1
|
Bhattacharya S, Fernandez CJ, Kamrul-Hasan ABM, Pappachan JM. Monogenic diabetes: An evidence-based clinical approach. World J Diabetes 2025; 16:104787. [DOI: 10.4239/wjd.v16.i5.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Monogenic diabetes is a heterogeneous disorder characterized by hyperglycemia arising from defects in a single gene. Maturity-onset diabetes of the young (MODY) is the most common type with 14 subtypes, each linked to specific mutations affecting insulin synthesis, secretion and glucose regulation. Common traits across MODY subtypes include early-onset diabetes, a family history of autosomal dominant diabetes, lack of features of insulin resistance, and absent islet cell autoimmunity. Many cases are misdiagnosed as type 1 and type 2 diabetes mellitus. Biomarkers and scoring systems can help identify candidates for genetic testing. GCK-MODY, a common subtype, manifests as mild hyperglycemia and doesn’t require treatment except during pregnancy. In contrast, mutations in HNF4A, HNF1A, and HNF1B genes lead to progressive beta-cell failure and similar risks of complications as type 2 diabetes mellitus. Neonatal diabetes mellitus (NDM) is a rare form of monogenic diabetes that usually presents within the first six months. Half of the cases are lifelong, while others experience transient remission. Permanent NDM is most commonly due to activating mutations in genes encoding the adenosine triphosphate-sensitive potassium channel (KCNJ11 or ABCC8) and can be transitioned to sulfonylurea after confirmation of diagnosis. Thus, in many cases, monogenic diabetes offers an opportunity to provide precision treatment. The scope has broadened with next-generation sequencing (NGS) technologies, replacing older methods like Sanger sequencing. NGS can be for targeted gene panels, whole-exome sequencing (WES), or whole-genome sequencing. Targeted gene panels offer specific information efficiently, while WES provides comprehensive data but comes with bioinformatic challenges. The surge in testing has also led to an increase in variants of unknown significance (VUS). Deciding whether VUS is disease-causing or benign can be challenging. Computational models, functional studies, and clinical knowledge help to determine pathogenicity. Advances in genetic testing technologies offer hope for improved diagnosis and personalized treatment but also raise concerns about interpretation and ethics.
Collapse
Affiliation(s)
| | - Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, Lincolnshire, United Kingdom
| | | | - Joseph M Pappachan
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, Greater Manchester, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
2
|
Eser M, Hekimoglu G, Dursun F. Unraveling the genetic basis of MODY: insights from next-generation sequencing. J Appl Genet 2025; 66:375-381. [PMID: 39361122 DOI: 10.1007/s13353-024-00907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is an uncommon kind of monogenic diabetes. The major characteristics of MODY include not having insulin resistance and the absence of autoimmunity, early onset, and a family history suggesting autosomal-dominant inheritance. Nonetheless, genetic testing is necessary for diagnosis. The MODY-related genes CEL, ABCC8, PDX1, GCK, WFS1, HNF4A, HNF1A, and HNF1B were examined using Next Generation Sequencing (NGS) in this investigation. This study aimed to evaluate the genetic and clinical characteristics of patients referred with a preliminary diagnosis of MODY, retrospectively. A total of 30 patients (18 male and 12 female) participated, with ages ranging from 5 to 56. Eight distinct genetic variants were identified in 17 cases (57%). Pathogenic variants in the HNF1A gene have been identified. Likely pathogenic variants were found in CEL, ABCC8, GCK, and HNF4A. The genes APPL1, BLK, INS, KCNJ1, KLF11, NEUROD1, PAX4, RFX6, and ZFP57 were shown to be mutation-free. Four distinct pathogenic variants are found in this series. Unexpectedly high rates of pathogenic variants have been found in the HNF1A gene. In 27% of cases, there is a family history of vertically transmitted diabetes. The study highlights the importance of genetic testing for individuals with early-onset diabetes and a strong family history of the condition. Comprehensive genetic testing and increased public awareness are essential for MODY.
Collapse
Affiliation(s)
- Metin Eser
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gulam Hekimoglu
- Department of Histology and Embryology, International Faculty of Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Fatma Dursun
- Department of Pediatric Endocrinology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
3
|
Serbis A, Kantza E, Siomou E, Galli-Tsinopoulou A, Kanaka-Gantenbein C, Tigas S. Monogenic Defects of Beta Cell Function: From Clinical Suspicion to Genetic Diagnosis and Management of Rare Types of Diabetes. Int J Mol Sci 2024; 25:10501. [PMID: 39408828 PMCID: PMC11476815 DOI: 10.3390/ijms251910501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Monogenic defects of beta cell function refer to a group of rare disorders that are characterized by early-onset diabetes mellitus due to a single gene mutation affecting insulin secretion. It accounts for up to 5% of all pediatric diabetes cases and includes transient or permanent neonatal diabetes, maturity-onset diabetes of the young (MODY), and various syndromes associated with diabetes. Causative mutations have been identified in genes regulating the development or function of the pancreatic beta cells responsible for normal insulin production and/or release. To date, more than 40 monogenic diabetes subtypes have been described, with those caused by mutations in HNF1A and GCK genes being the most prevalent. Despite being caused by a single gene mutation, each type of monogenic diabetes, especially MODY, can appear with various clinical phenotypes, even among members of the same family. This clinical heterogeneity, its rarity, and the fact that it shares some features with more common types of diabetes, can make the clinical diagnosis of monogenic diabetes rather challenging. Indeed, several cases of MODY or syndromic diabetes are accurately diagnosed in adulthood, after having been mislabeled as type 1 or type 2 diabetes. The recent widespread use of more reliable sequencing techniques has improved monogenic diabetes diagnosis, which is important to guide appropriate treatment and genetic counselling. The current review aims to summarize the latest knowledge on the clinical presentation, genetic confirmation, and therapeutic approach of the various forms of monogenic defects of beta cell function, using three imaginary clinical scenarios and highlighting clinical and laboratory features that can guide the clinician in reaching the correct diagnosis.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
- Department of Endocrinology & Diabetes Center, University of Ioannina, 45110 Ioannina, Greece;
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, 54636 Thessaloniki, Greece;
| | - Evanthia Kantza
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
| | - Ekaterini Siomou
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
| | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, 54636 Thessaloniki, Greece;
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism and Aghia Sophia ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stelios Tigas
- Department of Endocrinology & Diabetes Center, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
4
|
Tatum SM, Holland WL. Germline and conditional ghrelin knockout increases islet size. J Clin Invest 2023; 133:e175799. [PMID: 38099493 PMCID: PMC10721140 DOI: 10.1172/jci175799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Conflicting studies in recent years report that genetic or pharmacological increases or decreases in ghrelin either increase or have no effect on islet size. In this issue of the JCI, Gupta, Burstein, and colleagues applied a rigorous approach to determine the effects of reducing ghrelin on islet size in germline and conditional ghrelin-knockout mice as well as across varying ages and weight. Both germline and conditional ghrelin-knockout mice associated with increased islet size, which was further exacerbated by older age and diet-induced obesity. These findings suggest that modulation of ghrelin may open a therapeutic window to prevent or treat diabetes.
Collapse
|
5
|
Tosur M, Philipson LH. Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY). J Diabetes Investig 2022; 13:1465-1471. [PMID: 35638342 PMCID: PMC9434589 DOI: 10.1111/jdi.13860] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Maturity-onset of diabetes of the young (MODY) are monogenic forms of diabetes characterized by early onset diabetes with autosomal dominant inheritance. Since its first description about six decades ago, there have been significant advancements in our understanding of MODY from clinical presentations to molecular diagnostics and therapeutic responses. The prevalence of MODY is estimated as at least 1.1-6.5% of the pediatric diabetes population with a high degree of geographic variability that might arise from several factors in the criteria used to ascertain cases. GCK-MODY, HNF1A-MODY, and HNF4A-MODY account for >90% of MODY cases. While some MODY forms do not require treatment (i.e., GCK-MODY), some others are highly responsive to oral agents (i.e., HNF1A-MODY). The risk of micro- and macro-vascular complications of diabetes also differ significantly between MODY forms. Despite its high clinical impact, 50-90% of MODY cases are estimated to be misdiagnosed as type 1 or type 2 diabetes. Although there are many clinical features suggestive of MODY diagnosis, there is no single clinical criterion. An online MODY Risk Calculator can be a useful tool for clinicians in the decision-making process for MODY genetic testing in some situations. Molecular genetic tests with a commercial gene panel should be performed in cases with a suspicion of MODY. Unresolved atypical cases can be further studied by exome or genome sequencing in a clinical or research setting, as available.
Collapse
Affiliation(s)
- Mustafa Tosur
- The Division of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes CenterUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
6
|
Mota LFM, Santos SWB, Júnior GAF, Bresolin T, Mercadante MEZ, Silva JAV, Cyrillo JNSG, Monteiro FM, Carvalheiro R, Albuquerque LG. Meta-analysis across Nellore cattle populations identifies common metabolic mechanisms that regulate feed efficiency-related traits. BMC Genomics 2022; 23:424. [PMID: 35672696 PMCID: PMC9172108 DOI: 10.1186/s12864-022-08671-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Feed efficiency (FE) related traits play a key role in the economy and sustainability of beef cattle production systems. The accurate knowledge of the physiologic background for FE-related traits can help the development of more efficient selection strategies for them. Hence, multi-trait weighted GWAS (MTwGWAS) and meta-analyze were used to find genomic regions associated with average daily gain (ADG), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), and residual feed intake (RFI). The FE-related traits and genomic information belong to two breeding programs that perform the FE test at different ages: post-weaning (1,024 animals IZ population) and post-yearling (918 animals for the QLT population). Results The meta-analyze MTwGWAS identified 14 genomic regions (-log10(p -value) > 5) regions mapped on BTA 1, 2, 3, 4, 7, 8, 11, 14, 15, 18, 21, and 29. These regions explained a large proportion of the total genetic variance for FE-related traits across-population ranging from 20% (FCR) to 36% (DMI) in the IZ population and from 22% (RFI) to 28% (ADG) in the QLT population. Relevant candidate genes within these regions (LIPE, LPL, IGF1R, IGF1, IGFBP5, IGF2, INS, INSR, LEPR, LEPROT, POMC, NPY, AGRP, TGFB1, GHSR, JAK1, LYN, MOS, PLAG1, CHCD7, LCAT, and PLA2G15) highlighted that the physiological mechanisms related to neuropeptides and the metabolic signals controlling the body's energy balance are responsible for leading to greater feed efficiency. Integrated meta-analysis results and functional pathway enrichment analysis highlighted the major effect of biological functions linked to energy, lipid metabolism, and hormone signaling that mediates the effects of peptide signals in the hypothalamus and whole-body energy homeostasis affecting the genetic control of FE-related traits in Nellore cattle. Conclusions Genes and pathways associated with common signals for feed efficiency-related traits provide better knowledge about regions with biological relevance in physiological mechanisms associated with differences in energy metabolism and hypothalamus signaling. These pleiotropic regions would support the selection for feed efficiency-related traits, incorporating and pondering causal variations assigning prior weights in genomic selection approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08671-w.
Collapse
Affiliation(s)
- Lucio F M Mota
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil.
| | - Samuel W B Santos
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil
| | - Gerardo A Fernandes Júnior
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil
| | - Tiago Bresolin
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil
| | - Maria E Z Mercadante
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho - SP, São Paulo, 14174-000, Brazil.,National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil
| | - Josineudson A V Silva
- National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil.,School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu - SP, 18618-681, Brazil
| | - Joslaine N S G Cyrillo
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho - SP, São Paulo, 14174-000, Brazil
| | - Fábio M Monteiro
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho - SP, São Paulo, 14174-000, Brazil
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil.,National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil
| | - Lucia G Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil. .,National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil.
| |
Collapse
|
7
|
Kettunen JLT, Rantala E, Dwivedi OP, Isomaa B, Sarelin L, Kokko P, Hakaste L, Miettinen PJ, Groop LC, Tuomi T. A multigenerational study on phenotypic consequences of the most common causal variant of HNF1A-MODY. Diabetologia 2022; 65:632-643. [PMID: 34951657 PMCID: PMC8894160 DOI: 10.1007/s00125-021-05631-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Systematic studies on the phenotypic consequences of variants causal of HNF1A-MODY are rare. Our aim was to assess the phenotype of carriers of a single HNF1A variant and genetic and clinical factors affecting the clinical spectrum. METHODS We conducted a family-based multigenerational study by comparing heterozygous carriers of the HNF1A p.(Gly292fs) variant with the non-carrier relatives irrespective of diabetes status. During more than two decades, 145 carriers and 131 non-carriers from 12 families participated in the study, and 208 underwent an OGTT at least once. We assessed the polygenic risk score for type 2 diabetes, age at onset of diabetes and measures of body composition, as well as plasma glucose, serum insulin, proinsulin, C-peptide, glucagon and NEFA response during the OGTT. RESULTS Half of the carriers remained free of diabetes at 23 years, one-third at 33 years and 13% even at 50 years. The median age at diagnosis was 21 years (IQR 17-35). We could not identify clinical factors affecting the age at conversion; sex, BMI, insulin sensitivity or parental carrier status had no significant effect. However, for 1 SD unit increase of a polygenic risk score for type 2 diabetes, the predicted age at diagnosis decreased by 3.2 years. During the OGTT, the carriers had higher levels of plasma glucose and lower levels of serum insulin and C-peptide than the non-carriers. The carriers were also leaner than the non-carriers (by 5.0 kg, p=0.012, and by 2.1 kg/m2 units of BMI, p=2.2 × 10-4, using the first adult measurements) and, possibly as a result of insulin deficiency, demonstrated higher lipolytic activity (with medians of NEFA at fasting 621 vs 441 μmol/l, p=0.0039; at 120 min during an OGTT 117 vs 64 μmol/l, p=3.1 × 10-5). CONCLUSIONS/INTERPRETATION The most common causal variant of HNF1A-MODY, p.(Gly292fs), presents not only with hyperglycaemia and insulin deficiency, but also with increased lipolysis and markedly lower adult BMI. Serum insulin was more discriminative than C-peptide between carriers and non-carriers. A considerable proportion of carriers develop diabetes after young adulthood. Even among individuals with a monogenic form of diabetes, polygenic risk of diabetes modifies the age at onset of diabetes.
Collapse
Affiliation(s)
- Jarno L T Kettunen
- Folkhälsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | | | - Om P Dwivedi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Bo Isomaa
- Folkhälsan Research Center, Helsinki, Finland
| | | | - Paula Kokko
- Folkhälsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Liisa Hakaste
- Folkhälsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Leif C Groop
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Tiinamaija Tuomi
- Folkhälsan Research Center, Helsinki, Finland.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
8
|
Miyachi Y, Miyazawa T, Ogawa Y. HNF1A Mutations and Beta Cell Dysfunction in Diabetes. Int J Mol Sci 2022; 23:ijms23063222. [PMID: 35328643 PMCID: PMC8948720 DOI: 10.3390/ijms23063222] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Understanding the genetic factors of diabetes is essential for addressing the global increase in type 2 diabetes. HNF1A mutations cause a monogenic form of diabetes called maturity-onset diabetes of the young (MODY), and HNF1A single-nucleotide polymorphisms are associated with the development of type 2 diabetes. Numerous studies have been conducted, mainly using genetically modified mice, to explore the molecular basis for the development of diabetes caused by HNF1A mutations, and to reveal the roles of HNF1A in multiple organs, including insulin secretion from pancreatic beta cells, lipid metabolism and protein synthesis in the liver, and urinary glucose reabsorption in the kidneys. Recent studies using human stem cells that mimic MODY have provided new insights into beta cell dysfunction. In this article, we discuss the involvement of HNF1A in beta cell dysfunction by reviewing previous studies using genetically modified mice and recent findings in human stem cell-derived beta cells.
Collapse
|
9
|
"A LEAP 2 conclusions? Targeting the ghrelin system to treat obesity and diabetes". Mol Metab 2020; 46:101128. [PMID: 33246141 PMCID: PMC8085568 DOI: 10.1016/j.molmet.2020.101128] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The hormone ghrelin stimulates food intake, promotes adiposity, increases body weight, and elevates blood glucose. Consequently, alterations in plasma ghrelin levels and the functioning of other components of the broader ghrelin system have been proposed as potential contributors to obesity and diabetes. Furthermore, targeting the ghrelin system has been proposed as a novel therapeutic strategy for obesity and diabetes. SCOPE OF REVIEW The current review focuses on the potential for targeting ghrelin and other proteins comprising the ghrelin system as a treatment for obesity and diabetes. The main components of the ghrelin system are introduced. Data supporting a role for the endogenous ghrelin system in the development of obesity and diabetes along with data that seemingly refute such a role are outlined. An argument for further research into the development of ghrelin system-targeted therapeutic agents is delineated. Also, an evidence-based discussion of potential factors and contexts that might influence the efficacy of this class of therapeutics is provided. MAJOR CONCLUSIONS It would not be a "leap to" conclusions to suggest that agents which target the ghrelin system - including those that lower acyl-ghrelin levels, raise LEAP2 levels, block GHSR activity, and/or raise desacyl-ghrelin signaling - could represent efficacious novel treatments for obesity and diabetes.
Collapse
|
10
|
Song L, Yuan J, Liu Y, Zhang D, Zhang C, Lin Q, Li M, Su K, Li Y, Gao G, Ma R, Dong J. Ghrelin system is involved in improvements in glucose metabolism mediated by hyperbaric oxygen treatment in a streptozotocin‑induced type 1 diabetes mouse model. Mol Med Rep 2020; 22:3767-3776. [PMID: 32901885 PMCID: PMC7533472 DOI: 10.3892/mmr.2020.11481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder for which the only effective therapy is insulin replacement. Hyperbaric oxygen (HBO) therapy has demonstrated potential in improving hyperglycemia and as a treatment option for T1DM. Ghrelin and HBO have been previously reported to exert proliferative, anti-apoptotic and anti-inflammatory effects in pancreatic cells. The present study investigated the mechanism underlying HBO- and ghrelin system-mediated regulation of glucose metabolism. Male C57BL/6 mice were intraperitoneally injected with streptozotocin (STZ; 150 mg/kg) to induce T1DM before the diabetic mice were randomly assigned into the T1DM and T1DM + HBO groups. Mice in the T1DM + HBO group received HBO (1 h; 100% oxygen; 2 atmospheres absolute) daily for 2 weeks. Significantly lower blood glucose levels and food intake were observed in mice in the T1DM + HBO group. Following HBO treatment, islet β-cell area were increased whereas those of α-cell were decreased in the pancreas. In addition, greater hepatic glycogen storage in liver was observed, which coincided with higher pancreatic glucose transporter 2 (GLUT2) expression levels and reduced hepatic GLUT2 membrane trafficking. There were also substantially higher total plasma ghrelin concentrations and gastric ghrelin-O-acyl transferase (GOAT) expression levels in mice in the T1DM + HBO group. HBO treatment also abolished reductions in pancreatic GOAT expression levels in T1DM mice. Additionally, hepatic growth hormone secretagogue receptor-1a levels were found to be lower in mice in the T1DM + HBO group compared with those in the T1DM group. These results suggest that HBO administration improved glucose metabolism in a STZ-induced T1DM mouse model. The underlying mechanism involves improved insulin-release, glucose-sensing and regulation of hepatic glycogen storage, an observation that was also likely dependent on the ghrelin signalling system.
Collapse
Affiliation(s)
- Limin Song
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Junhua Yuan
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yuan Liu
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Di Zhang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Caishun Zhang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qian Lin
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Manwen Li
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Kaizhen Su
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yanrun Li
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Guangkai Gao
- Department of Hyperbaric Medicine, Hospital of Chinese People's Liberation Army, Qingdao, Shandong 266072, P.R. China
| | - Ruixia Ma
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, P.R. China
| | - Jing Dong
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
11
|
Abstract
MODY (Maturity Onset Diabetes of the Young) is a type of diabetes resulting from a pathogenic effect of gene mutations. Up to date, 13 MODY genes are known. Gene HNF1A is one of the most common causes of MODY diabetes (HNF1A-MODY; MODY3). This gene is polymorphic and more than 1200 pathogenic and non-pathogenic HNF1A variants were described in its UTRs, exons and introns. For HNF1A-MODY, not just gene but also phenotype heterogeneity is typical. Although there are some clinical instructions, HNF1A-MODY patients often do not meet every diagnostic criteria or they are still misdiagnosed as type 1 and type 2 diabetics. There is a constant effort to find suitable biomarkers to help with in distinguishing of MODY3 from Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). DNA sequencing is still necessary for unambiguous confirmation of clinical suspicion of MODY. NGS (Next Generation Sequencing) methods brought discoveries of multiple new gene variants and new instructions for their pathogenicity classification were required. The most actual problem is classification of variants with uncertain significance (VUS) which is a stumbling-block for clinical interpretation. Since MODY is a hereditary disease, DNA analysis of family members is helpful or even crucial. This review is updated summary about HNF1A-MODY genetics, pathophysiology, clinics functional studies and variant classification.
Collapse
|
12
|
Shankar K, Gupta D, Mani BK, Findley BG, Osborne-Lawrence S, Metzger NP, Liu C, Berglund ED, Zigman JM. Ghrelin Protects Against Insulin-Induced Hypoglycemia in a Mouse Model of Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2020; 11:606. [PMID: 33042003 PMCID: PMC7518392 DOI: 10.3389/fendo.2020.00606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 01/28/2023] Open
Abstract
Insulin-induced hypoglycemia is a major limiting factor in maintaining optimal blood glucose in patients with type 1 diabetes and advanced type 2 diabetes. Luckily, a counterregulatory response (1) system exists to help minimize and reverse hypoglycemia, although more studies are needed to better characterize its components. Recently, we showed that the hormone ghrelin is permissive for the normal CRR to insulin-induced hypoglycemia when assessed in mice without diabetes. Here, we tested the hypothesis that ghrelin also is protective against insulin-induced hypoglycemia in the streptozotocin (2) mouse model of type 1 diabetes. STZ-treated ghrelin-knockout (KO) (3) mice as well as STZ-treated wild-type (WT) littermates were subjected to a low-dose hyperinsulinemic-hypoglycemic clamp procedure. The STZ-treated ghrelin-KO mice required a much higher glucose infusion rate than the STZ-treated WT mice. Also, the STZ-treated ghrelin-KO mice exhibited attenuated plasma epinephrine and norepinephrine responses to the insulin-induced hypoglycemia. Taken together, our data suggest that without ghrelin, STZ-treated mice modeling type 1 diabetes are unable to mount the usual CRR to insulin-induced hypoglycemia.
Collapse
Affiliation(s)
- Kripa Shankar
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Deepali Gupta
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bharath K. Mani
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Brianna G. Findley
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Sherri Osborne-Lawrence
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Nathan P. Metzger
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Chen Liu
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States
| | - Eric D. Berglund
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey M. Zigman
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Jeffrey M. Zigman
| |
Collapse
|
13
|
Hohendorff J, Zapala B, Ludwig-Slomczynska AH, Solecka I, Ucieklak D, Matejko B, Mrozinska S, Malecki MT, Szopa M. The utility of MODY Probability Calculator in probands of families with early-onset autosomal dominant diabetes from Poland. Minerva Med 2019; 110:499-506. [PMID: 31638358 DOI: 10.23736/s0026-4806.19.06053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) accounts for 1-2% of all diabetes cases. Unfortunately, circa 90% of MODY cases are misdiagnosed as type 1 or type 2 diabetes. A proper genetic diagnosis based on automatic sequencing is crucial for the use of a tailored treatment. However, this method is still expensive and, thus, patients' selection for testing should be performed precisely. In 2012, an easy-to-use tool was developed in Exeter, UK, to support genetic testing for MODY in the British population. The aim of the study was to assess the utility of MODY Probability Calculator in probands from Polish families with early-onset autosomal dominant diabetes. METHODS We have performed a retrospective analysis of 155 probands who were qualified for genetic testing between 2006 and 2018. Probands were recruited for MODY testing based on the following criteria: 1) early age of diagnosis (≤35 years); 2) a positive, multigenerational family history of diabetes. Automatic sequencing, Sanger and, in case of initial negative results, new generation sequencing (NGS) of a set of 28 genes, were performed. MODY Probability was calculated on the website www.diabetesgenes.org. RESULTS The group of probands consisted of 64 GCK-, 37 HNF1A-, and three HNF4A-MODY patients and 51 NGS-negative subjects. The median positive predictive value (PPV) was 75.5% (95% CI: 75.5-75.5%), 49.4% (95% CI: 24.4-75.5%), 45.5% (95% CI: 21.0-75.5%) and 49.4% (95% CI: 32.9-75.5%) for GCK-, HNF1A-, HNF4A-MODY and NGS-negative, respectively. The discriminative accuracy, as expressed by AUC, of PPV between MODY and NGS negative groups was 0.62 (95% CI: 0.52-0.71) with the corresponding sensitivity of 71.2% and specificity of 51.0%. CONCLUSIONS In this highly pre-selected group of probands that were qualified for genetic testing based on clinical features, the use of MODY Probability Calculator would not substantially improve the patients' selection process for genetic testing. Further efforts to improve this tool are desirable.
Collapse
Affiliation(s)
- Jerzy Hohendorff
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Barbara Zapala
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - Iwona Solecka
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Damian Ucieklak
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Bartlomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Sandra Mrozinska
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Krakow University Hospital, Krakow, Poland
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland -
- Krakow University Hospital, Krakow, Poland
| |
Collapse
|
14
|
Mani BK, Shankar K, Zigman JM. Ghrelin's Relationship to Blood Glucose. Endocrinology 2019; 160:1247-1261. [PMID: 30874792 PMCID: PMC6482034 DOI: 10.1210/en.2019-00074] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
Much effort has been directed at studying the orexigenic actions of administered ghrelin and the potential effects of the endogenous ghrelin system on food intake, food reward, body weight, adiposity, and energy expenditure. Although endogenous ghrelin's actions on some of these processes remain ambiguous, its glucoregulatory actions have emerged as well-recognized features during extreme metabolic conditions. The blood glucose-raising actions of ghrelin are beneficial during starvation-like conditions, defending against life-threatening falls in blood glucose, but they are seemingly detrimental in obese states and in certain monogenic forms of diabetes, contributing to hyperglycemia. Also of interest, blood glucose negatively regulates ghrelin secretion. This article reviews the literature suggesting the existence of a blood glucose-ghrelin axis and highlights the factors that mediate the glucoregulatory actions of ghrelin, especially during metabolic extremes such as starvation and diabetes.
Collapse
Affiliation(s)
- Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kripa Shankar
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
- Correspondence: Jeffrey M. Zigman, MD, PhD, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390. E-mail:
| |
Collapse
|
15
|
Mani BK, Zigman JM. Ghrelin as a Survival Hormone. Trends Endocrinol Metab 2017; 28:843-854. [PMID: 29097101 PMCID: PMC5777178 DOI: 10.1016/j.tem.2017.10.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
Ghrelin administration induces food intake and body weight gain. Based on these actions, the ghrelin system was initially proposed as an antiobesity target. Subsequent studies using genetic mouse models have raised doubts about the role of the endogenous ghrelin system in mediating body weight homeostasis or obesity. However, this is not to say that the endogenous ghrelin system is not important metabolically or otherwise. Here we review an emerging concept in which the endogenous ghrelin system serves an essential function during extreme nutritional and psychological challenges to defend blood glucose, protect body weight, avoid exaggerated depression, and ultimately allow survival.
Collapse
Affiliation(s)
- Bharath K Mani
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine, and Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9077, USA
| | - Jeffrey M Zigman
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine, and Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9077, USA.
| |
Collapse
|
16
|
Hohendorff J, Szopa M, Skupien J, Kapusta M, Zapala B, Platek T, Mrozinska S, Parpan T, Glodzik W, Ludwig-Galezowska A, Kiec-Wilk B, Klupa T, Malecki MT. A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in type 2 diabetes mellitus. Endocrine 2017; 57:272-279. [PMID: 28593615 PMCID: PMC5511327 DOI: 10.1007/s12020-017-1341-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
AIMS SGLT2 inhibitors are a new class of oral hypoglycemic agents used in type 2 diabetes (T2DM). Their effectiveness in maturity onset diabetes of the young (MODY) is unknown. We aimed to assess the response to a single dose of 10 mg dapagliflozin in patients with Hepatocyte Nuclear Factor 1 Alpha (HNF1A)-MODY, Glucokinase (GCK)-MODY, and type 2 diabetes. METHODS We examined 14 HNF1A-MODY, 19 GCK-MODY, and 12 type 2 diabetes patients. All studied individuals received a single morning dose of 10 mg of dapagliflozin added to their current therapy of diabetes. To assess the response to dapagliflozin we analyzed change in urinary glucose to creatinine ratio and serum 1,5-Anhydroglucitol (1,5-AG) level. RESULTS There were only four patients with positive urine glucose before dapagliflozin administration (one with HNF1A-MODY, two with GCK-MODY, and one with T2DM), whereas after SGLT-2 inhibitor use, glycosuria occurred in all studied participants. Considerable changes in mean glucose to creatinine ratio after dapagliflozin administration were observed in all three groups (20.51 ± 12.08, 23.19 ± 8.10, and 9.84 ± 6.68 mmol/mmol for HNF1A-MODY, GCK-MODY, and T2DM, respectively, p < 0.001 for all comparisons). Post-hoc analysis revealed significant differences in mean glucose to creatinine ratio change between type 2 diabetes and each monogenic diabetes in response to dapagliflozin (p = 0.02, p = 0.003 for HNF1-A and GCK MODY, respectively), but not between the two MODY forms (p = 0.7231). Significant change in serum 1,5-AG was noticed only in T2DM and it was -6.57 ± 7.34 mg/ml (p = 0.04). CONCLUSIONS A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in T2DM. Whether flozins are a valid therapeutic option in these forms of MODY requires long-term clinical studies.
Collapse
Affiliation(s)
- J Hohendorff
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Department of Metabolic Diseases, University Hospital, Krakow, Poland
| | - M Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Department of Metabolic Diseases, University Hospital, Krakow, Poland
| | - J Skupien
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Department of Metabolic Diseases, University Hospital, Krakow, Poland
| | - M Kapusta
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - B Zapala
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - T Platek
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - S Mrozinska
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Department of Metabolic Diseases, University Hospital, Krakow, Poland
| | - T Parpan
- Brothers Hospitallers' of St. John of God Hospital, Krakow, Poland
| | - W Glodzik
- Sanatio Medical Center, Krakow, Poland
| | - A Ludwig-Galezowska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - B Kiec-Wilk
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Department of Metabolic Diseases, University Hospital, Krakow, Poland
| | - T Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Department of Metabolic Diseases, University Hospital, Krakow, Poland
| | - M T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland.
- Department of Metabolic Diseases, University Hospital, Krakow, Poland.
| |
Collapse
|
17
|
Abstract
Purpose Hepatocyte nuclear factor 1 alpha (HNF1α) defects cause Mature Onset Diabetes of the Young type 3 (MODY3), characterized by defects in beta-cell insulin secretion. However, HNF1α is involved in many other metabolic pathways with relevance for monogenic or polygenic type 2 diabetes. We aimed to investigate gut hormones, lipids, and insulin regulation in response to a meal test in HNF1α defect carriers (MODY3) compared to non-diabetic subjects (controls) and type 2 diabetes (T2D). Methods We administered a standardized liquid meal to each participant. Over 6 hours, we measured post-meal responses of insulin regulation (blood glucose, c-peptide, insulin), gut hormones (ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1) and lipids (non-esterified fatty acids [NEFA] and triglycerides). Results We found that MODY3 participants had lower insulin secretion indices than controls and T2D participants, showing the expected β-cell defect. MODY3 had similar glycated hemoglobin levels (HbA1c median [IQR]: 6.5 [5.6–7.6]%) compared to T2D (median: 6.6 [6.2–6.9]%; P<0.05). MODY3 had greater insulin sensitivity (Matsuda index: 71.9 [29.6; 125.5]) than T2D (3.2 [4.0; 6.0]; P<0.05). MODY3 experienced a larger decrease in the ratio of NEFA to insulin (NEFA 30–0 / insulin 30–0: -39 [-78; -30] x104) in the early post-prandial period (0–30 minutes) compared to controls and to T2D (-2.0 [-0.6; -6.4] x104; P<0.05). MODY3 had lower fasting (0.66 [0.46; 1.2] mM) and post-meal triglycerides levels compared to T2D (fasting: 2.3 [1.7; 2.7] mM; P<0.05). We did not detect significant post-meal differences in ghrelin and incretins between MODY3 and other groups. Conclusion In response to a standard meal test, MODY3 showed greater early post-prandial NEFA diminution in response to relatively low early insulin secretion, and they maintained very low post-prandial triglycerides levels.
Collapse
|
18
|
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev 2016; 37:190-222. [PMID: 27035557 PMCID: PMC4890265 DOI: 10.1210/er.2015-1116] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1-5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes-potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity-have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable "human models" that have contributed to our understanding of the pathophysiological basis of common T1D and T2D.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
19
|
Grzanka M, Matejko B, Szopa M, Kiec-Wilk B, Malecki MT, Klupa T. Assessment of Newly Proposed Clinical Criteria to Identify HNF1A MODY in Patients with an Initial Diagnosis of Type 1 or Type 2 Diabetes Mellitus. Adv Med 2016; 2016:4243784. [PMID: 26942212 PMCID: PMC4749764 DOI: 10.1155/2016/4243784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 11/17/2022] Open
Abstract
The most common form of maturity-onset diabetes of the young (MODY) is caused by mutations in the hepatocyte nuclear factor 1A (HNF1A) gene. However, most HNF1A mutation-carriers are initially misdiagnosed with type 1 (T1DM) or type 2 (T2DM) diabetes mellitus; hence, they often receive nonoptimal treatment. The aim of our study was to test newly proposed clinical criteria for the identification of HNF1A MODY in patients with a diagnosis of T1DM or T2DM. To achieve this, the following criteria to preselect patients for screening were used: for T1DM: TDIR (total daily insulin requirement) > 0.3 IU of insulin/kg and the percentage of basal insulin > 30% of TDIR; for T2DM: sulphonylurea- (SU-) based oral treatment (monotherapy or combined with Metformin) > 15 years and BMI < 30 kg/m(2). We reviewed the clinical data of 140 patients with T1DM and 524 clinically diagnosed with T2DM. On the basis of these criteria, we found a HNF1A mutation in 1 out of 2 individuals with a diagnosis of T1DM and 1 out of 11 selected individuals with a diagnosis of T2DM. We believe that the simplicity of the proposed criteria might prove useful in clinical practice, as an alternative to more time-consuming classical diagnostic techniques.
Collapse
Affiliation(s)
- Malgorzata Grzanka
- Department of Metabolic Diseases, Jagiellonian University Medical College, Jagiellonian University, 15 Kopernika Street, 31-501 Krakow, Poland
| | - Bartlomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Jagiellonian University, 15 Kopernika Street, 31-501 Krakow, Poland
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Jagiellonian University, 15 Kopernika Street, 31-501 Krakow, Poland
| | - Beata Kiec-Wilk
- Department of Metabolic Diseases, Jagiellonian University Medical College, Jagiellonian University, 15 Kopernika Street, 31-501 Krakow, Poland
| | - Maciej T. Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Jagiellonian University, 15 Kopernika Street, 31-501 Krakow, Poland
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Jagiellonian University, 15 Kopernika Street, 31-501 Krakow, Poland
| |
Collapse
|
20
|
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that accounts for at least 1 % of all cases of diabetes mellitus. MODY classically presents as non-insulin-requiring diabetes in lean individuals typically younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95 % of MODY cases in the USA are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible; at the same time, they are detecting other mutations in the same genes of unknown clinical significance. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals.
Collapse
Affiliation(s)
- Jeffrey W Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition and Program in Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 660 West Redwood Street, Room 445C, Baltimore, MD, 21201, USA.
| | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition and Program in Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 660 West Redwood Street, Room 445C, Baltimore, MD, 21201, USA.
- University of Maryland School of Medicine, 660 West Redwood Street, Room 464, Baltimore, MD, 21201, USA.
| |
Collapse
|