1
|
Ajime TT, Serré J, Wüst RCI, Burniston JG, Maes K, Janssens W, Troosters T, Gayan-Ramirez G, Degens H. The combination of smoking with vitamin D deficiency impairs skeletal muscle fiber hypertrophy in response to overload in mice. J Appl Physiol (1985) 2021; 131:339-351. [PMID: 34080919 DOI: 10.1152/japplphysiol.00733.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vitamin D deficiency, which is highly prevalent in the general population, exerts similar deleterious effects on skeletal muscles to those induced by cigarette smoking. We examined whether cigarette smoke (CS) exposure and/or vitamin D deficiency impairs the skeletal muscle hypertrophic response to overload. Male C57Bl/6JolaH mice on a normal or vitamin D-deficient diet were exposed to CS or room air for 18 wk. Six weeks after initiation of smoke or air exposure, sham surgery or denervation of the agonists of the left plantaris muscle was performed. The right leg served as internal control. Twelve weeks later, the hypertrophic response was assessed. CS exposure instigated loss of body and muscle mass, and increased lung inflammatory cell infiltration (P < 0.05), independently of diet. Maximal exercise capacity, whole body strength, in situ plantaris muscle force, and key markers of hypertrophic signaling (Akt, 4EBP1, and FoxO1) were not significantly affected by smoking or diet. The increase in plantaris muscle fiber cross-sectional area in response to overload was attenuated in vitamin D-deficient CS-exposed mice (smoking × diet interaction for hypertrophy, P = 0.03). In situ fatigue resistance was elevated in hypertrophied plantaris, irrespective of vitamin D deficiency and/or CS exposure. In conclusion, our data show that CS exposure or vitamin D deficiency alone did not attenuate the hypertrophic response of overloaded plantaris muscles, but this hypertrophic response was weakened when both conditions were combined. These data suggest that current smokers who also present with vitamin D deficiency may be less likely to respond to a training program.NEW & NOTEWORTHY Plantaris hypertrophy caused by compensatory overload after denervation of the soleus and gastrocnemius muscles showed increased mass and fiber dimensions, but to a lesser extent when vitamin D deficiency was combined with cigarette smoking. Fatigue resistance was elevated in hypertrophied plantaris, irrespective of diet or smoking, whereas physical fitness, hypertrophic markers, and in situ plantaris force were similar. These data showed that the hypertrophic response to overload is attenuated when both conditions are combined.
Collapse
Affiliation(s)
- Tom Tanjeko Ajime
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.,Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Rob C I Wüst
- Laboratory of Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jatin G Burniston
- Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Thierry Troosters
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.,Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Hans Degens
- Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom.,Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
2
|
Saitsu A, Iwazu Y, Matsushita H, Hayashi H, Mizuhashi Y, Kotani K. Low urine pH associated with sarcopenia in the elderly: A multi-center observational study. Medicine (Baltimore) 2021; 100:e26114. [PMID: 34032755 PMCID: PMC8154474 DOI: 10.1097/md.0000000000026114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
The pathophysiology of sarcopenia is complex and must be further explored. While metabolic acidosis may be a risk factor for sarcopenia, it remains unclear whether acidic urine is related to sarcopenia. The purpose of the present study was to investigate the association between sarcopenia and urine pH in the elderly.An elderly population (n = 123 [male = 46]; mean age = 81.7 years) was classified into 2 groups based on the sarcopenia status according to their strength, requirement of assistance in walking, their ability to rise from a chair their ability to climb stairs, and their history of falls. Urinalysis was measured using dipstick tests.The sarcopenia group (n = 32) was significantly older, had less exercise habit and showed a lower urine pH (mean pH = 5.5) in comparison to the nonsarcopenia group (mean pH = 6.2, P < .01). A multivariate analysis that was adjusted for age, male sex, body mass index, uro-renal variables and exercise habit revealed that urine pH (odds ratio, 0.43; 95% confidence interval, 0.22-0.85, P = .02), age and less exercise habit were independently and significantly associated with sarcopenia.The findings of the present study suggest a potential association between metabolic acidosis and the pathophysiology of sarcopenia in the elderly. As urine pH is a simple biomarker that can be obtained using dipstick tests, it is therefore expected to be helpful for detecting sarcopenia in the clinical setting.
Collapse
Affiliation(s)
- Akihiro Saitsu
- Division of Community and Family Medicine, Center for Community Medicine
| | - Yoshitaka Iwazu
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-City, Tochigi
| | - Haruka Matsushita
- Department of Internal Medicine, Kamiamakusa General Hospital, Ryugatake-Town, Kamiamakusa-City
| | - Hirotaka Hayashi
- Department of Internal Medicine, Kamiamakusa General Hospital, Ryugatake-Town, Kamiamakusa-City
| | - Yumiko Mizuhashi
- Department of Internal Medicine, Oguni Municipal Hospital, Oguni-Town, Aso-Country, Kumamoto, Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Center for Community Medicine
| |
Collapse
|
3
|
Ono Y, Miyakoshi N, Kasukawa Y, Nagasawa H, Tsuchie H, Akagawa M, Nagahata I, Yuasa Y, Sato C, Shimada Y. Effects of eldecalcitol and ibandronate on secondary osteoporosis and muscle wasting in rats with adjuvant-induced arthritis. Osteoporos Sarcopenia 2019; 4:128-133. [PMID: 30775555 PMCID: PMC6372828 DOI: 10.1016/j.afos.2018.11.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/27/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovium, progressive erosion of the articular cartilage, and joint destruction. RA also causes secondary osteoporosis and muscle wasting. We investigated the effects of ibandronate (IBN), a bisphosphonate; eldecalcitol (ELD), an active vitamin D3 derivative; and combination treatment with both agents on secondary osteoporosis and muscle wasting using adjuvant-induced arthritis rats. Methods Arthritis was induced in 8-week-old male Lewis rats. Rats were randomized into 4 treatment groups and an untreated normal control group: IBN (subcutaneously, once every 2 weeks, 10 μg/kg), ELD (orally, once daily, 30 ng/kg/day), IBN + ELD, vehicle, and control. Paw thickness measurements were performed for evaluation of arthritis. The femur was scanned using dual-energy X-ray absorptiometry. Cross-sectional areas of left tibialis and anterior muscle fibers and the expression of MuRF1, atrogin-1, MyoD, and myogenin in the gastrocnemius muscle were measured to evaluate muscle wasting. Results IBN and/or ELD increased bone mineral density (BMD) in the femur. In addition, there was an additive effect of combination treatment compared with single treatments for BMD. However, IBN and/or ELD did not inhibit muscle wasting in adjuvant-induced arthritis rats. Conclusions Combination treatment with IBN and ELD may be effective for secondary osteoporosis associated with RA. Other treatments are necessary for muscle wasting associated with RA. Studies in humans are needed to confirm these findings.
Collapse
Affiliation(s)
- Yuichi Ono
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Nagasawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Manabu Akagawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Itsuki Nagahata
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yusuke Yuasa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Chiaki Sato
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
4
|
Margolis LM, Ceglia L, Rivas DA, Dawson-Hughes B, Fielding RA. Pilot Study Examining the Influence of Potassium Bicarbonate Supplementation on Nitrogen Balance and Whole-Body Ammonia and Urea Turnover Following Short-Term Energy Restriction in Older Men. Nutrients 2018; 10:nu10050624. [PMID: 29772642 PMCID: PMC5986503 DOI: 10.3390/nu10050624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 01/07/2023] Open
Abstract
With aging there is a chronic low-grade metabolic-acidosis that may exacerbate negative protein balance during weight loss. The objective of this randomized pilot study was to assess the impact of 90 mmol∙day−1 potassium bicarbonate (KHCO3) versus a placebo (PLA) on 24-h urinary net acid excretion (NAE), nitrogen balance (NBAL), and whole-body ammonia and urea turnover following short-term diet-induced weight loss. Sixteen (KHCO3; n = 8, PLA; n = 8) older (64 ± 4 years) overweight (BMI: 28.5 ± 2.1 kg∙day−1) men completed a 35-day controlled feeding study, with a 7-day weight-maintenance phase followed by a 28-day 30% energy-restriction phase. KHCO3 or PLA supplementation began during energy restriction. NAE, NBAL, and whole-body ammonia and urea turnover (15N-glycine) were measured at the end of the weight-maintenance and energy-restriction phases. Following energy restriction, NAE was −9.8 ± 27.8 mmol∙day−1 in KHCO3 and 43.9 ± 27.8 mmol∙day−1 in PLA (p < 0.05). No significant group or time differences were observed in NBAL or ammonia and urea turnover. Ammonia synthesis and breakdown tended (p = 0.09) to be higher in KHCO3 vs. PLA following energy restriction, and NAE was inversely associated (r = −0.522; p < 0.05) with urea synthesis in all subjects. This pilot study suggests some benefit may exist with KHCO3 supplementation following energy restriction as lower NAE indicated higher urea synthesis.
Collapse
Affiliation(s)
- Lee M Margolis
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Lisa Ceglia
- Bone Metabolism Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, MA 02111, USA.
| | - Donato A Rivas
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Roger A Fielding
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
5
|
Abiri B, Vafa M. Nutrition and sarcopenia: A review of the evidence of nutritional influences. Crit Rev Food Sci Nutr 2017; 59:1456-1466. [DOI: 10.1080/10408398.2017.1412940] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ceglia L, Dawson-Hughes B. Increasing alkali supplementation decreases urinary nitrogen excretion when adjusted for same day nitrogen intake. Osteoporos Int 2017; 28:3355-3359. [PMID: 28842733 PMCID: PMC6592622 DOI: 10.1007/s00198-017-4196-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/10/2017] [Indexed: 01/20/2023]
Abstract
UNLABELLED We examined whether escalating doses of potassium bicarbonate (KHCO3) supplements alter urinary nitrogen excretion expressed as a ratio to same day nitrogen intake (measure of muscle-protein breakdown). The ratio declined significantly from placebo to low to high dose of KHCO3 supplementation in older adults over 3 months, suggesting muscle-sparing. INTRODUCTION Neutralization of dietary acid load with alkali supplementation (i.e., KHCO3) has been hypothesized to have muscle protein-sparing effects. In controlled feeding studies with fixed nitrogen (N) intake/day, 24-h urinary N excretion is a good marker of muscle breakdown. However, in studies with self-selected diets, changes in 24-h urinary N excretion can be influenced by shifts in N intake. METHODS We evaluated changes in 24-h total urinary N excretion as a ratio of N excretion to concurrent N intake in 233 older men and women who participated in an 84-day KHCO3 supplementation randomized placebo-controlled trial. RESULTS After adjustment for relevant cofactors, escalating doses of KHCO3 (1 mmol/kg/day [low] or 1.5 mmol/kg/day [high]) resulted in a progressive decline in urinary N excretion/N intake compared to placebo (overall P for trend = 0.042). The 84-day change in urinary N excretion/N intake in the high-dose KHCO3 group was statistically significantly lower compared to placebo (P = 0.012) but not compared to the low-dose KHCO3 group (P = 0.276). The 84-day change in urinary N excretion/N intake in the low-dose KHCO3 group did not differ significantly from placebo (P = 0.145). CONCLUSIONS Urinary N excretion expressed as ratio to same day N intake declined steadily with increasing doses of KHCO3 supplementation from low 1 mmol/kg/day to high 1.5 mmol/kg/day, suggesting a nitrogen-sparing effect. Compared to urinary N excretion alone, this ratio could be a more reasonable measure of muscle protein metabolism in large-scale long-term human studies. TRIAL REGISTRATION Clinicaltrials.gov NCT1475214.
Collapse
Affiliation(s)
- L Ceglia
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA.
- Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA, USA.
| | - B Dawson-Hughes
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, 02111, USA
- Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
7
|
Bosutti A, Salanova M, Blottner D, Buehlmeier J, Mulder E, Rittweger J, Yap MH, Ganse B, Degens H. Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest. J Appl Physiol (1985) 2016; 121:838-848. [DOI: 10.1152/japplphysiol.00936.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/02/2016] [Indexed: 12/29/2022] Open
Abstract
The effectiveness of whey protein plus potassium bicarbonate-enriched diet (WP+KHCO3) in mitigating disuse-induced changes in muscle fiber oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31 ± 6 yr) once received WP+KHCO3 and once received a standardized isocaloric diet. Muscle biopsies were taken 2 days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole-body aerobic power (V̇o2 max), muscle fatigue, and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles ( P < 0.05), and the fiber oxidative capacity ( P < 0.001) and V̇o2 max ( P = 0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL ( P < 0.001). WP+KHCO3 attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles ( P < 0.01). In conclusion, following 19 days of bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO3 appears to attenuate disuse-induced reductions in fiber oxidative capacity.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Dieter Blottner
- Center for Space Medicine Berlin (ZWMB), Berlin, Germany
- Charité Universitätsmedizin Berlin, Vegetative Anatomy, Berlin, Germany
| | - Judith Buehlmeier
- University of Bonn, Department of Nutrition and Food Science, Bonn, Germany
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Moi Hoon Yap
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bergita Ganse
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
8
|
Cielen N, Heulens N, Maes K, Carmeliet G, Mathieu C, Janssens W, Gayan-Ramirez G. Vitamin D deficiency impairs skeletal muscle function in a smoking mouse model. J Endocrinol 2016; 229:97-108. [PMID: 26906744 PMCID: PMC5064769 DOI: 10.1530/joe-15-0491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with skeletal muscle dysfunction. Vitamin D plays an important role in muscle strength and performance in healthy individuals. Vitamin D deficiency is highly prevalent in COPD, but its role in skeletal muscle dysfunction remains unclear. We examined the time-course effect of vitamin D deficiency on limb muscle function in mice with normal or deficient vitamin D serum levels exposed to air or cigarette smoke for 6, 12 or 18 weeks. The synergy of smoking and vitamin D deficiency increased lung inflammation and lung compliance from 6 weeks on with highest emphysema scores observed at 18 weeks. Smoking reduced body and muscle mass of the soleus and extensor digitorum longus (EDL), but did not affect contractility, despite type II atrophy. Vitamin D deficiency did not alter muscle mass but reduced muscle force over time, downregulated vitamin D receptor expression, and increased muscle lipid peroxidation but did not alter actin and myosin expression, fiber dimensions or twitch relaxation time. The combined effect of smoking and vitamin D deficiency did not further deteriorate muscle function but worsened soleus mass loss and EDL fiber atrophy at 18 weeks. We conclude that the synergy of smoking and vitamin D deficiency in contrast to its effect on lung disease, had different, independent but important noxious effects on skeletal muscles in a mouse model of mild COPD.
Collapse
Affiliation(s)
- Nele Cielen
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Nele Heulens
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental EndocrinologyDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental EndocrinologyDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| |
Collapse
|
9
|
Kinoshita H, Miyakoshi N, Kasukawa Y, Sakai S, Shiraishi A, Segawa T, Ohuchi K, Fujii M, Sato C, Shimada Y. Effects of eldecalcitol on bone and skeletal muscles in glucocorticoid-treated rats. J Bone Miner Metab 2016; 34:171-8. [PMID: 25944421 DOI: 10.1007/s00774-015-0664-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/20/2015] [Indexed: 11/26/2022]
Abstract
Glucocorticoids cause secondary osteoporosis and myopathy, characterized by type II muscle fiber atrophy. We examined whether a new vitamin D3 analogue, eldecalcitol, could inhibit glucocorticoid-induced osteopenia or myopathy in rats, and also determined the effects of prednisolone (PSL) and/or eldecalcitol on muscle-related gene expression. Six-month-old female Wistar rats were randomized into four groups: PSL group (10 mg/kg PSL); E group (0.05 µg/kg eldecalcitol); PSL + E group; and control group. PSL, eldecalcitol, and vehicles were administered daily for 2 or 4 weeks. Right calf muscle strength, muscle fatigue, cross-sectional areas (CSAs) of left tibialis anterior muscle fibers, and bone mineral density (BMD) were measured following administration. Pax7, MyoD, and myogenin mRNA levels in gastrocnemius muscles were also determined. Muscle strength was significantly higher in the PSL + E group than in the PSL group (p < 0.05) after 4 weeks, but not after 2 weeks. No significant difference in muscle fatigue was seen between groups at 2 or 4 weeks. CSAs of type II muscle fibers were significantly larger in the E group and the PSL + E group than in the PSL group at 4 weeks (p = 0.0093, p = 0.0443, respectively). Eldecalcitol treatment for 4 weeks maintained the same BMD as the PSL + E group. After 2 weeks, but not 4 weeks, eldecalcitol treatment significantly increased Pax7 and myogenin mRNA expression in gastrocnemius muscle, and PSL also stimulated myogenin expression. Eldecalcitol appears to increase muscle volume and to protect against femur BMD loss in PSL-administered rats, and it may also stimulate myoblast differentiation into early myotubes.
Collapse
Affiliation(s)
- Hayato Kinoshita
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Sadaoki Sakai
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Ayako Shiraishi
- Medical Plan Management Department, Chugai Pharmaceutical Co., Ltd., 1-1 Nihonbashi-Muromachi 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan
| | - Toyohito Segawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kentaro Ohuchi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Masashi Fujii
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Chie Sato
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
10
|
Pojednic RM, Ceglia L, Olsson K, Gustafsson T, Lichtenstein AH, Dawson-Hughes B, Fielding RA. Effects of 1,25-dihydroxyvitamin D3 and vitamin D3 on the expression of the vitamin d receptor in human skeletal muscle cells. Calcif Tissue Int 2015; 96:256-63. [PMID: 25479835 PMCID: PMC4429607 DOI: 10.1007/s00223-014-9932-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/15/2014] [Indexed: 12/28/2022]
Abstract
Vitamin D receptor (VDR) expression and action in non-human skeletal muscle have recently been reported in several studies, yet data on the activity and expression of VDR in human muscle cells are scarce. We conducted a series of studies to examine the (1) effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on VDR gene expression in human primary myoblasts, (2) effect of 16-week supplementation with vitamin D3 on intramuscular VDR gene expression in older women, and (3) association between serum 25-hydroxyvitamin D (25OHD) and intramuscular VDR protein concentration in older adults. Human primary myoblasts were treated with increasing concentrations of 1,25(OH)2D3 for 18 h. A dose-dependent treatment effect was noted with 1 nmol/L of 1,25OH2D3 increasing intramuscular VDR mRNA expression (mean fold change±SD 1.36±0.33; P=0.05). Muscle biopsies were obtained at baseline and 16 weeks after vitamin D3 supplementation (4,000 IU/day) in older adults. Intramuscular VDR mRNA was significantly different from placebo after 16 weeks of vitamin D3 (1.2±0.99; -3.2±1.7, respectively; P=0.04). Serum 25OHD and intramuscular VDR protein expression were examined by immunoblot. 25OHD was associated with intramuscular VDR protein concentration (R=0.67; P=0.0028). In summary, our study found VDR gene expression increases following treatment with 1,25OH2D3 in human myoblasts. 25OHD is associated with VDR protein and 16 weeks of supplementation with vitamin D3 resulted in a persistent increase in VDR gene expression of vitamin D3 in muscle tissue biopsies. These findings suggest treatment with vitamin D compounds results in sustained increases in VDR in human skeletal muscle.
Collapse
Affiliation(s)
- Rachele M Pojednic
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St., Boston, MA, 02111, USA,
| | | | | | | | | | | | | |
Collapse
|
11
|
Leal ALRC, Albuquerque JPC, Matos MS, Fortunato RS, Carvalho DP, Rosenthal D, da Costa VMC. Thyroid hormones regulate skeletal muscle regeneration after acute injury. Endocrine 2015; 48:233-40. [PMID: 24798447 DOI: 10.1007/s12020-014-0271-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/08/2014] [Indexed: 01/21/2023]
Abstract
We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.
Collapse
Affiliation(s)
- Anna Lúcia R C Leal
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, bloco G, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21949-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Pojednic RM, Ceglia L. The emerging biomolecular role of vitamin D in skeletal muscle. Exerc Sport Sci Rev 2014; 42:76-81. [PMID: 24508736 DOI: 10.1249/jes.0000000000000013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, we summarize current evidence for a direct effect of vitamin D on skeletal muscle. A number of studies identify the receptor for 1,25-dihydroxyvitamin-D3 (vitamin D receptor (VDR)) and the enzyme CYP27B1 (1-α-hydroxylase) in muscle. We hypothesize that vitamin D acts on myocytes via the VDR, and we examine proposed effects on myocyte proliferation, differentiation, growth, and inflammation.
Collapse
Affiliation(s)
- Rachele M Pojednic
- 1Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; 2Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center; and 3Bone Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | | |
Collapse
|
13
|
Abstract
Age-related muscle loss impacts on whole-body metabolism and leads to frailty and sarcopenia, which are risk factors for fractures and mortality. Although nutrients are integral to muscle metabolism the relationship between nutrition and muscle loss has only been extensively investigated for protein and amino acids. The objective of the present paper is to describe other aspects of nutrition and their association with skeletal muscle mass. Mechanisms for muscle loss relate to imbalance in protein turnover with a number of anabolic pathways of which the mechanistic TOR pathway and the IGF-1–Akt–FoxO pathways are the most characterised. In terms of catabolism the ubiquitin proteasome system, apoptosis, autophagy, inflammation, oxidation and insulin resistance are among the major mechanisms proposed. The limited research associating vitamin D, alcohol, dietary acid–base load, dietary fat and anti-oxidant nutrients with age-related muscle loss is described. Vitamin D may be protective for muscle loss; a more alkalinogenic diet and diets higher in the anti-oxidant nutrients vitamin C and vitamin E may also prevent muscle loss. Although present recommendations for prevention of sarcopenia focus on protein, and to some extent on vitamin D, other aspects of the diet including fruits and vegetables should be considered. Clearly, more research into other aspects of nutrition and their role in prevention of muscle loss is required.
Collapse
|
14
|
Travis Thomas D. Could vitamin D and bicarbonate supplementation synergize to mitigate age-related loss of muscle? Endocrine 2013; 44:280-2. [PMID: 23824600 DOI: 10.1007/s12020-013-0011-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 01/29/2023]
Affiliation(s)
- D Travis Thomas
- Division of Clinical Nutrition, University of Kentucky, Lexington, KY, USA,
| |
Collapse
|