1
|
Kang F, Zhang Z, Fu H, Sun J, Zhang J, Wang Q. β-Cell Dedifferentiation in HOMA-βlow and HOMA-βhigh Subjects. J Clin Endocrinol Metab 2025; 110:e1430-e1438. [PMID: 39133811 PMCID: PMC12012814 DOI: 10.1210/clinem/dgae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
CONTEXT β-Cell dedifferentiation ratio is increased in type 2 diabetes; but its direct link to in vivo β-cell function in human remains unclear. OBJECTIVE The present study was designed to investigate whether β-cell dedifferentiation in situ was closely associated with β-cell function in vivo and to identify targets crucial for β-cell dedifferentiation/function in human. METHODS We acquired homeostasis model assessment of β-cell function (HOMA-β) values, calculated the number of hormone-negative endocrine cells, and evaluated important markers and novel candidates for β-cell dedifferentiation/function on paraneoplastic pancreatic tissues from 13 patients with benign pancreatic cystic neoplasm or intrapancreatic accessory spleen. RESULTS Both the β-cell dedifferentiation ratio and the dedifferentiation marker (Aldh1a3) were inversely related to in vivo β-cell function (HOMA-β) and in situ β-cell functional markers Glut2 and Ucn3 in humans. Moreover, the islets from HOMA-βlow subjects were manifested as (1) increased β-cell dedifferentiation ratio, (2) enriched dedifferentiation maker Aldh1a3, and (3) lower expression of Glut2 and Ucn3 compared with those from HOMA-βhigh subjects. We found that basic leucine zipper transcription factor 2 (Bach2) expression was significantly induced in islets from HOMA-βlow patients and was positively correlated with the ratio of β-cell dedifferentiation in humans. CONCLUSION Our findings emphasize the contribution of β-cell dedifferentiation to β-cell dysfunction in humans. Bach2 induction in β-cells with higher frequency of dedifferentiation observed in HOMA-βlow subjects reinforces its distinctive role as a pharmaceutical target of β-cell dedifferentiation for the treatment of people with diabetes.
Collapse
Affiliation(s)
- Fuyun Kang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhuo Zhang
- Department of Surgery, Shanghai United Family Hospital, Shanghai 200021, China
| | - Hui Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Li RJ, Yang T, Zeng YH, Natsuyama Y, Ren K, Li J, Nagakawa Y, Yi SQ. Impacts of different pancreatic resection ranges on endocrine function in Suncus murinus. World J Gastrointest Surg 2024; 16:2308-2318. [PMID: 39087135 PMCID: PMC11287669 DOI: 10.4240/wjgs.v16.i7.2308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Surgical intervention involving the pancreas can lead to impaired glucose tolerance and other types of endocrine dysfunction. The scope of pancreatectomy and whether it includes the ventral pancreas are the key factors in the development of postoperative diabetes. The ventral and dorsal pancreases are almost separated in Suncus murinus (S. murinus). AIM To investigate the effects of different extents of pancreatic resection on endocrine function in S. murinus. METHODS Eight-week-old male S. murinus shrews were randomly divided into three experimental groups according to different pancreatic resection ranges as follows: ventral pancreatectomy (VPx) group; partial pancreatectomy (PPx) group; subtotal pancreatectomy (SPx) group; and a sham-operated group. Postprandial serum insulin, glucagon-like peptide-1 (GLP-1), pancreatic polypeptide (PP), and somatostatin (SST) levels, as well as food intake, weight, blood glucose, and glucose tolerance were regularly measured for each animal. RESULTS S. murinus treated with PPx and SPx suffered from varying degrees of impaired glucose tolerance, but only a small proportion of the SPx group developed diabetes. Only S. murinus in the SPx group showed a significant decrease in food intake accompanied by severe weight loss, as well as a significant increase in postprandial serum GLP-1 levels. Postprandial serum PP levels decreased in both the VPx and PPx groups, but not in the SPx group. Postprandial serum SST levels decreased in both VPx and PPx groups, but the decrease was marginal. CONCLUSION Severe weight loss after pancreatectomy may be related to loss of appetite caused by compensatory elevation of GLP-1. PP and GLP-1 may play a role in resisting blood glucose imbalance.
Collapse
Affiliation(s)
- Ru-Jia Li
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - Ting Yang
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - Yu-Hao Zeng
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - Yutaro Natsuyama
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - Ke Ren
- Faculty of Physical Education, Qujing Normal University, Qujing 655000, Yunnan Province, China
| | - Jun Li
- School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shuang-Qin Yi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| |
Collapse
|
3
|
Mathisen AF, Larsen U, Kavli N, Unger L, Daian LM, Vacaru AM, Vacaru AM, Herrera PL, Ghila L, Chera S. Moderate beta-cell ablation triggers synergic compensatory mechanisms even in the absence of overt metabolic disruption. Commun Biol 2024; 7:833. [PMID: 38982170 PMCID: PMC11233560 DOI: 10.1038/s42003-024-06527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Regeneration, the ability to replace injured tissues and organs, is a phenomenon commonly associated with lower vertebrates but is also observed in mammals, in specific tissues. In this study, we investigated the regenerative potential of pancreatic islets following moderate beta-cell loss in mice. Using a rapid model of moderate ablation, we observed a compensatory response characterized by transient inflammation and proliferation signatures, ultimately leading to the recovery of beta-cell identity and function. Interestingly, this proliferative response occurred independently of inflammation, as demonstrated in ablated immunodeficient mice. Furthermore, exposure to high-fat diet stimulated beta-cell proliferation but negatively impacted beta-cell function. In contrast, an equivalent slower ablation model revealed a delayed but similar proliferative response, suggesting proliferation as a common regenerative response. However, high-fat diet failed to promote proliferation in this model, indicating a differential response to metabolic stressors. Overall, our findings shed light on the complex interplay between beta-cell loss, inflammation, and stress in modulating pancreatic islet regeneration. Understanding these mechanisms could pave the way for novel therapeutic strategies based on beta-cell proliferation.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Kavli
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Maria Daian
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Andrei Mircea Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
4
|
Ye L, Lv Y, Wu Q, Chen Y, Zhang X, Su Y. Chronic periodontitis induces the proliferation of pancreatic β-cells to cause hyperinsulinemia in a rat model. J Periodontal Res 2023; 58:1290-1299. [PMID: 37723987 DOI: 10.1111/jre.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to determine if chronic periodontitis (CP) may induce hyperinsulinemia and may have the effect of on pancreatic β-cell proliferation in a rat model. MATERIALS AND METHODS Twelve male Sprague-Dawley rats were divided into two groups: the CP group and the control group (Con group). The following contents were evaluated: pathological changes in periodontal soft and hard tissues; serum lipopolysaccharide (LPS) level, serum fasting insulin (FINS) level, fasting blood glucose (FBG) level, and homeostasis model assessment (HOMA) β (HOMA-β) index; histopathological examination of islets; immunohistochemistry of insulin and p-Smad2 expression in islets; immunofluorescence of changes in the relative number of β-cells and the number of Ki67-positive β-cells. Western blotting was used to analyze p-Smad2/Smad2 levels. Results were analyzed by two independent samples t tests. RESULTS Increased serum LPS level, FINS level, and HOMA-β index were observed in the rats of the CP group; FBG level did not change significantly; histological assessments showed an enlarged islet area, increased insulin content, relatively increased β-cells, increased Ki67-positive β-cells, and decreased p-Smad2 expression in islets in the rats of the CP group. CONCLUSION Our study results link CP-induced hyperinsulinemia with changes in islets, such as islet hyperplasia and compensatory β-cell proliferation, by using a CP rat model.
Collapse
Affiliation(s)
- Leilei Ye
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yingtao Lv
- Department of Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xueyang Zhang
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| |
Collapse
|
5
|
Yang H, Li Y, Xu W, Liu W, Xie Y. Exploring the underlying mechanisms of Ashitaba in the management of non-alcoholic fatty liver disease by integrating the analysis of transcriptomics and metabolomics. Front Med (Lausanne) 2023; 10:1247851. [PMID: 37920601 PMCID: PMC10618682 DOI: 10.3389/fmed.2023.1247851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Ashitaba seems to improve glucose intolerance and decrease triglyceride (TG) and total cholesterol (TC), which contribute to the development of non-alcoholic fatty liver disease (NAFLD). However, it remains to be explored the mechanism of Ashitaba in managing NAFLD. We determined the impact of Ashitaba on NAFLD, particularly its underlying mechanisms at the bioinformatic level. The established NAFLD mouse model was treated with or without Ashitaba, and the underlying mechanism was explored using transcriptomics paired with metabolomics. Ashitaba reduced obesity and liver steatosis in NAFLD mice. It identified 429 differentially expressed genes (DEGs) and verified 45 differential metabolites, especially those that alleviate NAFLD via the FXR signaling pathway. Our data may provide insight into the therapeutic impact of Ashitaba in the management of NAFLD and may be useful in clinical interventions for NAFLD.
Collapse
Affiliation(s)
- Huan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Changning Administration Center of Public Hospital and Community Healthcare Center, Shanghai, China
| | - Yunshan Li
- Department of Endocrinology, Seven People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Xu
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Liu
- Department of Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Song J, Ni Q, Sun J, Xie J, Liu J, Ning G, Wang W, Wang Q. Aging Impairs Adaptive Unfolded Protein Response and Drives Beta Cell Dedifferentiation in Humans. J Clin Endocrinol Metab 2022; 107:3231-3241. [PMID: 36125175 PMCID: PMC9693768 DOI: 10.1210/clinem/dgac535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Diabetes is an age-related disease; however, the mechanism underlying senescent beta cell failure is still unknown. OBJECTIVE The present study was designed to investigate whether and how the differentiated state was altered in senescent human beta cells by excluding the effects of impaired glucose tolerance. METHODS We calculated the percentage of hormone-negative/chromogranin A-positive endocrine cells and evaluated the expressions of forkhead box O1 (FoxO1) and Urocortin 3 (UCN3) in islets from 31 nondiabetic individuals, divided into young (<40 years), middle-aged (40-60 years) and elderly (>60 years) groups. We also assessed adaptive unfolded protein response markers glucose-regulated protein 94 (GRP94), and spliced X-box binding protein 1 (XBP1s) in senescent beta cells and their possible contributions to maintaining beta cell identity and differentiation state. RESULTS We found an almost 2-fold increase in the proportion of dedifferentiated cells in elderly and middle-aged groups compared with the young group (3.1 ± 1.0% and 3.0 ± 0.9% vs 1.7 ± 0.5%, P < .001). This was accompanied by inactivation of FoxO1 and loss of UCN3 expression in senescent human beta cells. In addition, we demonstrated that the expression levels of adaptive unfolded protein response (UPR) components GRP94 and XBP1s declined with age. In vitro data showed knockdown GRP94 in Min6-triggered cells to dedifferentiate and acquire progenitor features, while restored GRP94 levels in H2O2-induced senescent Min6 cells rescued beta cell identity. CONCLUSION Our finding highlights that the failure to establish proper adaptive UPR in senescent human beta cells shifts their differentiated states, possibly representing a crucial step in the pathogenesis of age-related beta cell failure.
Collapse
Affiliation(s)
| | | | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qidi Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Gonzalez-Alcocer A, Gopar-Cuevas Y, Soto-Dominguez A, Loera-Arias MDJ, Saucedo-Cardenas O, Montes de Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Peripheral tissular analysis of rapamycin's effect as a neuroprotective agent in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1239-1255. [PMID: 35895156 DOI: 10.1007/s00210-022-02276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Rapamycin is the best-characterized autophagy inducer, which is related to its antiaging and neuroprotective effects. Although rapamycin is an FDA-approved drug for human use in organ transplantation and cancer therapy, its administration as an antiaging and neuroprotective agent is still controversial because of its immunosuppressive and reported side effects. Therefore, it is critical to determine whether the dose that exerts a neuroprotective effect, 35 times lower than that used as an immunosuppressant agent, harms peripheral organs. We validated the rapamycin neuroprotective dosage in a Parkinson's disease (PD) model induced with paraquat. C57BL/6 J mice were treated with intraperitoneal (IP) rapamycin (1 mg/kg) three times per week, followed by paraquat (10 mg/kg) twice per week for 6 weeks, along with rapamycin on alternate days. Rapamycin significantly decreased dopaminergic neuronal loss induced by paraquat. Since rapamycin's neuroprotective effect in a PD model was observed at 7 weeks of treatment; we evaluated its effect on the liver, kidney, pancreas, and spleen. In addition, we prolonged treatment with rapamycin for 14 weeks. Tissue sections were subjected to histochemical, immunodetection, and morphometric analysis. Chronic rapamycin administration does not affect bodyweight, survival, and liver or kidney morphology. Although the pancreas tissular architecture and cellular distribution in Langerhans islets are modified, they may be reversible. The spleen B lymphocyte and macrophage populations were decreased. Notably, the lymphocyte T population was not affected. Therefore, chronic administration of a rapamycin neuroprotective dose does not produce significant tissular alterations. Our findings support the therapeutic potential of rapamycin as a neuroprotective agent.
Collapse
Affiliation(s)
- Alfredo Gonzalez-Alcocer
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Yareth Gopar-Cuevas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Adolfo Soto-Dominguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Maria de Jesus Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Odila Saucedo-Cardenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Roberto Montes de Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Humberto Rodriguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Aracely Garcia-Garcia
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México.
| |
Collapse
|
8
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
9
|
Daniel PV, Kamthan M, Thakur S, Mondal P. Molecular pathways dysregulated by Pb 2+ exposure prompts pancreatic beta-cell dysfunction. Toxicol Res (Camb) 2022; 11:206-214. [PMID: 35237425 PMCID: PMC8882803 DOI: 10.1093/toxres/tfab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 01/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by reduced insulin sensitivity and dysfunction of β-cells. Although the increasing prevalence of diabetes worldwide is largely attributed to genetic predisposition or lifestyle factors (insufficient physical activity), and caloric intake. Environmental factors, exposure to xenobiotics and heavy metals have also been reported to be causative factors of T2DM. At this juncture, we, through our work unveil a plausible link between Pb2+ exposure and diabetes mellitus, and delineated a comprehensive understanding of the potential mechanisms of Pb2+-induced β-cells dysfunction. In our in vivo observations, we found that Pb2+ exposure strongly reduced glucose-stimulated insulin secretion and diminished functional pancreatic β-cell mass. Mechanistically, we found that Pb2+ downregulates intracellular cAMP level via hyper-activating Ca2+/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1C and thereby reduces glucose-stimulated insulin secretion. Further, we report that Pb2+ inhibited mitochondrial adenosine triphosphate production and also identified Pb2+ as a negative regulator of β-cell proliferation via Ca2+/calmodulin-dependent protein kinase kinases-pAMPK-pRaptor axis. Together, our findings strongly reinforce Pb2+ to hijack the physiological role of calcium ions, by mimicking Ca2+ within pancreatic β-cell and thereby stands as a diabetogenic xenobiotic.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India
| | - Shilpa Thakur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001, India
| | - Prosenjit Mondal
- Correspondence address. School of Basic Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175001, India. Tel: (91)1950267262;
| |
Collapse
|
10
|
Yang L, Zhang Z, Wang D, Jiang Y, Liu Y. Targeting mTOR Signaling in Type 2 Diabetes Mellitus and Diabetes Complications. Curr Drug Targets 2022; 23:692-710. [PMID: 35021971 DOI: 10.2174/1389450123666220111115528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a pivotal regulator of cell metabolism and growth. In the form of two different multi-protein complexes, mTORC1 and mTORC2, mTOR integrates cellular energy, nutrient and hormonal signals to regulate cellular metabolic homeostasis. In type 2 diabetes mellitus (T2DM) aberrant mTOR signaling underlies its pathological conditions and end-organ complications. Substantial evidence suggests that two mTOR-mediated signaling schemes, mTORC1-p70S6 kinase 1 (S6K1) and mTORC2-protein kinase B (AKT), play a critical role in insulin sensitivity and that their dysfunction contributes to development of T2DM. This review summaries our current understanding of the role of mTOR signaling in T2DM and its associated complications, as well as the potential use of mTOR inhibitors in treatment of T2DM.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
11
|
Cai Z, Liu F, Yang Y, Li D, Hu S, Song L, Yu S, Li T, Liu B, Luo H, Zhang W, Zhou Z, Zhang J. GRB10 regulates β cell mass by inhibiting β cell proliferation and stimulating β cell dedifferentiation. J Genet Genomics 2021; 49:208-216. [PMID: 34861413 DOI: 10.1016/j.jgg.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Decreased functional β-cell mass is the hallmark of diabetes, but the cause of this metabolic defect remains elusive. Here, we show that the expression levels of the growth factor receptor-bound protein 10 (GRB10), a negative regulator of insulin and mTORC1 signaling, are markedly induced in islets of diabetic mice and high glucose-treated insulinoma cell line INS-1cells. β-cell-specific knockout of Grb10 in mice increased β-cell mass and improved β-cell function. Grb10-deficient β-cells exhibit enhanced mTORC1 signaling and reduced β-cell dedifferentiation, which could be blocked by rapamycin. On the contrary, Grb10 overexpression induced β-cell dedifferentiation in MIN6 cells. Our study identifies GRB10 as a critical regulator of β-cell dedifferentiation and β-cell mass, which exerts its effect by inhibiting mTORC1 signaling.
Collapse
Affiliation(s)
- Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dandan Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lei Song
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Bilian Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Weiping Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
12
|
Jiang Y, Zhu L, Wu D, Ni Y, Huang C, Ye H, Yang Y, Liu R, Li Y. Type IIB PKA is highly expressed in β cells and controls cell proliferation via regulating Cyclin D1 expression. FEBS J 2021; 289:2865-2876. [PMID: 34839588 DOI: 10.1111/febs.16302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
β cell number is maintained mainly by cell proliferation and cell apoptosis. Protein kinase A (PKA) pathway is an important intracellular signalling-mediating β cell proliferation. However, the precise roles of PKA isoforms are not well-defined. We found that the RIIB subunit of PKA is expressed specifically by β cells of mouse and human islets. Sixty percent pancreatectomy caused increased β cell proliferation. Deletion of type IIB PKA by disruption of RIIB expression further promoted β cell proliferation, leading to enhanced β cell mass expansion. RIIB KO mice also showed increased insulin levels and improved glucose tolerance. Mechanistically, activation of type IIB PKA decreased Cyclin D1 levels and inhibition of RIIB expression increased Cyclin D1 levels. Consistently, activation of type IIB PKA inhibited cell cycle entry. These results suggest that type IIB PKA plays a pivotal role in β cell proliferation via regulating Cyclin D1 expression.
Collapse
Affiliation(s)
- Yaojing Jiang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunzhi Ni
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuxin Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Yang Y, Cai Z, Pan Z, Liu F, Li D, Ji Y, Zhong J, Luo H, Hu S, Song L, Yu S, Li T, Li J, Ma X, Zhang W, Zhou Z, Liu F, Zhang J. Rheb1 promotes glucose-stimulated insulin secretion in human and mouse β-cells by upregulating GLUT expression. Metabolism 2021; 123:154863. [PMID: 34375645 DOI: 10.1016/j.metabol.2021.154863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022]
Abstract
Reduced β-cell mass and impaired β-cell function are primary causes of all types of diabetes. However, the intrinsic molecular mechanism that regulates β-cell growth and function remains elusive. Here, we demonstrate that the small GTPase Rheb1 is a critical regulator of glucose-stimulated insulin secretion (GSIS) in β-cells. Rheb1 was highly expressed in mouse and human islets. In addition, β-cell-specific knockout of Rheb1 reduced the β-cell size and mass by suppressing β-cell proliferation and increasing β-cell apoptosis. However, tamoxifen-induced deletion of Rheb1 in β-cells had no significant effect on β-cell mass and size but significantly impaired GSIS. Rheb1 facilitates GSIS in human or mouse islets by upregulating GLUT1 or GLUT2 expression, respectively, in a mTORC1 signaling pathway-dependent manner. Our findings reveal a critical role of Rheb1 in regulating GSIS in β-cells and identified a new target for the therapeutic treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yan Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhenhong Pan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dandan Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yujiao Ji
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiaxin Zhong
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lei Song
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiequn Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Weiping Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
14
|
Ni Q, Song J, Wang Y, Sun J, Xie J, Zhang J, Ning G, Wang W, Wang Q. Proper mTORC1 Activity Is Required for Glucose Sensing and Early Adaptation in Human Pancreatic β Cells. J Clin Endocrinol Metab 2021; 106:e562-e572. [PMID: 33120423 DOI: 10.1210/clinem/dgaa786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/25/2022]
Abstract
CONTEXT The mechanistic target of rapamycin complex I (mTORC1) is crucial for β-cell identity and function in rodents. However, its possible relevance to the physiopathology of diabetes in humans remains unclear. OBJECTIVE This work aimed to understand the participation of mTORC1 in human β cells in prediabetes and diabetes. DESIGN We evaluated the PS6 immunofluorescence intensity in islets of pancreatic sections from 12 nondiabetic (ND), 11 impaired fasting glucose (IFG), and 11 glycemic-controlled type 2 diabetic (T2D) individuals. We also assessed the dynamic change of mTORC1 activity in β cells of db/db mice with new-onset diabetes. RESULTS There exists intercellular heterogeneity of mTORC1 activities in human islets. Islet mTORC1 activity was independently and positively correlated with FBG in ND, but not in IFG and T2D. Moreover, we did not detect significant change in mTORC1 activities between T2D and ND. Of note, the islet mTORC1 activities were significantly higher in IFG than in ND. We further stratified IFG individuals according to their islet PS6 levels and found that IFG-PS6high exhibited remarkably higher urocortin3 and glucose transporter 2 expression in their β cells compared to IFG-PS6low. Consistently, we also detected a significant increase in mTORC1 activities in prediabetic db/db mice compared to nondiabetic littermates. Interestingly, mTORC1 activities determined β-cell adaptation or failure in db/db mice: A strong negative correlation was found between islet mTORC1 activities and fasting glucose levels in db/db mice during their diabetes progression. CONCLUSIONS Our finding highlights a dynamic islet mTORC1 response in β-cell adaption/failure in human T2D.
Collapse
Affiliation(s)
- Qicheng Ni
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxi Song
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichen Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Wang Y, Sun J, Lin Z, Zhang W, Wang S, Wang W, Wang Q, Ning G. m 6A mRNA Methylation Controls Functional Maturation in Neonatal Murine β-Cells. Diabetes 2020; 69:1708-1722. [PMID: 32404350 DOI: 10.2337/db19-0906] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022]
Abstract
The N 6-methyladenosine (m6A) RNA modification is essential during embryonic development of various organs. However, its role in embryonic and early postnatal islet development remains unknown. Mice in which RNA methyltransferase-like 3/14 (Mettl3/14) were deleted in Ngn3+ endocrine progenitors (Mettl3/14 nKO ) developed hyperglycemia and hypoinsulinemia at 2 weeks after birth. We found that Mettl3/14 specifically regulated both functional maturation and mass expansion of neonatal β-cells before weaning. Transcriptome and m6A methylome analyses provided m6A-dependent mechanisms in regulating cell identity, insulin secretion, and proliferation in neonatal β-cells. Importantly, we found that Mettl3/14 were dispensable for β-cell differentiation but directly regulated essential transcription factor MafA expression at least partially via modulating its mRNA stability. Failure to maintain this modification impacted the ability to fulfill β-cell functional maturity. In both diabetic db/db mice and patients with type 2 diabetes (T2D), decreased Mettl3/14 expression in β-cells was observed, suggesting its possible role in T2D. Our study unraveled the essential role of Mettl3/14 in neonatal β-cell development and functional maturation, both of which determined functional β-cell mass and glycemic control in adulthood.
Collapse
Affiliation(s)
- Yanqiu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| | - Shu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Wang Y, Ni Q, Sun J, Xu M, Xie J, Zhang J, Fang Y, Ning G, Wang Q. Paraneoplastic β Cell Dedifferentiation in Nondiabetic Patients with Pancreatic Cancer. J Clin Endocrinol Metab 2020; 105:5645541. [PMID: 31781763 DOI: 10.1210/clinem/dgz224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
CONTEXT Beta-cell dedifferentiation was recently proposed as a mechanism of β-cell dysfunction, but whether it can be a trigger of β-cell failure preceding hyperglycemia in humans is uncertain. Pancreatic cancer can cause new-onset diabetes, yet the underlying mechanism is unknown. OBJECTIVE To investigate whether β-cell dedifferentiation is present in nondiabetic pancreatic ductal adenocarcinoma (PDAC) patients, we examined pancreatic islets from 15 nondiabetic patients with benign tumors (control) and 15 nondiabetic PDAC patients. DESIGN We calculated the number of hormone-negative endocrine cells and evaluated important markers of β-cell dedifferentiation and function in the paraneoplastic islets. We assessed tumor-related inflammatory changes under the pancreatic cancer microenvironment and their influence on β-cell identity. RESULTS We found nearly 10% of nonhormone expressing endocrine cells in nondiabetic PDAC subjects. The PDAC islets were dysfunctional, evidenced by low expression of Glucose transporter 2 (GLUT2) and Urocortin3 (UCN3), and concomitant upregulation of Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3) expression and proinsulin accumulation. Pancreatic cancer caused paraneoplastic inflammation with enhanced tissue fibrosis, monocytes/macrophages infiltration, and elevated inflammatory cytokines. Moreover, we detected β-cell dedifferentiation and defects in GSIS in islets exposed to PANC-1 (a cell line established from a pancreatic carcinoma of ductal origin from a 56-year-old Caucasian male)-conditioned medium. In a larger cohort, we showed high prevalence of new-onset diabetes in PDAC subjects, and fasting blood glucose (FBG) was found to be an additional useful parameter for early diagnosis of PDAC. CONCLUSIONS Our data provide a rationale for β-cell dedifferentiation in the pathogenesis of pancreatic cancer-associated diabetes. We propose that β-cell dedifferentiation can be a trigger for β-cell failure in humans, before hyperglycemia occurs.
Collapse
Affiliation(s)
- Yichen Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Research Institute of Pancreatic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the PR China, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Wu Q, Wu W, Jacevic V, Franca TCC, Wang X, Kuca K. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. J Enzyme Inhib Med Chem 2020; 35:574-583. [PMID: 31994958 PMCID: PMC7034130 DOI: 10.1080/14756366.2020.1720013] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) signalling regulates both cancer cell apoptosis and survival. Emerging evidence show that JNK promoted tumour progression is involved in various cancers, that include human pancreatic-, lung-, and breast cancer. The pro-survival JNK oncoprotein functions in a cell context- and cell type-specific manner to affect signal pathways that modulate tumour initiation, proliferation, and migration. JNK is therefore considered a potential oncogenic target for cancer therapy. Currently, designing effective and specific JNK inhibitors is an active area in the cancer treatment. Some ATP-competitive inhibitors of JNK, such as SP600125 and AS601245, are widely used in vitro; however, this type of inhibitor lacks specificity as they indiscriminately inhibit phosphorylation of all JNK substrates. Moreover, JNK has at least three isoforms with different functions in cancer development and identifying specific selective inhibitors is crucial for the development of targeted therapy in cancer. Some selective inhibitors of JNK are identified; however, their clinical studies in cancer are relatively less conducted. In this review, we first summarised the function of JNK signalling in cancer progression; there is a focus on the discussion of the novel selective JNK inhibitors as potential targeting therapy in cancer. Finally, we have offered a future perspective of the selective JNK inhibitors in the context of cancer therapies. We hope this review will help to further understand the role of JNK in cancer progression and provide insight into the design of novel selective JNK inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Vesna Jacevic
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,National Poison Control Centre, Military Medical Academy, Belgrade, Serbia.,Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Tanos C C Franca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Wang Y, Sun J, Ni Q, Nie A, Gu Y, Wang S, Zhang W, Ning G, Wang W, Wang Q. Dual Effect of Raptor on Neonatal β-Cell Proliferation and Identity Maintenance. Diabetes 2019; 68:1950-1964. [PMID: 31345937 DOI: 10.2337/db19-0166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022]
Abstract
Immature pancreatic β-cells are highly proliferative, and the expansion of β-cells during the early neonatal period largely determines functional β-cell mass; however, the mechanisms are poorly characterized. We generated Ngn3RapKO mice (ablation of Raptor, an essential component of mechanistic target of rapamycin [mTORC1] in Ngn3+ endocrine progenitor cells) and found that mTORC1 was dispensable for endocrine cell lineage formation but specifically regulated both proliferation and identity maintenance of neonatal β-cells. Ablation of Raptor in neonatal β-cells led to autonomous loss of cell identity, decelerated cell cycle progression, compromised proliferation, and caused neonatal diabetes as a result of inadequate establishment of functional β-cell mass at postnatal day 14. Completely different from mature β-cells, Raptor regulated G1/S and G2/M phase cell cycle transition, thus permitting a high proliferation rate in neonatal β-cells. Moreover, Ezh2 was identified as a critical downstream target of mTORC1 in neonatal β-cells, which was responsible for G2/M phase transition and proliferation. Our discovery of the dual effect of mTORC1 in immature β-cells has revealed a potential target for replenishing functional β-cell pools by promoting both expansion and functional maturation of newly formed immature β-cells.
Collapse
Affiliation(s)
- Yanqiu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aifang Nie
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K. JNK signaling in cancer cell survival. Med Res Rev 2019; 39:2082-2104. [PMID: 30912203 DOI: 10.1002/med.21574] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/01/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
c-Jun N-terminal kinase (JNK) is involved in cancer cell apoptosis; however, emerging evidence indicates that this Janus signaling promotes cancer cell survival. JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. JNK positively regulates autophagy to counteract apoptosis, and its effect on autophagy is related to the development of chemotherapeutic resistance. The prosurvival effect of JNK may involve an immune evasion mechanism mediated by transforming growth factor-β, toll-like receptors, interferon-γ, and autophagy, as well as compensatory JNK-dependent cell proliferation. The present review focuses on recent advances in understanding the prosurvival function of JNK and its role in tumor development and chemoresistance, including a comprehensive analysis of the molecular mechanisms underlying JNK-mediated cancer cell survival. There is a focus on the specific "Yin and Yang" functions of JNK1 and JNK2 in the regulation of cancer cell survival. We highlight recent advances in our knowledge of the roles of JNK in cancer cell survival, which may provide insight into the distinct functions of JNK in cancer and its potential for cancer therapy.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bishi Fu
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Williams JA. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr Physiol 2019; 9:535-564. [PMID: 30873601 DOI: 10.1002/cphy.c180014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic acinar cells synthesize and secrete about 20 digestive enzymes and ancillary proteins with the processes that match the supply of these enzymes to their need in digestion being regulated by a number of hormones (CCK, secretin and insulin), neurotransmitters (acetylcholine and VIP) and growth factors (EGF and IGF). Of these regulators, one of the most important and best studied is the gastrointestinal hormone, cholecystokinin (CCK). Furthermore, the acinar cell has become a model for seven transmembrane, heterotrimeric G protein coupled receptors to regulate multiple processes by distinct signal transduction cascades. In this review, we briefly describe the chemistry and physiology of CCK and then consider the major physiological effects of CCK on pancreatic acinar cells. The majority of the review is devoted to the physiologic signaling pathways activated by CCK receptors and heterotrimeric G proteins and the functions they affect. The pathways covered include the traditional second messenger pathways PLC-IP3-Ca2+ , DAG-PKC, and AC-cAMP-PKA/EPAC that primarily relate to secretion. Then there are the protein-protein interaction pathways Akt-mTOR-S6K, the three major MAPK pathways (ERK, JNK, and p38 MAPK), and Ca2+ -calcineurin-NFAT pathways that primarily regulate non-secretory processes including biosynthesis and growth, and several miscellaneous pathways that include the Rho family small G proteins, PKD, FAK, and Src that may regulate both secretory and nonsecretory processes but are not as well understood. © 2019 American Physiological Society. Compr Physiol 9:535-564, 2019.
Collapse
Affiliation(s)
- John A Williams
- University of Michigan, Departments of Molecular & Integrative Physiology and Internal Medicine (Gastroenterology), Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Sun J, Ni Q, Xie J, Xu M, Zhang J, Kuang J, Wang Y, Ning G, Wang Q. β-Cell Dedifferentiation in Patients With T2D With Adequate Glucose Control and Nondiabetic Chronic Pancreatitis. J Clin Endocrinol Metab 2019; 104:83-94. [PMID: 30085195 DOI: 10.1210/jc.2018-00968] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Type 2 diabetes (T2D) and pancreatogenic diabetes are both associated with loss of functional β-cell mass. Previous studies have proposed β-cell dedifferentiation as a mechanism of islet β-cell failure, but its significance in humans is still controversial. OBJECTIVE To determine whether β-cell dedifferentiation occurs in human T2D with adequate glucose control and in nondiabetic chronic pancreatitis (NDCP), we examined pancreatic islets from nine nondiabetic controls, 10 patients with diabetes with well-controlled fasting glycemia, and four individuals with NDCP. DESIGN We calculated the percentage of hormone-negative endocrine cells and multihormone endocrine cells and scored the pathological characteristics; that is, inflammatory cell infiltration, fibrosis, atrophy, and steatosis, in each case. RESULTS We found a nearly threefold increase in dedifferentiated cells in T2D with adequate glucose control compared with nondiabetic controls (10.0% vs 3.6%, T2D vs nondiabetic controls, P < 0.0001). The dedifferentiation rate was positively correlated with the duration of diabetes. Moreover, we detected a considerable proportion of dedifferentiated cells in NDCP (10.4%), which correlated well with the grade of inflammatory cell infiltration, fibrosis, and atrophy. CONCLUSIONS The data support the view that pancreatic β-cells are dedifferentiated in patients with T2D with adequate glucose control. Furthermore, the existence of abundant dedifferentiated cells in NDCP suggests that inflammation-induced β-cell dedifferentiation can be a cause of pancreatogenic diabetes during disease progress.
Collapse
Affiliation(s)
- Jiajun Sun
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Kuang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Jiang WJ, Peng YC, Yang KM. Cellular signaling pathways regulating β-cell proliferation as a promising therapeutic target in the treatment of diabetes. Exp Ther Med 2018; 16:3275-3285. [PMID: 30233674 PMCID: PMC6143874 DOI: 10.3892/etm.2018.6603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
It is established that a decrease in β-cell number and deficiency in the function of existing β-cells contribute to type 1 and type 2 diabetes mellitus. Therefore, a major focus of current research is to identify novel methods of improving the number and function of β-cells, so as to prevent and/or postpone the development of diabetes mellitus and potentially reverse diabetes mellitus. Based on prior knowledge of the above-mentioned causes, promising therapeutic approaches may include direct transplantation of islets, implantation and subsequent induced differentiation of progenitors/stem cells to β-cells, replication of pre-existing β-cells, or activation of endogenous β-cell progenitors. More recently, with regards to cell replacement and regenerative treatment for diabetes patients, the identification of cellular signaling pathways with related genes or corresponding proteins involved in diabetes has become a topic of interest. However, the majority of pathways and molecules associated with β-cells remain unresolved, and the specialized functions of known pathways remain unclear, particularly in humans. The current article has evaluated the progress of research on pivotal cellular signaling pathways involved with β-cell proliferation and survival, and their validity for therapeutic adult β-cell regeneration in diabetes. More efforts are required to elucidate the cellular events involved in human β-cell proliferation in terms of the underlying mechanisms and functions.
Collapse
Affiliation(s)
- Wen-Juan Jiang
- Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
| | - Yun-Chuan Peng
- Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
| | - Kai-Ming Yang
- Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
23
|
Tuo Y, Xiang M. mTOR: A double‐edged sword for diabetes. J Leukoc Biol 2018; 106:385-395. [DOI: 10.1002/jlb.3mr0317-095rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yali Tuo
- Department of PharmacologySchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ming Xiang
- Department of PharmacologySchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
24
|
mTORC2 Signaling: A Path for Pancreatic β Cell's Growth and Function. J Mol Biol 2018; 430:904-918. [PMID: 29481838 DOI: 10.1016/j.jmb.2018.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an evolutionary conserved pathway that senses signals from nutrients and growth factors to regulate cell growth, metabolism and survival. mTOR acts in two biochemically and functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which differ in terms of regulatory mechanisms, substrate specificity and functional outputs. While mTORC1 signaling has been extensively studied in islet/β-cell biology, recent findings demonstrate a distinct role for mTORC2 in the regulation of pancreatic β-cell function and mass. mTORC2, a key component of the growth factor receptor signaling, is declined in β cells under diabetogenic conditions and in pancreatic islets from patients with type 2 diabetes. β cell-selective mTORC2 inactivation leads to glucose intolerance and acceleration of diabetes as a result of reduced β-cell mass, proliferation and impaired glucose-stimulated insulin secretion. Thereby, many mTORC2 targets, such as AKT, PKC, FOXO1, MST1 and cell cycle regulators, play an important role in β-cell survival and function. This indicates mTORC2 as important pathway for the maintenance of β-cell homeostasis, particularly to sustain proper β-cell compensatory response in the presence of nutrient overload and metabolic demand. This review summarizes recent emerging advances on the contribution of mTORC2 and its associated signaling on the regulation of glucose metabolism and functional β-cell mass under physiological and pathophysiological conditions in type 2 diabetes.
Collapse
|
25
|
Xu K, Bian D, Hao L, Huang F, Xu M, Qin J, Liu Y. microRNA-503 contribute to pancreatic beta cell dysfunction by targeting the mTOR pathway in gestational diabetes mellitus. EXCLI JOURNAL 2017; 16:1177-1187. [PMID: 29285014 PMCID: PMC5735340 DOI: 10.17179/excli2017-738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
Loss of pancreatic β cells is involved in pathogenesis of gestational diabetes mellitus (GDM). Recently, several studies have elucidated the connection between microRNAs (miRNAs) and diabetes mellitus (DM), but the role of miRNAs in GDM remains unclear. The aim of this study was to evaluate the potential functions of miRNAs in GDM and to investigate the underlying mechanisms of action. First, we explored the expression profile of miRNAs in placenta tissue from GDM patients using microarray. Validation analysis was performed in peripheral blood specimens using quantitative reverse transcription PCR (qRT-PCR). Then the role and regulating mechanism of miR-503 in weaken the function of pancreatic β cell was investigated. We found that miR-503 was markedly upregulated in placenta tissue from GDM patients, as elevated in peripheral blood specimens, and the high level was positively correlated to blood glucose concentration. Knockdown of miR-503 enhanced insulin secretion of pancreatic β-cells, promoted cell proliferation and protected cells from apoptosis, whereas overexpression of miR-503 showed the opposite effects. Furthermore, mammalian target of rapamycin (mTOR) was identified as a direct target of miR-503 and mTOR silencing could reverse the improving effects of miR-503 knockdown on insulin secretion and pancreatic β-cells proliferation. High expression of miR-503 in peripheral blood may be acted as a diagnosis biomarker of GDM. MiR-503 regulated functions of pancreatic β-cells by targeting the mTOR pathway, suggesting that targeting miR-503/mTOR axis could serve as a novel therapeutic target for GDM.
Collapse
Affiliation(s)
- Ke Xu
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Dezhi Bian
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Lanxiang Hao
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Fei Huang
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Min Xu
- Department of Obstetrics and Gynecology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Jie Qin
- Department of Pediatrics, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Yanmei Liu
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| |
Collapse
|
26
|
Xie Y, Cui C, Nie A, Wang Y, Ni Q, Liu Y, Yin Q, Zhang H, Li Y, Wang Q, Gu Y, Ning G. The mTORC2/PKC pathway sustains compensatory insulin secretion of pancreatic β cells in response to metabolic stress. Biochim Biophys Acta Gen Subj 2017; 1861:2039-2047. [PMID: 28435021 DOI: 10.1016/j.bbagen.2017.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022]
|
27
|
Raptor regulates functional maturation of murine beta cells. Nat Commun 2017; 8:15755. [PMID: 28598424 PMCID: PMC5472774 DOI: 10.1038/ncomms15755] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Diabetes is associated with beta cell mass loss and islet dysfunctions. mTORC1 regulates beta cell survival, proliferation and function in physiological and pathological conditions, such as pregnancy and pancreatectomy. Here we show that deletion of Raptor, which is an essential component of mTORC1, in insulin-expressing cells promotes hypoinsulinemia and glucose intolerance. Raptor-deficient beta cells display reduced glucose responsiveness and exhibit a glucose metabolic profile resembling fetal beta cells. Knockout islets have decreased expression of key factors of functional maturation and upregulation of neonatal markers and beta cell disallowed genes, resulting in loss of functional maturity. Mechanistically, Raptor-deficient beta cells show reduced expression of DNA-methyltransferase 3a and altered patterns of DNA methylation at loci that are involved in the repression of disallowed genes. The present findings highlight a novel role of mTORC1 as a core mechanism governing postnatal beta cell maturation and physiologic beta cell mass during adulthood. mTORC1 regulates beta cell survival, function and adaptation to physiologic and pathological stimuli. Here Ni et al. demonstrate that that deficiency of Raptor, a component of mTORC1 complex, impairs insulin secretion and glucose tolerance in mice by affecting maturation of beta cells during the postnatal period.
Collapse
|
28
|
Wu T, Xu J, Xu S, Wu L, Zhu Y, Li G, Ren Z. 17 β-Estradiol Promotes Islet Cell Proliferation in a Partial Pancreatectomy Mouse Model. J Endocr Soc 2017; 1:965-979. [PMID: 29264547 PMCID: PMC5686603 DOI: 10.1210/js.2016-1073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
17β-Estradiol (E2) is a multifunctional steroid hormone in modulating metabolism in vivo. Previous studies have reported that E2 could promote insulin secretion and protect β cells from apoptosis. In this study, the partial pancreatectomy (PPx) model was used to study the role of E2 in islet cell proliferation. The animals were divided into four groups, including sham control, PPx model, E2, and E2 plus estrogen antagonist (E2 plus ICI) groups. In the E2 group, 5-bromo-2'-deoxyuridine- and Ki67-positive cells significantly increased after PPx, and the protein expression of forkhead transcription factor M1, cyclin A2, cyclin B1, and cyclin E2 also significantly increased in the isolated islets. The messenger RNA expression of cyclin A2 and cyclin B2 increased in E2 treatment group. Additionally, the effects of E2 on the PPx mice were partially blocked by estrogen antagonist ICI182,780. The results indicated that E2 significantly promoted islet cell proliferation in PPx model mice, and it upregulated the expression of cell cycle genes. In conclusion, E2 treatment is beneficial for islet cell proliferation in adult mice after PPx. A partial pancreatectomy in mice may be an attractive model for the study of islet cell proliferation.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Neurobiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China.,Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyong Xu
- Department of Neurobiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China.,Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shengchun Xu
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lianzhong Wu
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Youyu Zhu
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Guangwu Li
- Department of Neurobiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China.,Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhenhua Ren
- Department of Neurobiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China.,Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China.,Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
29
|
Chera S, Herrera PL. Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion. Curr Opin Genet Dev 2016; 40:1-10. [PMID: 27266969 DOI: 10.1016/j.gde.2016.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/20/2016] [Accepted: 05/19/2016] [Indexed: 12/14/2022]
Abstract
The impaired ability to produce or respond to insulin, a hormone synthetized by the pancreatic β-cells, leads to diabetes. There is an excruciating need of finding new approaches to protect or restore these cells once they are lost. Replacement and ex vivo directed reprogramming methods have an undeniable therapeutic potential, yet they exhibit crucial flaws. The in vivo conversion of adult cells to functional insulin-producing cells is a promising alternative for regenerative treatments in diabetes. The stunning natural transdifferentiation potential of the adult endocrine pancreas was recently uncovered. Modulating molecular targets involved in β-cell fate maintenance or in general differentiation mechanisms can further potentiate this intrinsic cell plasticity, which leads to insulin production reconstitution.
Collapse
Affiliation(s)
- Simona Chera
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland.
| |
Collapse
|