1
|
Darvish L, Bahreyni-Toossi MT, Aghaee-Bakhtiari SH, Firouzjaei AA, Amraee A, Tarighatnia A, Azimian H. Inducing apoptosis by using microRNA in radio-resistant prostate cancer: an in-silico study with an in-vitro validation. Mol Biol Rep 2023:10.1007/s11033-023-08545-8. [PMID: 37294470 DOI: 10.1007/s11033-023-08545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND One of the problems with radiation therapy (RT) is that prostate tumor cells are often radio-resistant, which results in treatment failure. This study aimed to determine the procedure involved in radio-resistant prostate cancer apoptosis. For a deeper insight, we devoted a novel bioinformatics approach to analyze the targeting between microRNAs and radio-resistant prostate cancer genes. METHOD This study uses the Tarbase, and the Mirtarbase databases as validated experimental databases and mirDIP as a predicted database to identify microRNAs that target radio-resistant anti-apoptotic genes. These genes are used to construct the radio-resistant prostate cancer genes network using the online tool STRING. The validation of causing apoptosis by using microRNA was confirmed with flow cytometry of Annexin V. RESULTS The anti-apoptotic gene of radio-resistant prostate cancer included BCL-2, MCL1, XIAP, STAT3, NOTCH1, REL, REL B, BIRC3, and AKT1 genes. These genes were identified as anti-apoptotic genes for radio-resistant prostate cancer. The crucial microRNA that knockdown all of these genes was hsa-miR-7-5p. The highest rate of apoptotic cells in a cell transfected with hsa-miR-7-5p was (32.90 ± 1.49), plenti III (21.99 ± 3.72), and the control group (5.08 ± 0.88) in 0 Gy (P < 0.001); also, this rate was in miR-7-5p (47.01 ± 2.48), plenti III (33.79 ± 3.40), and the control group (16.98 ± 3.11) (P < 0.001) for 4 Gy. CONCLUSION The use of this new treatment such as gene therapy to suppress genes involved in apoptosis can help to improve the treatment results and increase the quality of life of patients with prostate cancer.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Ali Tarighatnia
- Department of Medical Physics, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Boccellino M, De Rosa A, Di Domenico M. An ELISA Test Able to Predict the Development of Oral Cancer: The Significance of the Interplay between Steroid Receptors and the EGF Receptor for Early Diagnosis. Diagnostics (Basel) 2023; 13:2001. [PMID: 37370896 DOI: 10.3390/diagnostics13122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oral disorders including non-homogeneous leukoplakia, erythroplakia, erosive lichen planus, and many others can potentially progress to oral squamous cell carcinoma (OSCC). Currently, the late diagnosis of OSCC contributes to high mortality rates, emphasizing the need for specific markers and early intervention. In this study, we present a novel, quick, sensitive, and non-invasive method for the early detection and screening of oral cancer, enabling the qualitative assessment of neoplastic forms even before the onset of symptoms. Our method directly examines the expression of oral cancer biomarkers, such as the epithelial growth factor receptor (EGFR), and steroid receptors, including the androgen receptor (AR) and the estrogen receptor (ER). The crosstalk between sexual hormones and the EGF receptor plays a crucial role in the progression of different types of cancers, including head and neck squamous cell carcinoma. To implement our method, we developed a kit box comprising nine wells or stations, each containing buffers, lysis systems, and dried/lyophilized antibodies stored at room temperature. The kit includes instruments for sample collection and a PVDF strip (Immobilon) with specific primary antibodies immobilized on it. These antibodies capture the target proteins from cytological samples. Additionally, complementary tools are provided to ensure efficient utilization and optimal test performance. The technique can be performed outside the laboratory, either "patient side" with an instant chemocolorimetric response or with a digital reader utilizing the enzyme-linked immunosorbent assay (ELISA) method.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Alfredo De Rosa
- Multidisciplinary Medical-Surgical Department, Odontostomatology Section, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Boccellino M, Ambrosio P, Ballini A, De Vito D, Scacco S, Cantore S, Feola A, Di Donato M, Quagliuolo L, Sciarra A, Galasso G, Crocetto F, Imbimbo C, Boffo S, Di Zazzo E, Di Domenico M. The Role of Curcumin in Prostate Cancer Cells and Derived Spheroids. Cancers (Basel) 2022; 14:3348. [PMID: 35884410 PMCID: PMC9320241 DOI: 10.3390/cancers14143348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
A major challenge in the clinical management of prostate cancer (PC) is to inhibit tumor growth and prevent metastatic spreading. In recent years, considerable efforts have been made to discover new compounds useful for PC therapy, and promising advances in this field were reached. Drugs currently used in PC therapy frequently induce resistance and PC progresses toward metastatic castration-resistant forms (mCRPC), making it virtually incurable. Curcumin, a commercially available nutritional supplement, represents an attractive therapeutic agent for mCRPC patients. In the present study, we compared the effects of chemotherapeutic drugs such as docetaxel, paclitaxel, and cisplatin, to curcumin, on two PC cell lines displaying a different metastatic potential: DU145 (moderate metastatic potential) and PC-3 (high metastatic potential). Our results revealed a dose-dependent reduction of DU145 and PC-3 cell viability upon treatment with curcumin similar to chemotherapeutic agents (paclitaxel, cisplatin, and docetaxel). Furthermore, we explored the EGFR-mediated signaling effects on ERK activation in DU145 and PC-3 cells. Our results showed that DU145 and PC-3 cells overexpress EGFR, and the treatment with chemotherapeutic agents or curcumin reduced EGFR expression levels and ERK activation. Finally, chemotherapeutic agents and curcumin reduced the size of DU145 and PC-3 spheroids and have the potential to induce apoptosis and also in Matrigel. In conclusion, despite different studies being carried out to identify the potential synergistic curcumin combinations with chemopreventive/therapeutic efficacy for inhibiting PC growth, the results show the ability of curcumin used alone, or in combinatorial approaches, to impair the size and the viability of PC-derived spheroids.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Pasqualina Ambrosio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Danila De Vito
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.D.V.); (S.S.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.D.V.); (S.S.)
| | | | - Antonia Feola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Antonella Sciarra
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Silvia Boffo
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122-6078, USA;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122-6078, USA;
| |
Collapse
|
4
|
Isacco CG, Ballini A, De Vito D, Nguyen KCD, Cantore S, Bottalico L, Quagliuolo L, Boccellino M, Di Domenico M, Santacroce L, Arrigoni R, Dipalma G, Inchingolo F. Rebalancing the Oral Microbiota as an Efficient Tool in Endocrine, Metabolic and Immune Disorders. Endocr Metab Immune Disord Drug Targets 2021; 21:777-784. [PMID: 32727337 DOI: 10.2174/1871530320666200729142504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
The current treatment and prevention procedures of oral disorders follow a very targeted approach considering mouth and its structures as a system that is completely independent, than the rest of the body. The main therapeutic approach is to keep the levels of oral bacteria and hygiene in an acceptable range compatible with oral-mouth health, completely separated from systemic microbial homeostasis (eubiosis vs dysbiosis). This can negatively impact the diagnosis of a more complex systemic disease and its progression. Dysbiosis occurs as a consequence of imbalance in oral and gut microbiota which leads to cardiovascular diseases, diabetes mellitus, rheumatoid arthritis, and Alzheimer's disease, as reported in current literature. Likewise, there is a need to highlight and develop a novel philosophical approach in the treatments for oral diseases that will necessarily involve nonconventional approaches.
Collapse
Affiliation(s)
- Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80100 Naples, Italy
| | - Danila De Vito
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Stefania Cantore
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Lucrezia Bottalico
- PolyPheno S.r.l. Academic Spin Off, University of Bari "Aldo Moro", 74123 Taranto, Italy
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80100 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80100 Naples, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80100 Naples, Italy
| | - Luigi Santacroce
- Jonian Department, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70125 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| |
Collapse
|
5
|
Pandareesh MD, Kameshwar VH, Byrappa K. Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation. Endocr Metab Immune Disord Drug Targets 2021; 21:253-267. [PMID: 32682386 DOI: 10.2174/1871530320666200719020709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment..
Collapse
Affiliation(s)
- Mirazkar D Pandareesh
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Vivek H Kameshwar
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Kullaiah Byrappa
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| |
Collapse
|
6
|
Chen J, Wang F, Lu Y, Yang S, Chen X, Huang Y, Lin X. CLC-3 and SOX2 regulate the cell cycle in DU145 cells. Oncol Lett 2020; 20:372. [PMID: 33154770 PMCID: PMC7608052 DOI: 10.3892/ol.2020.12235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Sex determining region Y-box 2 (SOX2) is a transcription factor that serves a role in numerous different types of malignant cancer. Altered expression of chloride channel proteins has been described in a variety of malignancies. However, the association between SOX2 and chloride channel proteins is not yet fully understood. The present study investigated the association between SOX2 and chloride voltage-gated channel 3 (CLC-3) in prostate cancer. Flow cytometry demonstrated that the inactivation of CLC-3 or SOX2 arrested cell cycle progression in the G0/G1 phase. Furthermore, CLC-3 was observed to bind to SOX2, and vice versa, by co-immunoprecipitation. SOX2 appears to initiate and maintain prostate cancer tumorigenesis, in part, by modulating the cell cycle. These findings indicate the potential of SOX2 and CLC-3 as targets for the development of multi-targeted therapeutics.
Collapse
Affiliation(s)
- Jiahong Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuli Lu
- Department of Epidemiology and Health Statistics, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shangqi Yang
- Department of Epidemiology and Health Statistics, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Youwei Huang
- Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Key Laboratory for Environmental Exposure and Health, Environment College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
7
|
Yao C, Cheng X, Guo X, Lu X, Bu F, Xu Y. NNT-AS1 modulates prostate cancer cell proliferation, apoptosis and migration through miR-496/DDIT4 axis. Cancer Cell Int 2020; 20:463. [PMID: 32982585 PMCID: PMC7513494 DOI: 10.1186/s12935-020-01505-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Emerging studies have disclosed long non-coding RNAs (lncRNAs) as pivotal modulators in the progression of prostate cancer (PCa). Current research planned to figure out the involvement of lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1) in PCa. Methods RNA expression was examined using RT-qPCR in PCa cells. Functional assays assessed the viability, proliferation, apoptosis and migration of PCa cells. RNA pull down and luciferase reporter experiments detected the interplay between miRNA and lncRNA or mRNA. Results NNT-AS1 was apparently upregulated in PCa cells. NNT-AS1 deficiency abrogated PCa cell viability, proliferation and migration but promoted apoptosis. Besides, miR-496 could be sequestered by NNT-AS1 to elevate the expression of DNA damage inducible transcript 4 (DDIT4) in PCa. Rescue assays indicated that overexpressed DDIT4 or restrained miR-496 could reverse the influence of NNT-AS1 depletion on malignant processes in PCa cells. Conclusion NNT-AS1 contributes to the malignant phenotypes of PCa cells through targeting miR-496 to boost DDIT4 expression.
Collapse
Affiliation(s)
- Changlei Yao
- Department of Urinary Surgery, People's Hospital of Rizhao, No.126, Tai an Street, Dong Gang District, Rizhao, 276826 Shandong China
| | - Xianghua Cheng
- Department of Urinary Surgery, People's Hospital of Rizhao, No.126, Tai an Street, Dong Gang District, Rizhao, 276826 Shandong China
| | - Xiuquan Guo
- Department of Urinary Surgery, People's Hospital of Rizhao, No.126, Tai an Street, Dong Gang District, Rizhao, 276826 Shandong China
| | - Xulou Lu
- Department of Urinary Surgery, People's Hospital of Rizhao, No.126, Tai an Street, Dong Gang District, Rizhao, 276826 Shandong China
| | - Fan Bu
- Department of Urinary Surgery, People's Hospital of Rizhao, No.126, Tai an Street, Dong Gang District, Rizhao, 276826 Shandong China
| | - Yanfen Xu
- Department of Surgery 2, People's Hospital of Rizhao, No.126, Tai an Street, Dong Gang District, Rizhao, 276826 Shandong China
| |
Collapse
|
8
|
Hu M, Yang J. Down-regulation of lncRNA UCA1 enhances radiosensitivity in prostate cancer by suppressing EIF4G1 expression via sponging miR-331-3p. Cancer Cell Int 2020; 20:449. [PMID: 32943997 PMCID: PMC7488500 DOI: 10.1186/s12935-020-01538-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We aimed to explore the role of long noncoding RNA urothelial carcinoma-associated 1 (lncRNA UCA1) and its underlying mechanism in the radioresistance of prostate cancer (PCa). METHODS QRT-PCR was conducted to measure the expression of UCA1, microRNA-331-3p (miR-331-3p) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) in PCa tissues and cells. The relative protein level was determined by western blot assay. Cell proliferation and apoptosis were detected by MTT, colony formation assay, and flow cytometry, respectively. The target interaction between miR-331-3p and UCA1 or EIF4G1 was predicted through bioinformatics analysis, and verified by dual-luciferase reporter gene assay system. RESULTS The high levels of UCA1 and EIF4G1 as well as the low level of miR-331-3p were observed in PCa tissues and cell lines. UCA1 and EIF4G1 expression were significantly upregulated by Gy radiation treatement. UCA1 or EIF4G1 knockdown repressed cell growth and enhanced cell apoptosis in 22RV1 and DU145 cells under radiation. Moreover, overexpression of EIF4G1 abolished UCA1 knockdown-induced effect on 6 Gy irradiated PCa cells. UCA1 sponged miR-331-3p to regulate EIF4G1 expression. CONCLUSIONS LncRNA UCA1 deletion suppressed the radioresistance to PCa by suppressing EIF4G1 expression via miR-331-3p. UCA1 acted as a potential regulator of radioresistance of PCa, providing a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Minhua Hu
- Department of Nursing College, Xi’an Medical University, Xi’an, 710021 Shaanxi Province China
| | - Jincheng Yang
- Department of Urology Surgery, The First People’s Hospital of Yinchuan, No. 4, Liqun West Street, Xingqing District, Yinchuan, 750004 Ningxia China
| |
Collapse
|
9
|
MicroRNA-107 enhances radiosensitivity by suppressing granulin in PC-3 prostate cancer cells. Sci Rep 2020; 10:14584. [PMID: 32883962 PMCID: PMC7471693 DOI: 10.1038/s41598-020-71128-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death worldwide. Radiotherapy is often applied for the treatment, but radioresistance is a challenge in some patients. MicroRNAs have been reported to be involved in the DNA damage response induced by ionizing radiation and recent studies have reported microRNA-mediated radiosensitivity. In the present study, we found microRNA-107 (miR-107) enhanced radiosensitivity by regulating granulin (GRN) in prostate cancer (PC-3) cells. MiR-107 was downregulated and GRN was upregulated in response to ionizing radiation in PC-3 cells. Overexpression of miR-107 and knockdown of GRN promoted the sensitivity of PC3 cells to ionizing radiation. By rescue experiments of GRN, we revealed that radiosensitivity enhanced by miR-107 can be attenuated by GRN overexpression in PC-3 cells. Furthermore, we showed miR-107 enhanced radiation-induced G1/S phase arrest and G2/M phase transit, and identify delayed apoptosis by suppressing p21 and phosphorylation of CHK2. Collectively, these results highlight an unrecognized mechanism of miR-107-mediated GRN regulation in response to ionizing radiation and may advance therapeutic strategies for the treatment of prostate cancer.
Collapse
|
10
|
Crocetto F, Boccellino M, Barone B, Di Zazzo E, Sciarra A, Galasso G, Settembre G, Quagliuolo L, Imbimbo C, Boffo S, Angelillo IF, Di Domenico M. The Crosstalk between Prostate Cancer and Microbiota Inflammation: Nutraceutical Products Are Useful to Balance This Interplay? Nutrients 2020; 12:E2648. [PMID: 32878054 PMCID: PMC7551491 DOI: 10.3390/nu12092648] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
The human microbiota shows pivotal roles in urologic health and disease. Emerging studies indicate that gut and urinary microbiomes can impact several urological diseases, both benignant and malignant, acting particularly on prostate inflammation and prostate cancer. Indeed, the microbiota exerts its influence on prostate cancer initiation and/or progression mechanisms through the regulation of chronic inflammation, apoptotic processes, cytokines, and hormonal production in response to different pathogenic noxae. Additionally, therapies' and drugs' responses are influenced in their efficacy and tolerability by microbiota composition. Due to this complex potential interconnection between prostate cancer and microbiota, exploration and understanding of the involved relationships is pivotal to evaluate a potential therapeutic application in clinical practice. Several natural compounds, moreover, seem to have relevant effects, directly or mediated by microbiota, on urologic health, posing the human microbiota at the crossroad between prostatic inflammation and prostate cancer development. Here, we aim to analyze the most recent evidence regarding the possible crosstalk between prostate, microbiome, and inflammation.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80135 Naples, Italy; (F.C.); (B.B.); (C.I.)
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Biagio Barone
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80135 Naples, Italy; (F.C.); (B.B.); (C.I.)
| | - Erika Di Zazzo
- Department of Health Science “V. Tiberio”, 86100 Campobasso, Italy
| | - Antonella Sciarra
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80135 Naples, Italy;
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Giuliana Settembre
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80135 Naples, Italy; (F.C.); (B.B.); (C.I.)
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, 19122 PA, USA;
| | | | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, 19122 PA, USA;
| |
Collapse
|
11
|
Sex Hormones and Inflammation Role in Oral Cancer Progression: A Molecular and Biological Point of View. JOURNAL OF ONCOLOGY 2020; 2020:9587971. [PMID: 32684934 PMCID: PMC7336237 DOI: 10.1155/2020/9587971] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Oral cancers have been proven to arise from precursors lesions and to be related to risk behaviour such as alcohol consumption and smoke. However, the present paper focuses on the role of chronic inflammation, related to chronical oral infections and/or altered immune responses occurring during dysimmune and autoimmune diseases, in the oral cancerogenesis. Particularly, oral candidiasis and periodontal diseases introduce a vicious circle of nonhealing and perpetuation of the inflammatory processes, thus leading toward cancer occurrence via local and systemic inflammatory modulators and via genetic and epigenetic factors.
Collapse
|
12
|
Long Non-coding RNAs as Important Biomarkers in Laryngeal Cancer and Other Head and Neck Tumours. Int J Mol Sci 2019; 20:ijms20143444. [PMID: 31336999 PMCID: PMC6678449 DOI: 10.3390/ijms20143444] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022] Open
Abstract
Head and neck carcinoma (HNC) is a heterogeneous disease encompassing a variety of tumors according to the origin. Laryngeal cancer (LC) represents one of the most frequent tumors in the head and neck region. Despite clinical studies and advance in treatment, satisfactory curative strategy has not yet been reached. Therefore, there is an urgent need for the identification of specific molecular signatures that better predict the clinical outcomes and markers that serve as suitable therapeutic targets. Long non-coding RNAs (lncRNA) are reported as important regulators of gene expression and represent an innovative pharmacological application as molecular biomarkers in cancer. The purpose of this review is to discuss the most relevant epigenetic and histological prognostic biomarkers in HNC, with particular focus on LC. We summarize the emerging roles of long non-coding RNAs in HNC and LC development and their possible use in early diagnosis.
Collapse
|
13
|
Boccellino M, Pinto F, Ieluzzi V, Giovane A, Quagliuolo L, Fariello C, Coppola M, Carlucci A, Santini M, Ferati K, Bexheti-Ferati A, Giordano A, Di Domenico M. Proteomics analysis of human serum of patients with non-small-cell lung cancer reveals proteins as diagnostic biomarker candidates. J Cell Physiol 2019; 234:23798-23806. [PMID: 31180588 DOI: 10.1002/jcp.28948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
Abstract
Non-small-cell lung carcinomas (NSCLC) is the most common type of lung cancer and it has a poor prognosis, because overall survival after 5 years is 20-25% for all stages. Thus, it is extremely important to increase the survival rate in the early stages NSCLC by focusing on novel screening tests of cancer identifying specific biomarkers expression associated with a more accurate tumor staging and patient prognosis. In this study, we focused our attention on quantitative proteomics of three heavily glycosylated serum proteins: AMBP, α2 macroglobulin, and SERPINA1. In particular, we analyzed serum samples from 20 NSCLC lung adenocarcinoma cancer patients in early and advanced stages, and 10 healthy donors to obtain a relative quantification through the MRM analysis of these proteins that have shown to be markers of cancer development and progression. AMBP, α2 macroglobulin, and SERPINA1 were chosen because all of them possess endopeptidase inhibitor activity and play key roles in cancer. We observe a variation in the expression of these proteins linked to the stage of the disease. Therefore, we believe that proteins like α2 macroglobulin, αmicroglobulin/bikunin, and SERPINA1 could be useful biomarkers for early detection of lung cancer and in monitoring its evolution.
Collapse
Affiliation(s)
| | - Federica Pinto
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Ieluzzi
- Department of Cardio-Respiratory Disease, Thoracic Surgery Unit, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Alfonso Giovane
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Fariello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Coppola
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Carlucci
- Department of Cardio-Respiratory Disease, Thoracic Surgery Unit, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Mario Santini
- Department of Cardio-Respiratory Disease, Thoracic Surgery Unit, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Kenan Ferati
- Department of Dentistry, Faculty of Medicine, University of Tetovo, Tetovo, FYR of Macedonia
| | | | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, Siena, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Ricci S, Pinto F, Auletta A, Giordano A, Giovane A, Settembre G, Boccellino M, Boffo S, Di Carlo A, Di Domenico M. The enigmatic role of matrix metalloproteinases in epithelial-to-mesenchymal transition of oral squamous cell carcinoma: Implications and nutraceutical aspects. J Cell Biochem 2019; 120:6813-6819. [PMID: 30714188 DOI: 10.1002/jcb.26905] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 01/24/2023]
Abstract
The most prevalent malignancy in the oral cavity is represented by oral squamous cell carcinoma, an aggressive disease mostly detected in low-income communities. This neoplasia is mostly diffused in older men particularly exposed to risk factors such as tobacco, alcohol, and a diet rich in fatty foods and poor in vegetables. In oral squamous cell carcinoma, a wide range of matrix-cleaving proteinases are involved in extracellular matrix remodeling of cancer microenvironment. In particular, matrix metalloproteinases (MMPs) represent the major and most investigated protagonists. Owing to their strong involvement in malignant pathologies, MMPs are considered the most promising new biomarkers in cancer diagnosis and prognosis. The interest in studying MMPs in oral cancer biology is also owing to their prominent role in epithelial-to-mesenchymal transition (EMT). EMT is an intricate process involving different complex pathways. EMT-related proteins are attractive diagnostic biomarkers that characterize the activation of biological events that promote cancer's aggressive expansion. Different antioncogenic natural compounds have been investigated to counteract oral carcinogenesis, with the scope of obtaining better clinical results and lower morbidity. In particular, we describe the role of different nutraceuticals used for the regulation of MMP-related invasion and proliferation of oral cancer cells.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Rome, Italy
| | - Federica Pinto
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adelaide Auletta
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Giordano
- Department of Medical Biotechnology University of Siena, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Philadelphia, Pennsylvania
| | - Alfonso Giovane
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuliana Settembre
- Clinical Pathology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Silvia Boffo
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Philadelphia, Pennsylvania
| | - Angelina Di Carlo
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Rome, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Anti-metastatic effect of ranolazine in an in vivo rat model of prostate cancer, and expression of voltage-gated sodium channel protein in human prostate. Prostate Cancer Prostatic Dis 2019; 22:569-579. [DOI: 10.1038/s41391-019-0128-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/27/2022]
|
16
|
Di Domenico M, Pinto F, Quagliuolo L, Contaldo M, Settembre G, Romano A, Coppola M, Ferati K, Bexheti-Ferati A, Sciarra A, Nicoletti GF, Ferraro GA, Boccellino M. The Role of Oxidative Stress and Hormones in Controlling Obesity. Front Endocrinol (Lausanne) 2019; 10:540. [PMID: 31456748 PMCID: PMC6701166 DOI: 10.3389/fendo.2019.00540] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The accumulation of adipose tissue in the body occurs because the energy introduced with food and drink exceeds that expense, but to understand why this imbalance is established and why it is maintained over time, it is important to consider the main causes and risk factors of excess weight. In this review, we will refer to the main factors linked to obesity, starting from oxidative stress to hormonal factors including the role of obesity in breast cancer. Among the many hypotheses formulated on the etiopathology of obesity, a key role can be attributed to the relationship between stress oxidative and intestinal microbiota. Multiple evidences tend to show that genetic, epigenetic, and lifestyle factors contribute to determine in the obese an imbalance of the redox balance correlated with the alteration of the intestinal microbial flora. Obesity acts negatively on the wound healing, in fact several studies indicate morbid obesity significantly increased the risk of a post-operative wound complication and infection. Currently, in the treatment of obesity, medical interventions are aimed not only at modifying caloric intake, but also to modulate and improve the composition of diet with the aim of rebalancing the microbiota-redox state axis.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Federica Pinto
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuliana Settembre
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonio Romano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mario Coppola
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Kenan Ferati
- Faculty of Medicine, University of Tetovo, Tetovo, Macedonia
| | | | - Antonella Sciarra
- Department of Translational Medicad Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Andrea Ferraro
- Plastic Surgery Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
- *Correspondence: Giuseppe Andrea Ferraro
| | | |
Collapse
|
17
|
Vanacore D, Boccellino M, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, Romano FJ, Montanari M, La Mantia E, Piscitelli R, Nocerino F, Cappuccio F, Grimaldi G, Izzo A, Castaldo L, Pepe MF, Malzone MG, Iovane G, Ametrano G, Stiuso P, Quagliuolo L, Barberio D, Perdonà S, Muto P, Montella M, Maiolino P, Veneziani BM, Botti G, Caraglia M, Facchini G. Micrornas in prostate cancer: an overview. Oncotarget 2018; 8:50240-50251. [PMID: 28445135 PMCID: PMC5564846 DOI: 10.18632/oncotarget.16933] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second highest cause of cancer mortality after lung tumours. In USA it affects about 2.8 million men and the incidence increases with age in many countries. Therefore, early diagnosis is a very important step for patient clinical evaluation and for a selective and efficient therapy. The study of miRNAs' functions and molecular mechanisms has brought new knowledge in biological processes of cancer. In prostate cancer there is a deregulation of several miRNAs that may function as tumour suppressors or oncogenes. The aim of this review is to analyze the progress made to our understanding of the role of miRNA dysregulation in prostate cancer tumourigenesis.
Collapse
Affiliation(s)
- Daniela Vanacore
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Carla Cavaliere
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto, Taranto, Italy
| | - Carmine D'Aniello
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Napoli, Italy
| | - Rossella Di Franco
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Francesco Jacopo Romano
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Elvira La Mantia
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale, Naples, Italy
| | - Flavia Nocerino
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Francesca Cappuccio
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Giovanni Grimaldi
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Alessandro Izzo
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Luigi Castaldo
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Maria Filomena Pepe
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Maria Gabriella Malzone
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Gelsomina Iovane
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Gianluca Ametrano
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Lucio Quagliuolo
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Daniela Barberio
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Maurizio Montella
- Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.,Scientific Directorate, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Gaetano Facchini
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| |
Collapse
|
18
|
Epithelial-mesenchymal transition in prostate cancer: an overview. Oncotarget 2018; 8:35376-35389. [PMID: 28430640 PMCID: PMC5471062 DOI: 10.18632/oncotarget.15686] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a main urological disease associated with significant morbidity and mortality. Radical prostatectomy and radiotherapy are potentially curative for localized prostate cancer, while androgen deprivation therapy is the initial systemic therapy for metastatic prostate disease. However, despite temporary response, most patients relapse and evolve into castration resistant cancer. Epithelial-mesenchymal transition (EMT) is a complex gradual process that occurs during embryonic development and/or tumor progression. During this process, cells lose their epithelial characteristics and acquire mesenchymal features. Increasing evidences indicate that EMT promotes prostate cancer metastatic progression and it is closely correlated with increased stemness and drug resistance. In this review, we discuss the main molecular events that directly or indirectly govern the EMT program in prostate cancer, in order to better define the role and the mechanisms underlying this process in prostate cancer progression and therapeutic resistance.
Collapse
|
19
|
Alaia C, Boccellino M, Zappavigna S, Amler E, Quagliuolo L, Rossetti S, Facchini G, Caraglia M. Ipilimumab for the treatment of metastatic prostate cancer. Expert Opin Biol Ther 2017; 18:205-213. [PMID: 29271259 DOI: 10.1080/14712598.2018.1420777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Immunotherapy with checkpoint inhibitors is beginning to be recognized as a valid weapon for the treatment of metastatic prostate cancer (PCa) when chemotherapy fails. Ipilimumab (ipi) is a fully humanized monoclonal antibody that blocks the activity of CTLA4. It also has a molecular weight of 148 kDa and is water-soluble at physiological pH. Ipi was first approved by the FDA for the treatment of malignant melanoma and is currently being studied in metastatic castration-resistant prostate cancer, with promising early results. Areas covered: The aim of this review is to collate the most significant preclinical and clinical studies available that look at ipi to propose new strategies for the future. Expert opinion: Additional studies are required to reduce toxicity and increase the activity of ipi in PCa. A possible strategy is to combine ipi with standard anti-cancer therapeutics such as vaccines, PDL1 inhibitors, antiandrogen drugs, and chemotherapy agents. Several initial results have suggested that combination strategies are useful to increase the activity in mCRPC, even if the toxicity of the treatment can increase. The activity of combined treatments is still not predictable, but considering the ongoing studies, we believe that they have good potential that will lead to the discovery of an optimal therapeutic strategy.
Collapse
Affiliation(s)
- Concetta Alaia
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Mariarosaria Boccellino
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Silvia Zappavigna
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Evzen Amler
- b Department of Biophysics, 2nd Faculty of Medicine , Charles University Prague , Prague , Czech Republic.,c Laboratory of Tissue Engineering, Institute of Experimental Medicine , Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Lucio Quagliuolo
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Sabrina Rossetti
- d Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale" , Napoli , Italy.,e Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo, Uro-Gynaechological Department of the National Institute of Tumours "G. Pascale", Regione Campania , Naples , Italy
| | - Gaetano Facchini
- d Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale" , Napoli , Italy
| | - Michele Caraglia
- a Department of Biochemistry, Biophysics and General Pathology , University of Campania "L. Vanvitelli" , Naples , Italy
| |
Collapse
|
20
|
Di Franco R, Borzillo V, Ravo V, Ametrano G, Falivene S, Cammarota F, Rossetti S, Romano FJ, D'Aniello C, Cavaliere C, Iovane G, Piscitelli R, Berretta M, Muto P, Facchini G. Rectal/urinary toxicity after hypofractionated vs conventional radiotherapy in low/intermediate risk localized prostate cancer: systematic review and meta analysis. Oncotarget 2017; 8:17383-17395. [PMID: 28129649 PMCID: PMC5370048 DOI: 10.18632/oncotarget.14798] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022] Open
Abstract
Purpose The aim of this review was to compare radiation toxicity in Localized Prostate Cancer (LPC) patients who underwent conventional fractionation (CV), hypofractionated (HYPO) or extreme hypofractionated (eHYPO) radiotherapy. We analyzed the impact of technological innovation on the management of prostate cancer, attempting to make a meta-analysis of randomized trials. Methods PubMed database has been explored for studies concerning acute and late urinary/gastrointestinal toxicity in low/intermediate risk LPC patients after receiving radiotherapy. Studies were then gathered into 5 groups: detected acute and chronic toxicity data from phase II non randomized trials were analyzed and Odds Ratio (OR) was calculated by comparing the number of patients with G0-1 toxicity and those with toxicity > G2 in the studied groups. A meta-analysis of prospective randomized trials was also carried out. Results The initial search yielded 575 results, but only 32 manuscripts met all eligibility requirements: in terms of radiation-induced side effects, such as gastrointestinal and genitourinary acute and late toxicity, hypofractionated 3DCRT seemed to be more advantageous than 3DCRT with conventional fractionation as well as IMRT with conventional fractionation compared to 3DCRT with conventional fractionation; furthermore, IMRT hypofractionated technique appeared more advantageous than IMRT with conventional fractionation in late toxicities. Randomized trials meta-analysis disclosed an advantage in terms of acute gastrointestinal and late genitourinary toxicity for Hypofractionated schemes. Conclusions Although our analysis pointed out a more favorable toxicity profile in terms of gastrointestinal acute side effects of conventional radiotherapy schemes compared to hypofractionated ones, prospective randomized trials are needed to better understand the real incidence of rectal and urinary toxicity in patients receiving radiotherapy for localized prostate cancer.
Collapse
Affiliation(s)
- Rossella Di Franco
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Valentina Borzillo
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Vincenzo Ravo
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Gianluca Ametrano
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Sara Falivene
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Fabrizio Cammarota
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy
| | - Francesco Jacopo Romano
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy
| | - Carmine D'Aniello
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Napoli
| | - Carla Cavaliere
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto, Taranto, Italy
| | - Gelsomina Iovane
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS , Naples , Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Gaetano Facchini
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS , Naples , Italy
| |
Collapse
|
21
|
Dicitore A, Grassi ES, Borghi MO, Gelmini G, Cantone MC, Gaudenzi G, Persani L, Caraglia M, Vitale G. Antitumor activity of interferon-β1a in hormone refractory prostate cancer with neuroendocrine differentiation. J Endocrinol Invest 2017; 40:761-770. [PMID: 28247216 DOI: 10.1007/s40618-017-0631-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Type I interferons (IFN-α and IFN-β) are a class of cytokines that exert several biological activities, such as modulation of cell proliferation and differentiation and of the immune system. Although these cytokines interact with a common receptor complex, IFN-β showed a more potent antitumor activity than IFN-α in several tumor models. New recombinant human IFN-β products, such as IFN-β1a and IFN-β1b, have been produced in order to improve the stability and bioavailability of natural IFN-β. In this report, we analyzed the effects of recombinant IFN-β1a on the cell proliferation of two human androgen-resistant prostate cancer cell lines with neuroendocrine differentiation (DU-145, PC-3) and related mechanisms of action. METHODS The effects of IFN-β1a on the cell growth proliferation, cell cycle, and apoptosis have been evaluated in DU-145 and PC-3 cells through MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. Moreover, the expression of neuron-specific enolase (NSE), cleaved caspase-3, caspase-8, and PARP was evaluated through Western blotting. RESULTS IFN-β1a showed a significant anti-proliferative activity in both androgen-resistant cell lines. This effect was related to cell cycle perturbation and induction in apoptosis, as shown by flow cytometric analysis, the activation of caspase-3 and caspase-8 and PARP cleavage during incubation with IFN-β1a. Moreover, this cytokine reduced the expression of NSE in both cell lines. CONCLUSIONS Recombinant IFN-β1a (Rebif) showed a potent in vitro anti-proliferative activity in androgen-resistant prostate cancer cells, and it could represent a promising tool for the treatment of this tumor.
Collapse
Affiliation(s)
- A Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, via Zucchi 18, Cusano Milanino (Mi), 20095, Milan, Italy
| | - E S Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - M O Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Experimental Laboratory of Immuno-rheumatology, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - G Gelmini
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, via Zucchi 18, Cusano Milanino (Mi), 20095, Milan, Italy
| | - M C Cantone
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - G Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - L Persani
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, via Zucchi 18, Cusano Milanino (Mi), 20095, Milan, Italy
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - G Vitale
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, via Zucchi 18, Cusano Milanino (Mi), 20095, Milan, Italy.
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
| |
Collapse
|
22
|
De Santi C, Melaiu O, Bonotti A, Cascione L, Di Leva G, Foddis R, Cristaudo A, Lucchi M, Mora M, Truini A, Tironi A, Murer B, Boldorini R, Cipollini M, Gemignani F, Gasparini P, Mutti L, Landi S. Deregulation of miRNAs in malignant pleural mesothelioma is associated with prognosis and suggests an alteration of cell metabolism. Sci Rep 2017; 7:3140. [PMID: 28600498 PMCID: PMC5466648 DOI: 10.1038/s41598-017-02694-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive human cancer and miRNAs can play a key role for this disease. In order to broaden the knowledge in this field, the miRNA expression was investigated in a large series of MPM to discover new pathways helpful in diagnosis, prognosis and therapy. We employed nanoString nCounter system for miRNA profiling on 105 MPM samples and 10 healthy pleura. The analysis was followed by the validation of the most significantly deregulated miRNAs by RT-qPCR in an independent sample set. We identified 63 miRNAs deregulated in a statistically significant way. MiR-185, miR-197, and miR-299 were confirmed differentially expressed, after validation study. In addition, the results of the microarray analysis corroborated previous findings concerning miR-15b-5p, miR-126-3p, and miR-145-5p. Kaplan-Meier curves were used to explore the association between miRNA expression and overall survival (OS) and identified a 2-miRNA prognostic signature (Let-7c-5p and miR-151a-5p) related to hypoxia and energy metabolism respectively. In silico analyses with DIANA-microT-CDS highlighted 5 putative targets in common between two miRNAs. With the present work we showed that the pattern of miRNAs expression is highly deregulated in MPM and that a 2-miRNA signature can be a new useful tool for prognosis in MPM.
Collapse
Affiliation(s)
- Chiara De Santi
- Respiratory Research Division, Department of Medicine, Education and Research Centre, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Ombretta Melaiu
- Immuno-Oncology Laboratory, Department of Paediatric Haematology/Oncology, Ospedale Pediatrico Bambino Gesù, Viale di S. Paolo 15, 00146, Rome, Italy
| | - Alessandra Bonotti
- Preventive and Occupational Medicine, University Hospital of Pisa, Pisa, Italy
| | - Luciano Cascione
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Bellinzona, Switzerland
| | - Gianpiero Di Leva
- School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Rudy Foddis
- Department of Translational Research and of new Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alfonso Cristaudo
- Department of Translational Research and of new Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Lucchi
- Division of Thoracic Surgery, Cardiac and Thoracic Department, University of Pisa, Pisa, Italy
| | - Marco Mora
- IRCCS H, San Martino-IST Genova, Genova, Italy
| | - Anna Truini
- IRCCS H, San Martino-IST Genova, Genova, Italy
| | - Andrea Tironi
- Section of Anatomic Pathology, Oncology and Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Renzo Boldorini
- Department of Health Sciences, School of Medicine, University Hospital Maggiore della Carità, Novara, Italy
| | | | | | - Pierluigi Gasparini
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Luciano Mutti
- School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
23
|
Jung H, Shimatani Y, Hasan M, Uno K, Hama S, Kogure K. Development of flexible nanocarriers for siRNA delivery into tumor tissue. Int J Pharm 2016; 516:258-265. [PMID: 27871835 DOI: 10.1016/j.ijpharm.2016.11.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/08/2016] [Accepted: 11/18/2016] [Indexed: 11/15/2022]
Abstract
Various non-viral delivery systems for small interfering RNAs (siRNA) have been developed. Such delivery systems generally exhibit tightly formed spherical structures. While such carriers have demonstrated good transfection activity in mono-layered cell systems, effects against solid tumors are often less apparent and difficult to demonstrate, likely due to the rigid structures of the carriers, which may prevent penetration to deeper regions within tumor tissue. Herein, we developed a flexible nanocarrier (FNC) system that is able to penetrate to deeper regions within tumor tissue. Specifically, we employed previously found flexible polyplexes comprised of siRNA and poly-l-lysine as wick structures for the preparation of FNCs. FNCs were constructed by coating the wick structures with lipids using a liposomal membrane fusion method. The diameters of the resulting FNCs were ca. 170nm, and the shapes were non-spherical. Lipid coating was confirmed using a nuclease resistance assay. Furthermore, FNCs showed significant RNA interference effects, comparable to Lipofectamine 2000, in a mono-layered cell system. To accelerate tumor penetration, the FNC surface was modified with polyethylene glycol (PEG) and the tight junction opener peptide AT1002. Surface-modified FNCs demonstrated effective penetrability into a cancer spheroid. Thus, we developed a novel and unique tumor-penetrable siRNA FNC system.
Collapse
Affiliation(s)
- Hyunkyung Jung
- Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuri Shimatani
- Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mahadi Hasan
- Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kohei Uno
- Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Susumu Hama
- Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Shomachi 1, Tokushima, 770-8505, Japan.
| |
Collapse
|