukin 6 (IL6) and tumor necrosis factor (TNF) was detected in overfed BCS5 cows. Feed-restricted BCS4 cows had the highest overall interleukin 1 (IL1B) expression. Prepartum feed restriction resulted in greater chemokine ligand 2 (CCL2) expression. Overall, changes in mRNA expression were consistent with the expression pattern of inflammation-related miRNA. These data shed light on molecular mechanisms underlying the effect of prepartum BCS and feeding management on metabolic and inflammatory status of adipose tissue during the peripartum period. Data support the use of a controlled feed restriction prepartum in optimally conditioned cows, as well as the use of a higher level of dietary energy in under-conditioned cows.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - M Kanwal
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - O Bulgari
- Department of Animal Sciences, University of Illinois, Urbana 61801; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - S Meier
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - N V Priest
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - C R Burke
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - J K Kay
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - S McDougall
- Cognosco, Anexa Animal Health, PO Box 21, Morrinsville 3300, New Zealand
| | - M D Mitchell
- University of Queensland, Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland 4029, Australia
| | - C G Walker
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - M Crookenden
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - A Heiser
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - J R Roche
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
28
|
Hamel Y, Mamoune A, Mauvais FX, Habarou F, Lallement L, Romero NB, Ottolenghi C, de Lonlay P. Acute rhabdomyolysis and inflammation. J Inherit Metab Dis 2015; 38:621-8. [PMID: 25778939 DOI: 10.1007/s10545-015-9827-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
Rhabdomyolysis results from the rapid breakdown of skeletal muscle fibers, which leads to leakage of potentially toxic cellular content into the systemic circulation. Acquired causes by direct injury to the sarcolemma are most frequent. The inherited causes are: i) metabolic with failure of energy production, including mitochondrial fatty acid ß-oxidation defects, LPIN1 mutations, inborn errors of glycogenolysis and glycolysis, more rarely mitochondrial respiratory chain deficiency, purine defects and peroxysomal α-methyl-acyl-CoA-racemase defect (AMACR), ii) structural causes with muscle dystrophies and myopathies, iii) calcium pump disorder with RYR1 gene mutations, iv) inflammatory causes with myositis. Irrespective of the cause of rhabdomyolysis, the pathology follows a common pathway, either by the direct injury to sarcolemma by increased intracellular calcium concentration (acquired causes) or by the failure of energy production (inherited causes), which leads to fiber necrosis. Rhabdomyolysis are frequently precipitated by febrile illness or exercise. These conditions are associated with two events, elevated temperature and high circulating levels of pro-inflammatory mediators such as cytokines and chemokines. To illustrate these points in the context of energy metabolism, protein thermolability and the potential benefits of arginine therapy, we focus on a rare cause of rhabdomyolysis, aldolase A deficiency. In addition, our studies on lipin-1 (LPIN1) deficiency raise the possibility that several diseases involved in rhabdomyolysis implicate pro-inflammatory cytokines and may even represent primarily pro-inflammatory diseases. Thus, not only thermolability of mutant proteins critical for muscle function, but also pro-inflammatory cytokines per se, may lead to metabolic decompensation and rhabdomyolysis.
Collapse
Affiliation(s)
- Yamina Hamel
- Institut Imagine, Institut National de la Santé et de la Recherche Médicale, Unité 1163, 75015, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Vailati Riboni M, Meier S, Priest N, Burke C, Kay J, McDougall S, Mitchell M, Walker C, Crookenden M, Heiser A, Roche J, Loor J. Adipose and liver gene expression profiles in response to treatment with a nonsteroidal antiinflammatory drug after calving in grazing dairy cows. J Dairy Sci 2015; 98:3079-85. [DOI: 10.3168/jds.2014-8579] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/11/2015] [Indexed: 01/16/2023]
|
30
|
Cardiomyocyte lipotoxicity is mediated by Il-6 and causes down-regulation of PPARs. Biochem Biophys Res Commun 2015; 459:54-9. [DOI: 10.1016/j.bbrc.2015.02.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
|
31
|
Abstract
PURPOSE OF REVIEW Interleukin-6 (IL-6) has emerged as a cytokine involved in cachexia progression with some cancers. This review will present the recent breakthroughs in animal models and humans related to targeting IL-6 as a cancer cachexia therapy. RECENT FINDINGS IL-6 can target adipose, skeletal muscle, gut, and liver tissue, which can all affect cachectic patient recovery. IL-6 trans-signaling through the soluble IL-6R has the potential to amplify IL-6 signaling in the cachectic patient. In the skeletal muscle, chronic IL-6 exposure induces proteasome and autophagy protein degradation pathways that lead to wasting. IL-6 is also indirectly associated with AMP-activated kinase (AMPK) and nuclear factor kappa B (NF-κB) activation. Several mouse cancer models have clearly demonstrated that blocking IL-6 and associated signaling can attenuate cachexia progression. Additionally, pharmaceuticals targeting IL-6 and associated signaling can relieve some cachectic symptoms in cancer patients. Research with cachectic mice has demonstrated that exercise and nutraceutical administration can interact with chronic IL-6 signaling during cachexia progression. SUMMARY IL-6 remains a promising therapeutic strategy for attenuating cachexia progression with many types of cancer. However, improvement of this treatment will require a better understanding of the indirect and direct effects of IL-6 as well as its tissue-specific actions in the cancer patient.
Collapse
Affiliation(s)
- Aditi A Narsale
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC 29208
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC 29208
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
32
|
López-Yoldi M, Fernández-Galilea M, Laiglesia LM, Larequi E, Prieto J, Martínez JA, Bustos M, Moreno-Aliaga MJ. Cardiotrophin-1 stimulates lipolysis through the regulation of main adipose tissue lipases. J Lipid Res 2014; 55:2634-43. [PMID: 25351614 DOI: 10.1194/jlr.m055335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiotrophin-1 (CT-1) is a cytokine with antiobesity properties and with a role in lipid metabolism regulation and adipose tissue function. The aim of this study was to analyze the molecular mechanisms involved in the lipolytic actions of CT-1 in adipocytes. Recombinant CT-1 (rCT-1) effects on the main proteins and signaling pathways involved in the regulation of lipolysis were evaluated in 3T3-L1 adipocytes and in mice. rCT-1 treatment stimulated basal glycerol release in a concentration- and time-dependent manner in 3T3-L1 adipocytes. rCT-1 (20 ng/ml for 24 h) raised cAMP levels, and in parallel increased protein kinase (PK)A-mediated phosphorylation of perilipin and hormone sensitive lipase (HSL) at Ser660. siRNA knock-down of HSL or PKA, as well as pretreatment with the PKA inhibitor H89, blunted the CT-1-induced lipolysis, suggesting that the lipolytic action of CT-1 in adipocytes is mainly mediated by activation of HSL through the PKA pathway. In ob/ob mice, acute rCT-1 treatment also promoted PKA-mediated phosphorylation of perilipin and HSL at Ser660 and Ser563, and increased adipose triglyceride lipase (desnutrin) content in adipose tissue. These results showed that the ability of CT-1 to regulate the activity of the main lipases underlies the lipolytic action of this cytokine in vitro and in vivo, and could contribute to CT-1 antiobesity effects.
Collapse
Affiliation(s)
- Miguel López-Yoldi
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Marta Fernández-Galilea
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain
| | - Laura M Laiglesia
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Eduardo Larequi
- Gene Therapy and Hepatology, CIMA, University of Navarra, Pamplona, Navarra, Spain
| | - Jesús Prieto
- Gene Therapy and Hepatology, CIMA, University of Navarra, Pamplona, Navarra, Spain CIBERehd Institute of Health Carlos III, Madrid, Spain
| | - J Alfredo Martínez
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Matilde Bustos
- Gene Therapy and Hepatology, CIMA, University of Navarra, Pamplona, Navarra, Spain
| | - Maria J Moreno-Aliaga
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Banke E, Rödström K, Ekelund M, Dalla-Riva J, Lagerstedt JO, Nilsson S, Degerman E, Lindkvist-Petersson K, Nilson B. Superantigen activates the gp130 receptor on adipocytes resulting in altered adipocyte metabolism. Metabolism 2014; 63:831-40. [PMID: 24684823 DOI: 10.1016/j.metabol.2014.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/25/2014] [Accepted: 03/04/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The bacteria Staphylococcus aureus is part of the normal bacterial flora and produces a repertoire of enterotoxins which can cause food poisoning and toxic shock and might contribute to the pathogenesis of inflammatory diseases. These enterotoxins directly cross-link the T cell receptor with MHC class II, activating large amounts of T cells and are therefore called superantigens. It was recently discovered that the superantigen SEA binds to the cytokine receptor gp130. As obesity and type 2 diabetes are highly associated with inflammation of the adipose tissue and gp130 has been shown to play an important role in adipocytes, we wanted to investigate the effect of SEA on adipocyte signaling and function. MATERIALS/METHODS Binding of SEA to gp130 was examined using surface plasmon resonance in a cell free system. Effects of SEA on adipocyte signaling, insulin sensitivity and function were studied using western blotting and biological assays for lipolysis, lipogenesis and glucose uptake. RESULTS We demonstrate that SEA binds to gp130 with a medium affinity. Furthermore, SEA induces phosphorylation of a key downstream target, STAT3, in adipocytes. SEA also inhibits insulin-induced activation of PKB and PKB downstream signaling which was associated with reduced basal and insulin induced glucose uptake, reduced lipogenesis as well as reduced ability of insulin to inhibit lipolysis. CONCLUSIONS SEA inhibits insulin signaling as well as insulin biological responses in adipocytes supporting that bacterial infection might contribute to the development of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Elin Banke
- Department of Experimental Medical Science, Lund University, BMC, 221 84 Lund, Sweden.
| | - Karin Rödström
- Department of Experimental Medical Science, Lund University, BMC, 221 84 Lund, Sweden
| | - Mikael Ekelund
- Department of Surgery, Skåne University Hospital & Lund University, 221 85 Lund, Sweden
| | - Jonathan Dalla-Riva
- Department of Experimental Medical Science, Lund University, BMC, 221 84 Lund, Sweden
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, BMC, 221 84 Lund, Sweden
| | - Staffan Nilsson
- Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, 221 00 Lund, Sweden
| | - Eva Degerman
- Department of Experimental Medical Science, Lund University, BMC, 221 84 Lund, Sweden
| | | | - Bo Nilson
- Department of Laboratory Medicine, Division of Medicinal Microbiology, Lund University, 223 62 Lund, Sweden; Department of Clinical Microbiology, University and Regional Laboratories in Region Skåne, 221 85 Lund, Sweden
| |
Collapse
|
34
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
35
|
Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15:6184-223. [PMID: 24733068 PMCID: PMC4013623 DOI: 10.3390/ijms15046184] [Citation(s) in RCA: 1292] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that obesity is closely associated with an increased risk of metabolic diseases such as insulin resistance, type 2 diabetes, dyslipidemia and nonalcoholic fatty liver disease. Obesity results from an imbalance between food intake and energy expenditure, which leads to an excessive accumulation of adipose tissue. Adipose tissue is now recognized not only as a main site of storage of excess energy derived from food intake but also as an endocrine organ. The expansion of adipose tissue produces a number of bioactive substances, known as adipocytokines or adipokines, which trigger chronic low-grade inflammation and interact with a range of processes in many different organs. Although the precise mechanisms are still unclear, dysregulated production or secretion of these adipokines caused by excess adipose tissue and adipose tissue dysfunction can contribute to the development of obesity-related metabolic diseases. In this review, we focus on the role of several adipokines associated with obesity and the potential impact on obesity-related metabolic diseases. Multiple lines evidence provides valuable insights into the roles of adipokines in the development of obesity and its metabolic complications. Further research is still required to fully understand the mechanisms underlying the metabolic actions of a few newly identified adipokines.
Collapse
Affiliation(s)
- Un Ju Jung
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 Sankyuk Dong Puk-ku, Daegu 702-701, Korea.
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 Sankyuk Dong Puk-ku, Daegu 702-701, Korea.
| |
Collapse
|
36
|
Knudsen JG, Murholm M, Carey AL, Biensø RS, Basse AL, Allen TL, Hidalgo J, Kingwell BA, Febbraio MA, Hansen JB, Pilegaard H. Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One 2014; 9:e84910. [PMID: 24416310 PMCID: PMC3885654 DOI: 10.1371/journal.pone.0084910] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/28/2013] [Indexed: 01/22/2023] Open
Abstract
Expression of brown adipose tissue (BAT) associated proteins like uncoupling protein 1 (UCP1) in inguinal WAT (iWAT) has been suggested to alter iWAT metabolism. The aim of this study was to investigate the role of interleukin-6 (IL-6) in exercise training and cold exposure-induced iWAT UCP1 expression. The effect of daily intraperitoneal injections of IL-6 (3 ng/g) in C57BL/6 mice for 7 days on iWAT UCP1 expression was examined. In addition, the expression of UCP1 in iWAT was determined in response to 3 days of cold exposure (4°C) and 5 weeks of exercise training in wild type (WT) and whole body IL-6 knockout (KO) mice. Repeated injections of IL-6 in C57BL/6 mice increased UCP1 mRNA but not UCP1 protein content in iWAT. Cold exposure increased iWAT UCP1 mRNA content similarly in IL-6 KO and WT mice, while exercise training increased iWAT UCP1 mRNA in WT mice but not in IL-6 KO mice. Additionally, a cold exposure-induced increase in iWAT UCP1 protein content was blunted in IL-6 KO mice, while UCP1 protein content in iWAT was lower in both untrained and exercise trained IL-6 KO mice than in WT mice. In conclusion, repeated daily increases in plasma IL-6 can increase iWAT UCP1 mRNA content and IL-6 is required for an exercise training-induced increase in iWAT UCP1 mRNA content. In addition IL-6 is required for a full induction of UCP1 protein expression in response to cold exposure and influences the UCP1 protein content iWAT of both untrained and exercise trained animals.
Collapse
Affiliation(s)
- Jakob G. Knudsen
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Murholm
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew L. Carey
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Rasmus S. Biensø
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Astrid L. Basse
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamara L. Allen
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Juan Hidalgo
- Department of Neuroscience, Universidad Autonoma de Barcelona, Barcelona, Spain
| | - Bronwyn A. Kingwell
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark A. Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jacob B. Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
37
|
Tsao CH, Shiau MY, Chuang PH, Chang YH, Hwang J. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res 2013; 55:385-97. [PMID: 24347527 PMCID: PMC3934724 DOI: 10.1194/jlr.m041392] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term cytokine-mediated inflammation is a risk factor for obesity and type 2 diabetes mellitus (T2DM). Our previous studies reveal significant associations between promoter single nucleotide polymorphisms (SNPs) of interleukin (IL)-4 and T2DM, as well as between SNPs in genes encoding IL-4/IL-4 receptor and high density lipoproteins. Our animal study reveals that IL-4 regulates glucose/lipid metabolism by promoting glucose tolerance and inhibiting lipid deposits. The above results strongly suggest the involvement of IL-4 in energy homeostasis. In the present study, we focus on examining the regulatory mechanism of IL-4 to lipid metabolism. Our results show that IL-4 inhibits adipogenesis by downregulating the expression of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer-binding protein-α. Additionally, IL-4 promotes lipolysis by enhancing the activity and translocation of hormone sensitive lipase (HSL) in mature adipocytes, which suggests that IL-4 plays a pro-lipolytic role in lipid metabolism by boosting HSL activity. Our results demonstrate that IL-4 harbors pro-lipolysis capacity by inhibiting adipocyte differentiation and lipid accumulation as well as by promoting lipolysis in mature adipocytes to decrease lipid deposits. The above findings uncover the novel roles of IL-4 in lipid metabolism and provide new insights into the interactions among cytokine/immune responses, insulin sensitivity, and metabolism.
Collapse
Affiliation(s)
- Chang-Hui Tsao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Lo SH, Lee KS, Chen LJ, Cheng JT, Chen CH. Increase of PPARδ by dopamine mediated via DA-1 receptor-linked phospholipase C pathway in neonatal rat cardiomyocytes. Auton Neurosci 2013; 177:211-6. [PMID: 23701913 DOI: 10.1016/j.autneu.2013.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Role of peroxisome proliferator-activated receptor δ (PPARδ) in cardiac contraction has recently been established. Dopamine is one of the agents used to treat heart failure in clinics. But the mediation of PPARδ in cardiac action of dopamine is still unclear. METHODS The present study is aimed to clarify this point using neonatal rat cardiomyocytes to investigate the changes of PPARδ expression and cardiac troponin I (cTnI) phosphorylation by Western blotting analysis. Antagonists of receptors, inhibitor of phospholipase C (PLC) (U73122), calcium chelator (BAPTA-AM), and inhibitor of protein kinase A (PKAI) were also applied. We silenced PPARδ by RNAi to identify the major role of PPARδ in dopamine-induced actions. RESULTS Dopamine increases PPARδ expression and cardiac troponin I (cTnI) phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. Moreover, both actions of dopamine were blocked by DA1 receptor antagonist and PLC inhibitor but not by PKAI. The increase of cTnI phosphorylation by dopamine was also inhibited in cardiomyocytes silenced by RNAi of PPARδ. CONCLUSION We suggest that dopamine can enhance cardiac contraction mainly through an activation of DA1 receptor-linked PLC pathway to increase cellular calcium ions for the increase of PPARδ expression.
Collapse
Affiliation(s)
- Shih-Hsiang Lo
- Department of Internal Medicine - Cardiology, Taipei City Hospital - Zhongxing Branch, Datong Dist., Taipei City 10341, Taiwan
| | | | | | | | | |
Collapse
|
39
|
The role of triglyceride lipases in cancer associated cachexia. Trends Mol Med 2013; 19:292-301. [PMID: 23499576 PMCID: PMC3655383 DOI: 10.1016/j.molmed.2013.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 12/18/2022]
Abstract
Cancer associated cachexia (CAC) is a complex multiorgan syndrome frequently associated with various forms of cancer. Affected patients suffer from a dramatic loss of skeletal muscle and adipose tissue. Most cases are accompanied by anorexia, and nutritional supplements are not sufficient to stop or reverse its course. CAC impairs many forms of therapeutic interventions and accounts for 15-20% of all deaths of cancer patients. Recently, several studies have recognized the importance of lipid metabolism and triglyceride hydrolysis as a major metabolic pathway involved in the initiation and/or progression of CAC. In this review, we explore the contributions of the triglyceride lipases to CAC and discuss various factors modulating lipase activity.
Collapse
|
40
|
Sirt1 attenuates camptothecin-induced apoptosis through caspase-3 pathway in porcine preadipocytes. Exp Cell Res 2013; 319:670-83. [DOI: 10.1016/j.yexcr.2012.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/07/2012] [Accepted: 12/31/2012] [Indexed: 11/22/2022]
|
41
|
Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS One 2012. [PMID: 23049990 DOI: 10.1371/journal.pone0046242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1(-/-) mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1(-/-) adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1(+/+) mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1(-/-) mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress.
Collapse
|
42
|
Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS One 2012; 7:e46242. [PMID: 23049990 PMCID: PMC3458842 DOI: 10.1371/journal.pone.0046242] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/28/2012] [Indexed: 12/31/2022] Open
Abstract
Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1−/− mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1−/− adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1+/+ mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1−/− mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress.
Collapse
|
43
|
Chou MT, Lo SH, Cheng KC, Li YX, Chen LJ, Cheng JT. Activation of β-adrenoceptors by dobutamine may induce a higher expression of peroxisome proliferator-activated receptors δ (PPARδ) in neonatal rat cardiomyocytes. ScientificWorldJournal 2012; 2012:248320. [PMID: 22666095 PMCID: PMC3362020 DOI: 10.1100/2012/248320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/28/2012] [Indexed: 11/25/2022] Open
Abstract
Recent evidence showed the role of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Cardiac contraction induced by various agents is critical in restoring the activity of peroxisome proliferator-activated receptors δ (PPARδ) in cardiac myopathy. Because dobutamine is an agent widely used to treat heart failure in emergency setting, this study is aimed to investigate the change of PPARδ in response to dobutamine. Neonatal rat cardiomyocytes were used to examine the effects of dobutamine on PPARδ expression levels and cardiac troponin I (cTnI) phosphorylation via Western blotting analysis. We show that treatment with dobutamine increased PPARδ expression and cTnI phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. These increases were blocked by the antagonist of β1-adrenoceptors. Also, the action of dobutamine was related to the increase of calcium ions and diminished by chelating intracellular calcium. Additionally, dobutamine-induced action was reduced by the inhibition of downstream messengers involved in this calcium-related pathway. Moreover, deletion of PPARδ using siRNA generated the reduction of cTnI phosphorylation in cardiomyocytes treated with dobutamine. Thus, we concluded that PPARδ is increased by dobutamine in cardiac cells.
Collapse
Affiliation(s)
- Ming-Ting Chou
- Department of Cardiology and Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan 73101, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Thompson D, Karpe F, Lafontan M, Frayn K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol Rev 2012; 92:157-91. [PMID: 22298655 DOI: 10.1152/physrev.00012.2011] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Physical activity and exercise are key components of energy expenditure and therefore of energy balance. Changes in energy balance alter fat mass. It is therefore reasonable to ask: What are the links between physical activity and adipose tissue function? There are many complexities. Physical activity is a multifaceted behavior of which exercise is just one component. Physical activity influences adipose tissue both acutely and in the longer term. A single bout of exercise stimulates adipose tissue blood flow and fat mobilization, resulting in delivery of fatty acids to skeletal muscles at a rate well-matched to metabolic requirements, except perhaps in vigorous intensity exercise. The stimuli include adrenergic and other circulating factors. There is a period following an exercise bout when fatty acids are directed away from adipose tissue to other tissues such as skeletal muscle, reducing dietary fat storage in adipose. With chronic exercise (training), there are changes in adipose tissue physiology, particularly an enhanced fat mobilization during acute exercise. It is difficult, however, to distinguish chronic "structural" changes from those associated with the last exercise bout. In addition, it is difficult to distinguish between the effects of training per se and negative energy balance. Epidemiological observations support the idea that physically active people have relatively low fat mass, and intervention studies tend to show that exercise training reduces fat mass. A much-discussed effect of exercise versus calorie restriction in preferentially reducing visceral fat is not borne out by meta-analyses. We conclude that, in addition to the regulation of fat mass, physical activity may contribute to metabolic health through beneficial dynamic changes within adipose tissue in response to each activity bout.
Collapse
|
45
|
Lorente-Cebrián S, Bustos M, Marti A, Fernández-Galilea M, Martinez JA, Moreno-Aliaga MJ. Eicosapentaenoic acid inhibits tumour necrosis factor-α-induced lipolysis in murine cultured adipocytes. J Nutr Biochem 2012; 23:218-27. [DOI: 10.1016/j.jnutbio.2010.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 10/29/2010] [Accepted: 11/22/2010] [Indexed: 12/11/2022]
|
46
|
Little JP, Safdar A, Benton CR, Wright DC. Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. Appl Physiol Nutr Metab 2011; 36:598-607. [DOI: 10.1139/h11-076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been known for more than 4 decades that exercise causes increases in skeletal muscle mitochondrial enzyme content and activity (i.e., mitochondrial biogenesis). Increasing evidence now suggests that exercise can induce mitochondrial biogenesis in a wide range of tissues not normally associated with the metabolic demands of exercise. Perturbations in mitochondrial content and (or) function have been linked to a wide variety of diseases, in multiple tissues, and exercise may serve as a potent approach by which to prevent and (or) treat these pathologies. In this context, the purpose of this review is to highlight the effects of exercise, and the underlying mechanisms therein, on the induction of mitochondrial biogenesis in skeletal muscle, adipose tissue, liver, brain, and kidney.
Collapse
Affiliation(s)
- Jonathan P. Little
- Department of Biology, I.K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Adeel Safdar
- Departments of Kinesiology, Pediatrics and Medicine, McMaster University, Hamilton, ON, Canada
| | - Carley R. Benton
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
47
|
White UA, Stephens JM. The gp130 receptor cytokine family: regulators of adipocyte development and function. Curr Pharm Des 2011; 17:340-6. [PMID: 21375496 DOI: 10.2174/138161211795164202] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/10/2011] [Indexed: 01/04/2023]
Abstract
Gp130 cytokines are involved in the regulation of numerous biological processes, including hematopoiesis, immune response, inflammation, cardiovascular action, and neuronal survival. These cytokines share glycoprotein 130 as a common signal transducer in their receptor complex and typically activate STAT3. Most gp130 cytokines have paracrine or endocrine actions, and their levels can be measured in circulation in rodents and humans. In recent years, various laboratories have conducted studies to demonstrate that gp130 cytokines can modulate adipocyte development and function. Therefore, these studies suggest that some gp130 cytokines may be viable anti-obesity therapeutics. In this review, we will summarize the reported effects of gp130 cytokines on adipocyte differentiation and adipocyte function. In addition, the modulation of gp130 cytokines in conditions of obesity, insulin resistance, and Type 2 diabetes will be presented.
Collapse
Affiliation(s)
- Ursula A White
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
48
|
McGillicuddy FC, Harford KA, Reynolds CM, Oliver E, Claessens M, Mills KH, Roche HM. Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes 2011; 60:1688-98. [PMID: 21515850 PMCID: PMC3114387 DOI: 10.2337/db10-1278] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE High-fat diet (HFD)-induced adipose tissue inflammation is a critical feature of diet-induced insulin resistance (IR); however, the contribution of interleukin-1 receptor I (IL-1RI)-mediated signals to this phenotype has not been defined. We hypothesized that lack of IL-1RI may ameliorate HFD-induced IR by attenuating adipose tissue inflammation. RESEARCH DESIGN AND METHODS Glucose homeostasis was monitored in chow- and HFD-fed wild-type (WT) and IL-1RI(-/-) mice by glucose tolerance and insulin tolerance tests. Macrophage recruitment and cytokine signature of adipose tissue macrophages was evaluated. Insulin sensitivity and cytokine secretion from adipose explants was quantified. Cytokine secretion and adipocyte insulin sensitivity was measured in cocultures of WT or IL-1RI(-/-) macrophages with 3T3L1 adipocytes. Synergistic effects of IL-1β with tumor necrosis factor (TNF)-α on inflammation was monitored in WT and IL-1RI(-/-) bone-marrow macrophages and adipose explants. RESULTS Lean and obese IL-1RI(-/-) animals exhibited enhanced glucose homeostasis by glucose tolerance test and insulin tolerance test. M1/M2 macrophage number in adipose tissue was comparable between genotypes; however, TNF-α and IL-6 secretion was lower from IL-1RI(-/-) adipose tissue macrophages. IL-1RI(-/-) adipose exhibited enhanced insulin sensitivity, elevated pAKT, lower cytokine secretion, and attenuated induction of phosphorylated signal transducer and activator of transcription 3 and suppressor of cytokine signaling molecule 3 after HFD. Coculture of WT, but not IL-1RI(-/-) macrophages, with 3T3L1 adipocytes enhanced IL-6 and TNF-α secretion, reduced adiponectin secretion, and impaired adipocyte insulin sensitivity. TNF-α and IL-1β potently synergized to enhance inflammation in WT macrophages and adipose, an effect lost in the absence of IL-1RI. CONCLUSIONS Lack of IL-1RI protects against HFD-induced IR coincident with reduced local adipose tissue inflammation, despite equivalent immune cell recruitment.
Collapse
Affiliation(s)
- Fiona C. McGillicuddy
- Nutrigenomics Research Group, University College Dublin Conway Institute, School of Public Health & Population Science, University College Dublin, Dublin, Ireland
| | - Karen A. Harford
- Nutrigenomics Research Group, University College Dublin Conway Institute, School of Public Health & Population Science, University College Dublin, Dublin, Ireland
| | - Clare M. Reynolds
- Nutrigenomics Research Group, University College Dublin Conway Institute, School of Public Health & Population Science, University College Dublin, Dublin, Ireland
| | - Elizabeth Oliver
- Nutrigenomics Research Group, University College Dublin Conway Institute, School of Public Health & Population Science, University College Dublin, Dublin, Ireland
| | - Mandy Claessens
- Nutrigenomics Research Group, University College Dublin Conway Institute, School of Public Health & Population Science, University College Dublin, Dublin, Ireland
| | - Kingston H.G. Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, University College Dublin Conway Institute, School of Public Health & Population Science, University College Dublin, Dublin, Ireland
- Corresponding author: Helen M. Roche,
| |
Collapse
|
49
|
McDonough PM, Ingermanson RS, Loy PA, Koon ED, Whittaker R, Laris CA, Hilton JM, Nicoll JB, Buehrer BM, Price JH. Quantification of hormone sensitive lipase phosphorylation and colocalization with lipid droplets in murine 3T3L1 and human subcutaneous adipocytes via automated digital microscopy and high-content analysis. Assay Drug Dev Technol 2011; 9:262-80. [PMID: 21186937 PMCID: PMC3102254 DOI: 10.1089/adt.2010.0302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lipolysis in adipocytes is associated with phosphorylation of hormone sensitive lipase (HSL) and translocation of HSL to lipid droplets. In this study, adipocytes were cultured in a high-throughput format (96-well dishes), exposed to lipolytic agents, and then fixed and labeled for nuclei, lipid droplets, and HSL (or HSL phosphorylated on serine 660 [pHSLser660]). The cells were imaged via automated digital fluorescence microscopy, and high-content analysis (HCA) methods were used to quantify HSL phosphorylation and the degree to which HSL (or pHSLser660) colocalizes with the lipid droplets. HSL:lipid droplet colocalization was quantified through use of Pearson's correlation, Mander's M1 Colocalization, and the Tanimoto coefficient. For murine 3T3L1 adipocytes, isoproterenol, Lys-γ3-melanocyte stimulating hormone, and forskolin elicited the appearance and colocalization of pHSLser660, whereas atrial natriuretic peptide (ANP) did not. For human subcutaneous adipocytes, isoproterenol, forskolin, and ANP activated HSL phosphorylation/colocalization, but Lys-γ3-melanocyte stimulating hormone had little or no effect. Since ANP activates guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase, HSL serine 660 is likely a substrate for cGMP-dependent protein kinase in human adipocytes. For both adipocyte model systems, adipocytes with the greatest lipid content displayed the greatest lipolytic responses. The results for pHSLser660 were consistent with release of glycerol by the cells, a well-established assay of lipolysis, and the HCA methods yielded Z' values >0.50. The results illustrate several key differences between human and murine adipocytes and demonstrate advantages of utilizing HCA techniques to study lipolysis in cultured adipocytes.
Collapse
|
50
|
Yang Y, Yang G. Rosiglitazone regulates IL-6-stimulated lipolysis in porcine adipocytes. Biochem Cell Biol 2011; 88:853-60. [PMID: 20921996 DOI: 10.1139/o10-116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin (IL)-6, a proinflammatory cytokine, stimulates adipocyte lipolysis and induces insulin resistance in obese and diabetic subjects. However, the effects of the anti-diabetic drug rosiglitazone on IL-6-stimulated lipolysis and the underlying molecular mechanism are largely unknown. In this study, we demonstrated that rosiglitazone suppressed IL-6-stimulated lipolysis in differentiated porcine adipocytes by inactivation of extracellular signal-related kinase (ERK). Meanwhile, rosiglitazone enhanced the lipolysis response of adipocytes to isoprenaline. In addition, rosiglitazone significantly reversed IL-6-induced down-regulation of several genes such as perilipin A, peroxisome proliferators activated receptor gamma (PPARγ), and fatty acid synthetase, as well as the up-regulation of IL-6 mRNA. However, mRNA expression of PPARγ coactivator-1 alpha (PCG-1α) was enhanced by rosiglitazone in IL-6-stimulated adipocytes. These results indicate that rosiglitazone suppresses IL-6-stimulated lipolysis in porcine adipocytes through multiple molecular mechanisms.
Collapse
Affiliation(s)
- Yongqing Yang
- College of Life Science, Shanxi Normal University, Linfen, Shanxi Province 041000, People's Republic of China.
| | | |
Collapse
|