1
|
Chen Y, Xiao H, Liu Z, Teng F, Yang A, Geng B, Sheng X, Xia Y. Sirt1: An Increasingly Interesting Molecule with a Potential Role in Bone Metabolism and Osteoporosis. Biomolecules 2024; 14:970. [PMID: 39199358 PMCID: PMC11352324 DOI: 10.3390/biom14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by low bone mass, decreased bone mineral density, and degradation of bone tissue microarchitecture. However, our understanding of the mechanisms of bone remodeling and factors affecting bone mass remains incomplete. Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase that regulates a variety of cellular metabolisms, including inflammation, tumorigenesis, and bone metabolism. Recent studies have emphasized the important role of SIRT1 in bone homeostasis. This article reviews the role of SIRT1 in bone metabolism and OP and also discusses therapeutic strategies and future research directions for targeting SIRT1.
Collapse
Affiliation(s)
- Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Zirui Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Fei Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Ao Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Xiaoyun Sheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
2
|
Kuliczkowska-Płaksej J, Zdrojowy-Wełna A, Jawiarczyk-Przybyłowska A, Gojny Ł, Bolanowski M. Diagnosis and therapeutic approach to bone health in patients with hypopituitarism. Rev Endocr Metab Disord 2024; 25:513-539. [PMID: 38565758 DOI: 10.1007/s11154-024-09878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
The results of many studies in recent years indicate a significant impact of pituitary function on bone health. The proper function of the pituitary gland has a significant impact on the growth of the skeleton and the appearance of sexual dimorphism. It is also responsible for achieving peak bone mass, which protects against the development of osteoporosis and fractures later in life. It is also liable for the proper remodeling of the skeleton, which is a physiological mechanism managing the proper mechanical resistance of bones and the possibility of its regeneration after injuries. Pituitary diseases causing hypofunction and deficiency of tropic hormones, and thus deficiency of key hormones of effector organs, have a negative impact on the skeleton, resulting in reduced bone mass and susceptibility to pathological fractures. The early appearance of pituitary dysfunction, i.e. in the pre-pubertal period, is responsible for failure to achieve peak bone mass, and thus the risk of developing osteoporosis in later years. This argues for the need for a thorough assessment of patients with hypopituitarism, not only in terms of metabolic disorders, but also in terms of bone disorders. Early and properly performed treatment may prevent patients from developing the bone complications that are so common in this pathology. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary disease.
Collapse
Affiliation(s)
- Justyna Kuliczkowska-Płaksej
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| | - Aleksandra Zdrojowy-Wełna
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| | - Aleksandra Jawiarczyk-Przybyłowska
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland.
| | - Łukasz Gojny
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| | - Marek Bolanowski
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| |
Collapse
|
3
|
Vasikaran S, Thambiah SC, Tan RZ, Loh TP, APFCB Harmonization of Reference Interval Working Group. The Use of Bone-Turnover Markers in Asia-Pacific Populations. Ann Lab Med 2024; 44:126-134. [PMID: 37869778 PMCID: PMC10628755 DOI: 10.3343/alm.2023.0214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Bone-turnover marker (BTM) measurements in the blood or urine reflect the bone-remodeling rate and may be useful for studying and clinically managing metabolic bone diseases. Substantial evidence supporting the diagnostic use of BTMs has accumulated in recent years, together with the publication of several guidelines. Most clinical trials and observational and reference-interval studies have been performed in the Northern Hemisphere and have mainly involved Caucasian populations. This review focuses on the available data for populations from the Asia-Pacific region and offers guidance for using BTMs as diagnostic biomarkers in these populations. The procollagen I N-terminal propeptide and β-isomerized C-terminal telopeptide of type-I collagen (measured in plasma) are reference BTMs used for investigating osteoporosis in clinical settings. Premenopausal reference intervals (established for use with Asia-Pacific populations) and reference change values and treatment targets (used to monitor osteoporosis treatment) help guide the management of osteoporosis. Measuring BTMs that are not affected by renal failure, such as the bone-specific isoenzyme alkaline phosphatase and tartrate-resistant acid phosphatase 5b, may be advantageous for patients with advanced chronic kidney disease. Further studies of the use of BTMs in individuals with metabolic bone disease, coupled with the harmonization of commercial assays to provide equivalent results, will further enhance their clinical applications.
Collapse
Affiliation(s)
- Samuel Vasikaran
- Department of Clinical Biochemistry, Fiona Stanley Hospital, Perth, Australia
| | - Subashini C. Thambiah
- Department of Pathology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rui Zhen Tan
- Engineering Cluster, Singapore Institute of Technology, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore
| | | |
Collapse
|
4
|
Lombardi G, Delvin E. Micro-RNA: A Future Approach to Personalized Diagnosis of Bone Diseases. Calcif Tissue Int 2023; 112:271-287. [PMID: 35182198 DOI: 10.1007/s00223-022-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023]
Abstract
Osteoporosis is a highly prevalent bone disease worldwide and the most studied bone-associated pathological condition. Although its diagnosis makes use of advanced and clinically relevant imaging and biochemical tools, the information suffers from several limitations and has little or no prognostic value. In this context, circulating micro-RNAs represent a potentially attractive alternative or a useful addition to the diagnostic arsenal and offer a greater prognostic potential than the conventional approaches. These short non-coding RNA molecules act as inhibitors of gene expression by targeting messenger RNAs with different degrees of complementarity, establishing a complex multilevel network, the basis for the fine modulation of gene expression that finally regulates every single activity of a cell. Micro-RNAs may passively and/or actively be released in the circulation by source cells, and being measurable in biological fluids, their concentrations may be associated to specific pathophysiological conditions. Mounting, despite debatable, evidence supports the use of micro-RNAs as markers of bone cell metabolic activity and bone diseases. Indeed, several micro-RNAs have been associated with bone mineral density, fractures and osteoporosis. However, concerns such as absence of comparability between studies and, the lack of standardization and harmonization of the methods, limit their application. In this review, we describe the pathophysiological bases of the association between micro-RNAs and the deregulation of bone cells activity and the processes that led to the identification of potential micro-RNA-based markers associated with metabolic bone diseases.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milano, Italy.
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznań, Poland.
| | - Edgard Delvin
- Ste-Justine University Hospital Research Centre & Department of Biochemistry, Université de Montreal, Montreal, QC, H3T 1C5, Canada
| |
Collapse
|
5
|
Ivaska KK, McGuigan FE, Malmgren L, Gerdhem P, Johansson H, Kanis JA, Akesson KE. Bone Turnover Marker Profiling and Fracture Risk in Older Women: Fracture Risk from Age 75 to 90. Calcif Tissue Int 2022; 111:288-299. [PMID: 35750934 PMCID: PMC9395308 DOI: 10.1007/s00223-022-00996-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE A major challenge in osteoporosis is to identify individuals at high fracture risk. We investigated six bone turnover markers (BTMs) to determine association with specific fracture types; the time-frame for risk prediction and whether these are influenced by age at assessment. METHODS Population-based OPRA cohort (n = 1044) was assessed at ages 75, 80, 85 and fractures documented for up to 15 years. Six BTMs were analyzed at each time-point (N-terminal propeptide of type I collagen, PINP; total osteocalcin, OC; bone-specific alkaline phosphatase, BALP; C-terminal telopeptide of type I collagen, CTX; tartrate-resistant acid phosphatase 5b, TRAcP5b; urinary osteocalcin). Hazard ratios (HR) for any, major osteoporotic, vertebral and hip fractures were calculated as short (1, 2, 3 years) and long-term risk (5, 10, 15 years). RESULTS At 75 year, high CTX levels were associated with an increased risk of all fractures, including major osteoporotic fractures, across most time-frames (HRs ranging: 1.28 to 2.28). PINP was not consistently associated. Urinary osteocalcin was consistently associated with elevated short-term risk (HRs ranging: 1.83-2.72). Other BTMs were directionally in accordance, though not all statistically significant. BTMs were not predictive for hip fractures. Association of all BTMs attenuated over time; at 80 year none were associated with an increased fracture risk. CONCLUSION CTX, urinary OC and TRAcP5b are predictive for fracture in a 1 to 3 year, perspective, whereas in the long-term or above age 80 years, BTMs appear less valuable. Resorption markers, particularly CTX, were more consistently associated with fracture risk than formation markers in the very elderly.
Collapse
Affiliation(s)
- Kaisa K Ivaska
- Institute of Biomedicine, University of Turku, Turku, Finland.
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| | - Fiona E McGuigan
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Linnea Malmgren
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Geriatrics, Skåne University Hospital, Malmö, Sweden
| | - Paul Gerdhem
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences and Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Helena Johansson
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - John A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Kristina E Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Department of Orthopedics Malmö, Skåne University Hospital, S-21428, Malmö, Sweden.
| |
Collapse
|
6
|
The Bone Biomarker Response to an Acute Bout of Exercise: A Systematic Review with Meta-Analysis. Sports Med 2022; 52:2889-2908. [DOI: 10.1007/s40279-022-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/16/2022]
|
7
|
Borgen TT, Solberg LB, Lauritzen T, Apalset EM, Bjørnerem Å, Eriksen EF. Target Values and Daytime Variation of Bone Turnover Markers in Monitoring Osteoporosis Treatment after Fractures. JBMR Plus 2022; 6:e10633. [PMID: 35720666 PMCID: PMC9189911 DOI: 10.1002/jbm4.10633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Abstract
The serum bone turnover markers (BTM) procollagen type 1 N‐terminal propeptide (P1NP) and C‐terminal cross‐linking telopeptide of type 1 collagen (CTX) are recommended for monitoring adherence and response of antiresorptive drugs (ARD). BTM are elevated about 1 year after fracture and therefore BTM target values are most convenient in ARD treatment follow‐up of fracture patients. In this prospective cohort study, we explored the cut‐off values of P1NP and CTX showing the best discriminating ability with respect to adherence and treatment effects, reflected in bone mineral density (BMD) changes. Furthermore, we explored the ability of BTM to predict subsequent fractures and BTM variation during daytime in patients using ARD or not. After a fragility fracture, 228 consenting patients (82.2% women) were evaluated for ARD indication and followed for a mean of 4.6 years (SD 0.5 years). BMD was measured at baseline and after 2 years. Serum BTM were measured after 1 or 2 years. The largest area under the curve (AUC) for discrimination of patients taking ARD or not was shown for P1NP <30 μg/L and CTX <0.25 μg/L. AUC for discrimination of patients with >2% gain in BMD (lumbar spine and total hip) was largest at cut‐off values for P1NP <30 μg/L and CTX <0.25 μg/L. Higher P1NP was associated with increased fracture risk in patients using ARD (hazard ratio [HR]logP1NP = 15.0; 95% confidence interval [CI] 2.7–83.3), p = 0.002. P1NP and CTX were stable during daytime, except in those patients not taking ARD, where CTX decreased by 21% per hour during daytime. In conclusion, P1NP <30 μg/L and CTX <0.25 μg/L yield the best discrimination between patients taking and not taking ARD and the best prediction of BMD gains after 2 years. Furthermore, higher P1NP is associated with increased fracture risk in patients on ARD. BTM can be measured at any time during the day in patients on ARD. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tove T Borgen
- Department of Rheumatology Vestre Viken Hospital Trust, Drammen Hospital Drammen Norway
| | - Lene B Solberg
- Division of Orthopedic Surgery Oslo University Hospital Oslo Norway
| | - Trine Lauritzen
- Department of Laboratory Medicine Vestre Viken Hospital Trust, Drammen Hospital Drammen Norway
- Department of Clinical Medicine University of Oslo Oslo Norway
| | - Ellen M. Apalset
- Bergen group of Epidemiology and Biomarkers in Rheumatic Disease, Department of Rheumatology Haukeland University Hospital Bergen Norway
- Department of Global Public Health and Primary Care University of Bergen Bergen Norway
| | - Åshild Bjørnerem
- Department of Clinical Medicine UiT ‐ The Arctic University of Norway Tromsø Norway
- Department of Obstetrics and Gynecology University Hospital of North Norway Tromsø Norway
- Norwegian Research Centre for Women's Health, Oslo University Hospital Oslo Norway
| | - Erik F Eriksen
- Department of Endocrinology Morbid Obesity and Preventive Medicine, Oslo University Hospital Oslo Norway
- Department of Odontology University of Oslo Oslo Norway
| |
Collapse
|
8
|
Dror N, Carbone J, Haddad F, Falk B, Klentrou P, Radom-Aizik S. Sclerostin and bone turnover markers response to cycling and running at the same moderate-to-vigorous exercise intensity in healthy men. J Endocrinol Invest 2022; 45:391-397. [PMID: 34390461 DOI: 10.1007/s40618-021-01659-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recreational cycling is a popular activity which stimulates and improves cardiovascular fitness. The corresponding benefits for bone are unclear. PURPOSE This study examined the effect of running (high-impact) vs. cycling (low-impact), at the same moderate-to-vigorous exercise intensity, on markers of bone formation (N-terminal propeptide of type I collagen, PINP) and bone resorption (C-telopeptide of type I collagen, CTX-1), a non-collagenous bone remodeling marker (osteocalcin), as well as bone-modulating factors, including parathyroid hormone (PTH), irisin (myokine) and sclerostin (osteokine). METHODS Thirteen healthy men (23.7 ± 1.0 y) performed two progressive exercise tests to exhaustion (peak VO2) on a cycle ergometer (CE) and on a treadmill (TM). On subsequent separate days, in randomized order, participants performed 30-min continuous running or cycling at 70% heart rate reserve (HRR). Blood was drawn before, immediately post- and 1 h into recovery. RESULTS PTH transiently increased (CE, 51.7%; TM, 50.6%) immediately after exercise in both exercise modes. Sclerostin levels increased following running only (27.7%). Irisin increased following both running and cycling. In both exercise modes, CTX-1 decreased immediately after exercise, with no significant change in PINP and osteocalcin. CONCLUSION At the same moderate-to-vigorous exercise intensity, running appears to result in a greater transient sclerostin response compared with cycling, while the responses of bone markers, PTH and irisin are similar. The longer-term implications of this differential bone response need to be further examined.
Collapse
Affiliation(s)
- N Dror
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, 101 Academy, Suite 150, Irvine, CA, 92617, USA
| | - J Carbone
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, 101 Academy, Suite 150, Irvine, CA, 92617, USA
| | - F Haddad
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, 101 Academy, Suite 150, Irvine, CA, 92617, USA
| | - B Falk
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - P Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - S Radom-Aizik
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, 101 Academy, Suite 150, Irvine, CA, 92617, USA.
| |
Collapse
|
9
|
Mu S, Xia Y, Wu Q, Ji C, Dai H, Zhang M, Jiao J, Shi F, Liu S, Wang G, Shen T, Tian Y, Yang L, Fu Q, Zhao Y. Response of Bone Metabolism Markers to Ice Swimming in Regular Practitioners. Front Physiol 2021; 12:731523. [PMID: 34899374 PMCID: PMC8662563 DOI: 10.3389/fphys.2021.731523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/03/2021] [Indexed: 12/04/2022] Open
Abstract
Objective: Both exercise and cold exposure cause physiological stress and they often occur in combination. However, the effects of exercise during severe cold on variation in bone metabolism in humans have remained elusive. The aim of this study was to investigate the variations in circulating bone metabolism markers after ice swimming (IS). Methods: Eighty-seven women and men aged 42–84 years old were recruited to perform regular IS activities. Serum parathyroid hormone (PTH), total calcium (Ca2+), total phosphorus (Pi), total magnesium (Mg2+), N-terminal osteocalcin (N-MID), total propeptide of procollagen 1 (TPINP), and C-terminal telopeptide of type 1 collagen (β-CTX) were measured 30 min before and 30 min after IS. Bone mineral content (BMC) and bone mineral density (BMD) were assessed at lumbar spine 1–4 (L1–L4) and femoral neck (FN). The IS habits were obtained from questionnaires and the 10-year probability of osteoporotic fracture was calculated using the FRAX® tool with and without a BMD value of the FN. Results: There were significant increases in PTH (median, 40.120–51.540 pg/mL), Ca2+ (median, 2.330–2.400 mmol/L), and Pi (median, 1.100–1.340 mmol/L) and significant decreases in TPINP (median, 38.190–36.610 ng/mL) and β-CTX (median, 0.185–0.171 ng/mL), while there was a trend for increased serum Mg2+ (P = 0.058) but no significant change in N-MID (P = 0.933) after IS in all subjects. The increases in the proportions of cases of hyperparathyroidemia, hypercalcemia, and hyperphosphatemia in those performing IS were statistically significant. The baseline levels and the changes of bone metabolism markers had associations with osteoporosis and bone status, but these may be age and sex dependent. Finally, there were significant correlations among the bone metabolism markers. Conclusion: IS caused significant alterations in bone metabolic markers, specifically, increases in PTH, Ca2+ and Pi should raise concerns about potential cardiovascular health risks in severe cold exercise. Additionally, a divergence between PTH elevation and a decline in bone turnover, which shown a special change of bone metabolism after IS and may suggest potential therapeutic implications of cold exercise in PTH and bone metabolic disorders.
Collapse
Affiliation(s)
- Shuai Mu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Ji
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huixu Dai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Shi
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengye Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Shen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqing Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ke CH, Li HY, Yang D, Ying H, Xu J, Wang J, Zhu HW, Wang L. Dynamic Effects of the Third Generation Bisphosphonate of Risedronate on Rat Osteoporotic Fractures for Clinical Usage Guidance. Orthop Surg 2021; 13:2433-2441. [PMID: 34676672 PMCID: PMC8654647 DOI: 10.1111/os.13158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To better understand the risks of bisphosphonates in order to develop guidance for appropriate clinical usage, to compared femoral fracture healing at different time points and to explore the effects of Residronate on fracture healing. METHODS Osteoporosis model was achieved by ovariectomy surgery, followed by surgical incision of left femoral shaft 4 weeks after ovariectomy surgery. Three days after fracture surgery, risedronateor saline was fed by intragastric administration. X ray examination was used to check the callus formation, Bone Mineral Density (BMD), Bone Mineral Content (BMC), biomechanical, imaging and micromorphological of bone tissue as well as the trabecular bone parameters were all examined. The femoral pathology tissue of each rat was used to analyze trabecular bone parameters, including trabecular bone volume/tissue volume (Tb. BV/TV), bone surface to tissue volume ratio (BS/TV), trabecular bone mineral density (Tb. BMD), trabecular bone number (Tb. N), trabecular bone thickness (Tb. Th) and small bone Trabecular bone space (Tb. Sp). RESULTS Via X-ray and pathologically, risedronate treatment promoted the callus forming at the fracture site during the following 6 weeks after osteoporotic fracture by X-ray (P < 0.01), increased the local bone mineral density (P < 0.01), and accelerated the fracture healing during the first 3 weeks (P <0.01), but delayed facture healing in the later 3 weeks (P < 0.01). Risedronate increased the bone continuity of fracture at 7th week, but this phenomenon was not found at the 10th week (P < 0.01). Delayed fracture healing occurred locally at the fracture site. At 7th week, Risedronate may promote cartilage cells proliferating at fracture site, increase the dense of bone trabeculae and the connection of bone trabeculae, thicken the bone cortex showing better fracture healing than OPF-Saline groups (P < 0.01). However, these parameter did not continue during the 7th and 10th weeks. Comparing the first and the later 3 weeks, the rats in group Osteoporotic Fracture-Risedronate (OPF-RD) accelerated the local fracture healing in the first 3 weeks but not in the last 3 weeks, which is consistent for the BMD and BMC among each group (P < 0.05). Through evaluation of bone mineral density and bone mineral content, risedronate dramatically increased the BMD at the fracture site and resulted in reduction of BMC by risedronate at the fracture site (P < 0.05) among each group still exist, indicating dramatic (P < 0.05). Through load testing, Risedronate increased the structural strength and mechanical indexes of the new callus (P < 0.01). CONCLUSION Risedronate can improve the structural strength and mechanical index of newborn callus. Longer than 7 weeks usage of third generation bisphosphonate of risedronate does not contribute to osteoporotic fracture.
Collapse
Affiliation(s)
- Cheng-Hui Ke
- Department of Orthopaedics, Children's Hospital of Shanghai, Shanghai, China
| | - Hong-Yun Li
- Department of Anesthesiology, Children's Hospital of Shanghai, Shanghai, China
| | - Dan Yang
- Department of Orthopaedics, Children's Hospital of Shanghai, Shanghai, China
| | - Hao Ying
- Department of Orthopaedics, Children's Hospital of Shanghai, Shanghai, China
| | - Jun Xu
- Tongji University School of Medicine, Shanghai, China
| | - Jian Wang
- Tongji University School of Medicine, Shanghai, China
| | - Hong-Wen Zhu
- Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, China
| | - Lin Wang
- Department of Orthopaedics, Children's Hospital of Shanghai, Shanghai, China
| |
Collapse
|
11
|
Effects of Six-Week Resistance Training with or without Vibration on Metabolic Markers of Bone Metabolism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189860. [PMID: 34574778 PMCID: PMC8466580 DOI: 10.3390/ijerph18189860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Acute and protracted effects of resistive exercise (RE) and resistive exercise with whole-body vibration (RVE) on metabolic markers of bone metabolism were investigated. Twenty-six men participated in a randomized training program including RE (n = 13; age = 23.4 ± 1.4 years) or RVE (n = 13; age = 24.3 ± 3.3 years). During the first session, acute C-terminal telopeptide of type I collagen (CTX) responses decreased by 12.9% (standard deviation, SD 13.7%) after 2 min, followed by a 15.5% (SD 36.0%) increase at 75 min after exercise (both p < 0.001). Procollagen type I amino terminal propeptide (P1NP) increased by 12.9% (SD 9.1%) at 2 min (p < 0.001) but no change occurred at 75 min. Sclerostin showed prolonged responses from 2 to 75 min post-exercise in the first session (p < 0.001). Acute responses at the first session were comparable between groups for CTX and P1NP, acute sclerostin responses were substantially greater in RE than in RVE (p = 0.003). No significant differences were noted in the resting baseline levels of CTX, P1NP, or sclerostin from the beginning to the end of the six-week progressive training. The present study therefore did not demonstrate any sizeable enhancement of bone turnover that could match the effects that have been repeatably made in response to countermeasure exercise during bed rest.
Collapse
|
12
|
Carrone F, Ariano S, Piccini S, Milani D, Mirani M, Balzarini L, Lania AG, Mazziotti G. Update on vertebral fractures in pituitary diseases: from research to clinical practice. Hormones (Athens) 2021; 20:423-437. [PMID: 33606197 DOI: 10.1007/s42000-021-00275-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Derangement of pituitary hormone axes can induce changes in bone remodeling and metabolism with possible alterations in bone microarchitectural structure and increased susceptibility to fractures. Vertebral fractures (VFs), which are a hallmark of skeletal fragility, have been described in a very large number of patients with pituitary diseases. These fractures are clinically relevant, since they predispose to further fractures and may negatively impact on patients' quality of life. However, the management of skeletal fragility and VFs in the specific setting of pituitary diseases is a challenge, since the awareness for this disease is still low, prediction of VFs is uncertain, the diagnosis of VFs cannot be solely based on a clinical approach and also needs a radiological and morphometric approach, the risk of fractures may not be decreased via treatment of pituitary hormone disorders, and the effectiveness of bone-active drugs in this setting is not always evidence-based. This review is an update on skeletal fragility in patients with pituitary diseases, with a focus on clinical and therapeutic aspects concerning the management of VFs.
Collapse
Affiliation(s)
- Flaminia Carrone
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Salvatore Ariano
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Sara Piccini
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Davide Milani
- Neurosurgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, MI, Italy
| | - Marco Mirani
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Luca Balzarini
- Department of Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, MI, Italy
| | - Andrea Gerardo Lania
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, MI, Italy.
| | - Gherardo Mazziotti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, MI, Italy.
| |
Collapse
|
13
|
Ma R, Wu M, Li Y, Wang J, Yang P, Chen Y, Wang W, Song J, Wang K. The use of bone turnover markers for monitoring the treatment of osteoporosis in postmenopausal females undergoing total knee arthroplasty: a prospective randomized study. J Orthop Surg Res 2021; 16:195. [PMID: 33731168 PMCID: PMC7968280 DOI: 10.1186/s13018-021-02343-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) and osteoarthritis (OA) commonly coexist in postmenopausal females. The decrease in bone density and increase in bone resorption in postmenopausal females with OP may consequently affect the surgical outcome of total knee arthroplasty (TKA). However, clinicians often ignore monitoring the treatment of OP in the perioperative management of TKA. Bone turnover marker (BTM) can timely and accurately reflect bone metabolism to monitor the treatment of OP. The purpose of this study was to investigate the effect of BTM monitoring to guide the treatment of OP in postmenopausal females undergoing TKA. METHODS Postmenopausal females with OP who underwent primary unilateral TKA were randomly divided into two groups (monitoring group and control group), given oral medication (alendronate, calcitriol, and calcium), and followed for 1 year. In the monitoring group, serum BTMs (C-telopeptide of type I collagen (CTX-I), N-terminal propeptide of type I procollagen (PINP), and 25(OH)D) were assessed preoperatively and repeated postoperatively; alendronate was withdrawn when CTX-I and PINP reached the reference interval; and calcitriol and calcium were withdrawn when 25(OH)D reached the reference interval. In the control group, oral medication was implemented for a uniform duration of 3 months. During the 1-year follow-up, the mean maximum total point motion (MTPM) of the tibial component, bone mineral density (BMD), visual analog scale (VAS) score, range of motion, and Oxford Knee Score (OKS) score were obtained. RESULTS In the monitoring group, BTM monitoring prolonged the medication duration, but did not cause more adverse reactions than in the control group. The mean MTPM values at 6 m and 12 m in the monitoring group were lower than those in the control group, and the BMD at 12 m in the monitoring group was significantly higher than that in the control group. Patients in the monitoring group had lower VAS scores at 6 m and higher OKS scores at 6 m and 12 m than those in the control group. CONCLUSION In postmenopausal females with osteoporosis undergoing primary TKA, the application of BTM monitoring to guide the treatment of osteoporosis can enhance bone density, maintain prosthesis stability, and improve surgical outcome. TRIAL REGISTRATION ChiCTR ChiCTR-INR-17010495 . Registered on 22 January 2017.
Collapse
Affiliation(s)
- Rui Ma
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Mengjun Wu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yongwei Li
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Jialin Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Pei Yang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yuanyuan Chen
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Wei Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Jinhui Song
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157 Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Wu CH, Chang YF, Chen CH, Lewiecki EM, Wüster C, Reid I, Tsai KS, Matsumoto T, Mercado-Asis LB, Chan DC, Hwang JS, Cheung CL, Saag K, Lee JK, Tu ST, Xia W, Yu W, Chung YS, Ebeling P, Mithal A, Ferrari SL, Cooper C, Lin GT, Yang RS. Consensus Statement on the Use of Bone Turnover Markers for Short-Term Monitoring of Osteoporosis Treatment in the Asia-Pacific Region. J Clin Densitom 2021; 24:3-13. [PMID: 31010789 DOI: 10.1016/j.jocd.2019.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a major health issue. By 2050, a greater than 2-fold increase in patients number with hip fractures will occur in Asia representing 50% of all hip fractures worldwide. For the Asia-Pacific (AP) region, more efforts on controlling osteoporosis and the subsequent fractures are crucial. Bone mineral density (BMD) by dual energy X-ray absorptiometry (DXA) is commonly used to diagnose osteoporosis and monitor osteoporosis treatment. However, the inconvenience, cost, limited availability of DXA and the delay in detection of BMD changes after treatment initiation support an important role for bone turnover markers (BTMs), as short-term tools to monitor therapy. With regards to low adherence rates of medical treatment of osteoporosis, the experts reached consensus on the use of BTMs for both raising awareness and short-term monitoring of osteoporosis treatment in the AP region. The experts endorse the use of BTMs, especially serum C-terminal telopeptide of type 1 collagen (CTX) and serum procollagen type 1 N propeptide (P1NP), as short-term monitoring tools to help clinicians assess the responses to osteoporosis therapies and appropriately adjust treatment regimens earlier than BMD. Either the absolute values or the degree of change from baseline in BTMs can be used to monitor the potential efficacy of osteoporosis therapies. The use of BTMs can be incorporated in osteoporosis care programs, such as fracture liaison service (FLS), to improve patient adherence and treatment outcomes. Encouraging sufficient reimbursement from health care systems may facilitate widespread use of BTMs in clinical practice in the AP region.
Collapse
Affiliation(s)
- Chih-Hsing Wu
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Geriatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yin-Fan Chang
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Departments of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopaedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City, Taiwan
| | - E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA
| | - Christian Wüster
- Hormone & Bone Metabolic Center & Dept. of Orthopedic Surgery, Johannes Gutenberg University of Mainz, D-55122, Mainz, Germany
| | - Ian Reid
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland Private Bag, 92019, Auckland, New Zealand
| | - Keh-Sung Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 10048, Taiwan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Japan
| | | | - Ding-Cheng Chan
- Superintendent Office, National Taiwan University Hospital Chu-Tung Branch, Zhudong, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Chu-Tung, Taiwan; Department of Geriatrics and Gerontology, National Taiwan University Hospital, Chu-Tung, Taiwan
| | - Jawl-Shan Hwang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taiwan
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Centre for Genomic Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kenneth Saag
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joon-Kiong Lee
- Beacon International Specialist Centre, Petaling Jaya, Malaysia
| | - Shih-Te Tu
- Division of Endocrinology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College. Beijing, 100730 China
| | - Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College. Beijing, 100730, China
| | - Yoon-Sok Chung
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Peter Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Ambrish Mithal
- Division of Endocrinology and Diabetes, Medanta, the Medicity, Gurgaon, Pin: 122001, India
| | | | - Cyrus Cooper
- Oxford National Institute for Health Biomedical Research Centre, University of Oxford, Windmill Road, Oxford, United Kingdom
| | - Gau-Tyan Lin
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rong-Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Dolan E, Dumas A, Keane KM, Bestetti G, Freitas LHM, Gualano B, Kohrt W, Kelley GA, Pereira RMR, Sale C, Swinton P. The influence of acute exercise on bone biomarkers: protocol for a systematic review with meta-analysis. Syst Rev 2020; 9:291. [PMID: 33308281 PMCID: PMC7733242 DOI: 10.1186/s13643-020-01551-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/30/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Bone is a plastic tissue that is responsive to its physical environment. As a result, exercise interventions represent a potential means to influence the bone. However, little is currently known about how various exercise and participant characteristics interact to influence bone metabolism. Acute, controlled, interventions provide an in vivo model through which the acute bone response to exercise can be investigated, typically by monitoring circulating bone biomarkers. Currently, substantial heterogeneity in factors such as study design, quality, exercise, and participant characteristics render it difficult to synthesize and evaluate the available evidence. Using a systematic review and meta-analytic approach, the aim of this investigation is to quantify the effect of an acute exercise bout on circulating bone biomarkers as well as examine the potential factors that may moderate this response, e.g., variation in participant, exercise, and sampling characteristics. METHODS This protocol was designed in accordance with the PRISMA-P guidelines. Seven databases (MEDLINE, Embase, Sport Discus, Cochrane CENTRAL, PEDro, LILACS, and Ibec) will be systematically searched and supplemented by a secondary screening of the reference lists of all included articles. The PICOS (Population, Intervention, Comparator, Outcomes and Study Design) approach was used to guide the determination of the eligibility criteria. Participants of any age, sex, training, or health status will be considered for inclusion. We will select studies that have measured the bone biomarker response before and after an acute exercise session. All biomarkers considered to represent the bone metabolism will be considered for inclusion, and sensitivity analyses will be conducted using reference biomarkers for the measurement of bone resorption and formation (namely β-CTX-1 and P1NP). Multi-level, meta-regression models within a Bayesian framework will be used to explore the main effect of acute exercise on bone biomarkers as well as potential moderating factors. The risk of bias for each individual study will be evaluated using a modified version of the Downs and Black checklist while certainty in resultant outcomes will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. DISCUSSION A better understanding of the bone metabolic response to an acute bout of exercise has the potential to advance our understanding of the mechanisms through which this stimulus impacts bone metabolism, including factors that may moderate this response. Additionally, we will identify current gaps in the evidence base and provide recommendations to inform future research. SYSTEMATIC REVIEW REGISTRATION This protocol was prospectively registered in the Open Science Framework Registry ( https://osf.io/6f8dz ).
Collapse
Affiliation(s)
- E Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil.
| | - A Dumas
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - K M Keane
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - G Bestetti
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - L H M Freitas
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - B Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil.,Food Research Centre, University of São Paulo, Sao Paulo, SP, Brazil
| | - W Kohrt
- Centre for Women's Health Research, School of Medicine, University of Colorado, Aurora, USA
| | - G A Kelley
- Department of Biostatistics, West Virginia University, Morgantown, USA
| | - R M R Pereira
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - C Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - P Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
16
|
Dolan E, Varley I, Ackerman KE, Pereira RMR, Elliott-Sale KJ, Sale C. The Bone Metabolic Response to Exercise and Nutrition. Exerc Sport Sci Rev 2020; 48:49-58. [PMID: 31913188 DOI: 10.1249/jes.0000000000000215] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone (re)modeling markers can help determine how the bone responds to different types, intensities, and durations of exercise. They also might help predict those at risk of bone injury. We synthesized evidence on the acute and chronic bone metabolic responses to exercise, along with how nutritional factors can moderate this response. Recommendations to optimize future research efforts are made.
Collapse
Affiliation(s)
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Kathryn E Ackerman
- Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rosa Maria R Pereira
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kirsty Jayne Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
17
|
Mawatari T, Ikemura S, Matsui G, Iguchi T, Mitsuyasu H, Kawahara S, Maehara M, Muraoka R, Iwamoto Y, Nakashima Y. Assessment of baseline bone turnover marker levels and response to risedronate treatment: Data from a Japanese phase III trial. Bone Rep 2020; 12:100275. [PMID: 32462056 PMCID: PMC7240327 DOI: 10.1016/j.bonr.2020.100275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background Risedronate increases bone mineral density (BMD) and reduces fracture risk, but treatment response may depend on the baseline state of bone turnover. Data regarding the selection of therapeutic drugs or the prediction of therapeutic effects with baseline levels of bone turnover markers (BTMs) as a reference are insufficient. We hypothesized that when the baseline levels of BTMs are higher, baseline BMD might be lower, changes in BMD at 12 months after risedronate treatment might be higher, and the reduction of fracture incidence might be greater. This study aimed to analyze the data of a phase III clinical trial of risedronate from Japan to investigate the relationships between baseline BTM levels and (1) baseline BMD, (2) changes in BMD at 12 months after the start of treatment, and (3) the incidence of new vertebral fractures. Methods This post-hoc analysis included 788 postmenopausal women with osteoporosis whose baseline BTM levels as well as baseline and endpoint BMDs were measured. Relationships between baseline BTM levels and BMD at baseline and 12 months after risedronate treatment and new vertebral fractures were examined. One-way analysis of variance, two-tailed Student's t-test, and Fisher's exact test were used to analyze the data. Results Baseline BMD showed a significant upward trend when baseline BTM levels were lower in the analysis by tertiles. New vertebral fractures tended to occur in patients with prevalent vertebral fractures, but the relationship between new fractures and BTM levels was not statistically significant. Regardless of BTM types, BMD percentage increments (%) and increments (g/cm2) with the 12-month treatment were high when pretreatment BTM levels were high (P < 0.0001), and a >5.0% increase in BMD was observed even if baseline BTM levels were within the normal range. A new vertebral fracture occurred in only six patients (0.77%), and there was not enough statistical power to clarify the relationship between baseline BTM levels and fracture risk reduction. Conclusions When pretreatment BTM levels increased, baseline BMD tended to be lower and the increase in BMD with 12-month risedronate treatment was higher. However, BMD could still be increased even if the baseline BTM levels are within the normal range. Combined with available evidence, baseline BTMs may not have an important role in deciding the optimal therapy. To elucidate the relationship between baseline BTM levels and long-term fracture risk, it will be necessary to conduct more large-scale studies with a longer follow-up period in severe osteoporotic patients with a high fracture risk. Mini abstract We evaluated the significance of baseline bone turnover markers in the response to risedronate treatment. The increase in the bone mineral density (BMD) with the 12-month treatment may be higher when the state of bone turnover at baseline is higher, and BMD could still be increased even if the baseline bone turnover is within the normal range. Baseline bone turnover markers in response to risedronate treatment are unknown. Higher BMD may be achieved when the state of bone turnover at baseline is higher. Further increase in BMD is possible even if the baseline bone turnover is normal.
Collapse
Key Words
- A, anterior
- BAP, bone isoforms of alkaline phosphatase
- BMD, bone mineral density
- BTMs, bone turnover markers
- Bone isoforms of alkaline phosphatase
- Bone turnover markers
- C, central
- C-telopeptide of type I collagen
- CTX, C-telopeptide of type I collagen
- DPD, deoxypyridinoline
- LS-BMD, lumbar spine bone mineral density
- P, posterior
- P1NP, N-propeptide of type I collagen
- Risedronate
- SD, standard deviation
- TRACP-5b, tartrate-resistant acid phosphatase-5b
- Tartrate-resistant acid phosphatase-5b
- ULN, upper limit of the normal range
Collapse
Affiliation(s)
- Taro Mawatari
- Department of Orthopedic Surgery, Hamanomachi Hospital, Fukuoka, Japan.,Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Ikemura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gen Matsui
- Department of Orthopedic Surgery, Hamanomachi Hospital, Fukuoka, Japan
| | - Takahiro Iguchi
- Department of Orthopedic Surgery, Hamanomachi Hospital, Fukuoka, Japan
| | - Hiroaki Mitsuyasu
- Department of Orthopedic Surgery, Hamanomachi Hospital, Fukuoka, Japan
| | - Shinya Kawahara
- Department of Orthopedic Surgery, Hamanomachi Hospital, Fukuoka, Japan
| | - Masayuki Maehara
- Alliance Management Department, EA Pharma Co., Ltd., Tokyo, Japan
| | - Ryoichi Muraoka
- Data Science Group, Clinical Development Department, EA Pharma Co., Ltd., Tokyo, Japan
| | - Yukihide Iwamoto
- Department of Orthopedic Surgery, Kyushu Rosai Hospital, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Bottani M, Banfi G, Lombardi G. The Clinical Potential of Circulating miRNAs as Biomarkers: Present and Future Applications for Diagnosis and Prognosis of Age-Associated Bone Diseases. Biomolecules 2020; 10:E589. [PMID: 32290369 PMCID: PMC7226497 DOI: 10.3390/biom10040589] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis, related fracture/fragility, and osteoarthritis are age-related pathologies that, over recent years, have seen increasing incidence and prevalence due to population ageing. The diagnostic approaches to these pathologies suffer from limited sensitivity and specificity, also in monitoring the disease progression or treatment. For this reason, new biomarkers are desirable for improving the management of osteoporosis and osteoarthritis patients. The non-coding RNAs, called miRNAs, are key post-transcriptional factors in bone homeostasis, and promising circulating biomarkers for pathological conditions in which to perform a biopsy can be problematic. In fact, miRNAs can easily be detected in biological fluids (i.e., blood, serum, plasma) using methods with elevated sensitivity and specificity (RT-qPCR, microarray, and NGS). However, the analytical phases required for miRNAs' evaluation still present some practical issues that limit their use in clinical practice. This review reveals miRNAs' potential as circulating biomarkers for evaluating predisposition, diagnosis, and prognosis of osteoporosis (postmenopausal or idiopathic), bone fracture/fragility, and osteoarthritis, with a focus on pre-analytical, analytical, and post-analytical protocols used for their validation and thus on their clinical applicability. These evidences may support the definition of early diagnostic tools based on circulating miRNAs for bone diseases and osteoarthritis as well as for monitoring the effects of specific treatments.
Collapse
Affiliation(s)
- Michela Bottani
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy; (M.B.); (G.B.)
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy; (M.B.); (G.B.)
- Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy; (M.B.); (G.B.)
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| |
Collapse
|
19
|
Zhang J, Zhang Y, Wang J, Yu F. Characteristics of bone turnover markers in women with gestational diabetes mellitus. Clin Biochem 2020; 77:36-40. [PMID: 31899278 DOI: 10.1016/j.clinbiochem.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Bone turnover markers (BTMs) can be applied to the assessment of bone formation and bone resorption activity. The aim of this study was to investigate the changes in BTMs in women with gestational diabetes mellitus (GDM). METHODS One hundred and five women with gestational diabetes mellitus defined as the GDM group and 46 healthy pregnant women with normal glucose tolerance selected as the control group were enrolled in this study. Serum samples were collected during regular obstetric examinations and the serum levels of total procollagen type 1 N-terminal propeptide (P1NP), N-terminal midfragment of osteocalcin (N-MID), and β-C-terminal telopeptide of type 1 collagen (β-CTX) were measured. An independent-sample t-test, the Mann-Whitney U test, and a Pearson correlation analysis were performed for data analyses. RESULTS Serum β-CTX levels in the GDM group were significantly higher than those in the control group (296.00 [235.00-369.00] pg/mL vs. 218.5 [165.25-292.50] pg/mL, p < 0.05), while P1NP and N-MID levels did not differ between the two groups. The Pearson correlation analysis revealed that β-CTX level was correlated with blood glucose level. CONCLUSIONS The difference in β-CTX levels indicated that bone resorption in patients with GDM diabetes was higher than that in pregnant women with normal glucose tolerance. No obvious differences in bone formation markers P1NP and N-MID were found between the two groups.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 17, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, China
| | - Yiduo Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 17, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, China
| | - Jing Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, China
| | - Fan Yu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 17, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Ferraù F, Giovinazzo S, Messina E, Tessitore A, Vinci S, Mazziotti G, Lania A, Granata F, Cannavò S. High bone marrow fat in patients with Cushing's syndrome and vertebral fractures. Endocrine 2020; 67:172-179. [PMID: 31376100 DOI: 10.1007/s12020-019-02034-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/22/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE The evaluation of skeletal fragility in Cushing's syndrome (CS) is a clinical challenge, since dual-energy X-ray absorptiometry (DXA) does not capture abnormalities in bone microstructure induced by glucocorticoid excess. Hypercortisolism was shown to increase bone marrow adiposity, but it is still unknown whether high bone marrow fat (BMF) as measured by vertebral magnetic resonance spectroscopy may predict fracture risk in this clinical setting. In this cross-sectional study, we evaluated the association between BMF and vertebral fractures (VFs) in patients with CS. METHODS Twenty patients (5 M, age 44 ± 13 years) with active CS were evaluated for morphometric VFs, lumbar spine BMF, and bone mineral density (BMD). Fifteen healthy volunteers (4 M, age 43 ± 12 years) acted as control group for BMF evaluation. RESULTS BMF was significantly higher in CS patients vs. controls (52.0% vs. 27.0%, p < 0.01), and was directly correlated with patients' age (p = 0.03), 24-hours urine-free cortisol (p = 0.03), midnight serum cortisol (p = 0.02), and serum CTX (p = 0.01). Patients with VFs (13 cases) showed significantly higher BMF vs. patients without VFs (65.0% vs. 24.0%, p = 0.03). Fractured patients with either normal BMD or osteopenia showed comparable BMF to fractured patients with either osteoporosis or low BMD for age (p = 0.71). When the analysis was restricted to patients with normal BMD or osteopenia, VFs were still significantly associated with higher BMF (p = 0.05). CONCLUSIONS This study provides a first evidence that vertebral adiposity may be a marker of hypercortisolism-induced skeletal fragility and measurement of spine BMF could have a role in the diagnostic work-up for the assessment of fracture risk in CS.
Collapse
Affiliation(s)
- Francesco Ferraù
- Endocrine Unit, University Hospital "AOU Policlinico G. Martino", Messina, Italy.
- Department of Human Pathology of Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy.
| | - Salvatore Giovinazzo
- Endocrine Unit, University Hospital "AOU Policlinico G. Martino", Messina, Italy
| | - Erika Messina
- Endocrine Unit, University Hospital "AOU Policlinico G. Martino", Messina, Italy
| | - Agostino Tessitore
- Neuroradiological Unit of University Hospital "AOU Policlinico G. Martino", Messina, Italy
| | - Sergio Vinci
- Neuroradiological Unit of University Hospital "AOU Policlinico G. Martino", Messina, Italy
- Department of Biomedical Sciences and Morphological and Functional Imaging of University of Messina, Messina, Italy
| | - Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Rozzano (MI), Italy
- Endocrine Unit, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Andrea Lania
- Department of Biomedical Sciences, Humanitas University, Rozzano (MI), Italy
- Endocrine Unit, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Francesca Granata
- Neuroradiological Unit of University Hospital "AOU Policlinico G. Martino", Messina, Italy
- Department of Biomedical Sciences and Morphological and Functional Imaging of University of Messina, Messina, Italy
| | - Salvatore Cannavò
- Endocrine Unit, University Hospital "AOU Policlinico G. Martino", Messina, Italy
- Department of Human Pathology of Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
21
|
Bottani M, Banfi G, Lombardi G. Perspectives on miRNAs as Epigenetic Markers in Osteoporosis and Bone Fracture Risk: A Step Forward in Personalized Diagnosis. Front Genet 2019; 10:1044. [PMID: 31737038 PMCID: PMC6831724 DOI: 10.3389/fgene.2019.01044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with an increased incidence of age-related bone diseases. Current diagnostics (e.g., conventional radiology, biochemical markers), because limited in specificity and sensitivity, can distinguish between healthy or osteoporotic subjects but they are unable to discriminate among different underlying causes that lead to the same bone pathological condition (e.g., bone fracture risk). Among recent, more sensitive biomarkers, miRNAs — the non-coding RNAs involved in the epigenetic regulation of gene expression, have emerged as fundamental post-transcriptional modulators of bone development and homeostasis. Each identified miRNA carries out a specific role in osteoblast and osteoclast differentiation and functional pathways (osteomiRs). miRNAs bound to proteins or encapsulated in exosomes and/or microvesicles are released into the bloodstream and biological fluids where they can be detected and measured by highly sensitive and specific methods (e.g., quantitative PCR, next-generation sequencing). As such, miRNAs provide a prompt and easily accessible tool to determine the subject-specific epigenetic environment of a specific condition. Their use as biomarkers opens new frontiers in personalized medicine. While miRNAs circulating levels are lower than those found in the tissue/cell source, their quantification in biological fluids may be strategic in the diagnosis of diseases that affect tissues, such as bone, in which biopsy may be especially challenging. For a biomarker to be valuable in clinical practice and support medical decisions, it must be (easily) measurable, validated by independent studies, and strongly and significantly associated with a disease outcome. Currently, miRNAs analysis does not completely satisfy these criteria, however. Starting from in vitro and in vivo observations describing their biological role in bone cell development and metabolism, this review describes the potential use of bone-associated circulating miRNAs as biomarkers for determining predisposition, onset, and development of osteoporosis and bone fracture risk. Moreover, the review focuses on their clinical relevance and discusses the pre-analytical, analytical, and post-analytical issues in their measurement, which still limits their routine application. Taken together, research and clinical findings may be helpful for creating miRNA-based diagnostic tools in the diagnosis and treatment of bone diseases.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Moelcular Biology, Milano, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Moelcular Biology, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Moelcular Biology, Milano, Italy.,Department of Physiology & Pharmacology, Gdańsk University of Physical Education & Sport, Gdańsk, Poland
| |
Collapse
|
22
|
Skeletal Metastases of Unknown Primary: Biological Landscape and Clinical Overview. Cancers (Basel) 2019; 11:cancers11091270. [PMID: 31470608 PMCID: PMC6770264 DOI: 10.3390/cancers11091270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Skeletal metastases of unknown primary (SMUP) represent a clinical challenge in dealing with patients diagnosed with bone metastases. Management of these patients has improved significantly in the past few years. however, it is fraught with a lack of evidence. While some patients have achieved impressive gains, a more systematic and tailored treatment is required. Nevertheless, in real-life practice, the outlook at the beginning of treatment for SMUP is decidedly somber. An incomplete translational relevance of pathological and clinical data on the mortality and morbidity rate has had unsatisfactory consequences for SMUP patients and their physicians. We examined several approaches to confront the available evidence; three key points emerged. The characterization of the SMUP biological profile is essential to driving clinical decisions by integrating genetic and molecular profiles into a multi-step diagnostic work-up. Nonetheless, a pragmatic investigation plan and therapy of SMUP cannot follow a single template; it must be adapted to different pathophysiological dynamics and coordinated with efforts of a systematic algorithm and high-quality data derived from statistically powered clinical trials. The discussion in this review points out that greater efforts are required to face the unmet needs present in SMUP patients in oncology.
Collapse
|
23
|
Parveen B, Parveen A, Vohora D. Biomarkers of Osteoporosis: An Update. Endocr Metab Immune Disord Drug Targets 2019; 19:895-912. [PMID: 30727928 DOI: 10.2174/1871530319666190204165207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/16/2018] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Osteoporosis, characterized by compromised bone quality and strength is associated with bone fragility and fracture risk. Biomarkers are crucial for the diagnosis or prognosis of a disease as well as elucidating the mechanism of drug action and improve decision making. OBJECTIVE An exhaustive description of traditional markers including bone mineral density, vitamin D, alkaline phosphatase, along with potential markers such as microarchitectural determination, trabecular bone score, osteocalcin, etc. is provided in the current piece of work. This review provides insight into novel pathways such as the Wnt signaling pathway, neuro-osseous control, adipogenic hormonal imbalance, gut-bone axis, genetic markers and the role of inflammation that has been recently implicated in osteoporosis. METHODS We extensively reviewed articles from the following databases: PubMed, Medline and Science direct. The primary search was conducted using a combination of the following keywords: osteoporosis, bone, biomarkers, bone turnover markers, diagnosis, density, architecture, genetics, inflammation. CONCLUSION Early diagnosis and intervention delay the development of disease and improve treatment outcome. Therefore, probing for novel biomarkers that are able to recognize people at high risk for developing osteoporosis is an effective way to improve the quality of life of patients and to understand the pathomechanism of the disease in a better way.
Collapse
Affiliation(s)
- Bushra Parveen
- Department of Pharmacology, Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New-Delhi-10062, India
| | - Abida Parveen
- Department of Clinical Research, School of Interdisciplinary Sciences, Jamia Hamdard, New-Delhi-10062, India
| | - Divya Vohora
- Department of Pharmacology, Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New-Delhi-10062, India
| |
Collapse
|
24
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
25
|
Rochira V, Antonio L, Vanderschueren D. EAA clinical guideline on management of bone health in the andrological outpatient clinic. Andrology 2018; 6:272-285. [DOI: 10.1111/andr.12470] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/16/2023]
Affiliation(s)
- V. Rochira
- Unit of Endocrinology; Department of Biomedical, Metabolic and Neural Sciences; University of Modena and Reggio Emilia; Modena Italy
- Azienda Ospedaliero-Universitaria di Modena; Ospedale Civile di Baggiovara; Modena Italy
| | - L. Antonio
- Department of Endocrinology; University Hospitals Leuven; Leuven Belgium
| | - D. Vanderschueren
- Department of Endocrinology; University Hospitals Leuven; Leuven Belgium
- Department of Clinical and Experimental Medicine; Laboratory of Clinical and Experimental Endocrinology; KU Leuven; Leuven Belgium
- Department of Laboratory Medicine; University Hospitals Leuven; Leuven Belgium
| |
Collapse
|
26
|
Fisher A, Fisher L, Srikusalanukul W, Smith PN. Bone Turnover Status: Classification Model and Clinical Implications. Int J Med Sci 2018; 15:323-338. [PMID: 29511368 PMCID: PMC5835703 DOI: 10.7150/ijms.22747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022] Open
Abstract
Aim: To develop a practical model for classification bone turnover status and evaluate its clinical usefulness. Methods: Our classification of bone turnover status is based on internationally recommended biomarkers of both bone formation (N-terminal propeptide of type1 procollagen, P1NP) and bone resorption (beta C-terminal cross-linked telopeptide of type I collagen, bCTX), using the cutoffs proposed as therapeutic targets. The relationships between turnover subtypes and clinical characteristic were assessed in1223 hospitalised orthogeriatric patients (846 women, 377 men; mean age 78.1±9.50 years): 451(36.9%) subjects with hip fracture (HF), 396(32.4%) with other non-vertebral (non-HF) fractures (HF) and 376 (30.7%) patients without fractures. Resalts: Six subtypes of bone turnover status were identified: 1 - normal turnover (P1NP>32 μg/L, bCTX≤0.250 μg/L and P1NP/bCTX>100.0[(median value]); 2- low bone formation (P1NP ≤32 μg/L), normal bone resorption (bCTX≤0.250 μg/L) and P1NP/bCTX>100.0 (subtype2A) or P1NP/bCTX<100.0 (subtype 2B); 3- low bone formation, high bone resorption (bCTX>0.250 μg/L) and P1NP/bCTX<100.0; 4- high bone turnover (both markers elevated ) and P1NP/bCTX>100.0 (subtype 4A) or P1NP/bCTX<100.0 (subtype 4B). Compared to subtypes 1 and 2A, subtype 2B was strongly associated with nonvertebral fractures (odds ratio [OR] 2.0), especially HF (OR 3.2), age>75 years and hyperparathyroidism. Hypoalbuminaemia and not using osteoporotic therapy were two independent indicators common for subtypes 3, 4A and 4B; these three subtypes were associated with in-hospital mortality. Subtype 3 was associated with fractures (OR 1.7, for HF OR 2.4), age>75 years, chronic heart failure (CHF), anaemia, and history of malignancy, and predicted post-operative myocardial injury, high inflammatory response and length of hospital stay (LOS) above10 days. Subtype 4A was associated with chronic kidney disease (CKD), anaemia, history of malignancy and walking aids use and predicted LOS>20 days, but was not discriminative for fractures. Subtype 4B was associated with fractures (OR 2.1, for HF OR 2.5), age>75 years, CKD and indicated risks of myocardial injury, high inflammatory response and LOS>10 days. Conclusions: We proposed a classification model of bone turnover status and demonstrated that in orthogeriatric patients altered subtypes are closely related to presence of nonvertebral fractures, comorbidities and poorer in-hospital outcomes. However, further research is needed to establish optimal cut points of various biomarkers and improve the classification model.
Collapse
Affiliation(s)
- Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, Canberra, ACT Health, Canberra, Australia.,Department of Orthopaedic Surgery, The Canberra Hospital, Canberra, ACT Health, Canberra, Australia.,Australian National University Medical School, Canberra, ACT, Australia
| | - Leon Fisher
- Frankston Hospital, Peninsula Health, Melbourne, Australia
| | - Wichat Srikusalanukul
- Department of Geriatric Medicine, The Canberra Hospital, Canberra, ACT Health, Canberra, Australia
| | - Paul N Smith
- Department of Orthopaedic Surgery, The Canberra Hospital, Canberra, ACT Health, Canberra, Australia.,Australian National University Medical School, Canberra, ACT, Australia
| |
Collapse
|
27
|
Muschitz GK, Schwabegger E, Fochtmann A, Baierl A, Kocijan R, Haschka J, Gruther W, Schanda JE, Resch H, Rath T, Pietschmann P, Muschitz C. Long-Term Effects of Severe Burn Injury on Bone Turnover and Microarchitecture. J Bone Miner Res 2017; 32:2381-2393. [PMID: 28667771 DOI: 10.1002/jbmr.3211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/13/2017] [Accepted: 06/24/2017] [Indexed: 12/11/2022]
Abstract
Severe burn injury triggers massive alterations in stress hormone levels with a dose-dependent hypermetabolic status including increased bone resorption. This study evaluated bone microarchitecture measured by noninvasive high-resolution peripheral quantitative computed tomography (HR-pQCT). Changes of serum bone turnover markers (BTM) as well as regulators of bone signaling pathways involved in skeletal health were assessed. Standardized effect sizes as a quantitative measure regarding the impact of serum changes and the prediction of these changes on bone microarchitecture were investigated. In total, 32 male patients with a severe burn injury (median total body surface area [TBSA], 40.5%; median age 40.5 years) and 28 matched male controls (median age 38.3 years) over a period of 24 months were included. In patients who had sustained a thermal injury, trabecular and cortical bone microstructure showed a continuous decline, whereas cortical porosity (Ct.Po) and pore volume increased. Initially, elevated levels of BTM and C-reactive protein (CRP) continuously decreased over time but remained elevated. In contrast, levels of soluble receptor activator of NF-κB ligand (sRANKL) increased over time. Osteocalcin, bone-specific alkaline phosphatase (BALP), intact N-terminal type 1 procollagen propeptide (P1NP), and cross-linked C-telopeptide (CTX) acutely reflected the increase of Ct.Po at the radius (R2 = 0.41), followed by the reduction of trabecular thickness at the tibia (R2 = 0.28). In adult male patients, early and sustained changes of markers of bone resorption, formation and regulators of bone signaling pathways, prolonged inflammatory cytokine activities in conjunction with muscle catabolism, and vitamin D insufficiency were observed. These alterations are directly linked to a prolonged deterioration of bone microstructure. The probably increased risk of fragility fractures should be of clinical concern and subject to future interventional studies with bone-protective agents. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gabriela Katharina Muschitz
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Elisabeth Schwabegger
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Fochtmann
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Vienna, Austria
| | - Roland Kocijan
- St. Vincent Hospital, Medical Department II-VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| | - Judith Haschka
- St. Vincent Hospital, Medical Department II-VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| | - Wolfgang Gruther
- University Clinic of Physical Medicine, Rehabilitation, and Occupational Medicine, Medical University Vienna, Vienna, Austria
| | | | - Heinrich Resch
- St. Vincent Hospital, Medical Department II-VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria.,Karl Landsteiner Institute for Gastroenterology and Rheumatology, Vienna, Austria.,Bone Diseases Unit, Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Thomas Rath
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Muschitz
- St. Vincent Hospital, Medical Department II-VINFORCE, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Fisher A, Srikusalanukul W, Fisher L, Smith PN. Lower serum P1NP/βCTX ratio and hypoalbuminemia are independently associated with osteoporotic nonvertebral fractures in older adults. Clin Interv Aging 2017; 12:1131-1140. [PMID: 28769558 PMCID: PMC5529092 DOI: 10.2147/cia.s141097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To estimate the discriminative value of serum P1NP/βCTX ratio and albumin levels in hospitalized orthogeriatric patients with and without nonvertebral fractures. Methods In 1,239 orthogeriatric patients (mean age 78.1±9.52 years, 69.1% women) including 854 (68.9%) with osteoporotic nonvertebral fractures (455 [36.7%] with hip fracture [HF]) and 385 (31.1%) without fractures, markers of bone formation (procollagen type 1 N-terminal propeptide [P1NP], osteocalcin [OC], and bone resorption (beta-C-terminal cross-linking telopeptide of type 1 collagen [βCTX]), indices of mineral metabolism, and parameters of liver and renal functions were assessed; data on clinical and laboratory characteristics were collected prospectively. Results Both lower serum P1NP/βCTX ratio and albumin concentration (as continuous or categorical variables) were independently associated with fracture presence in multivariate logistic regressions. Compared with the highest P1NP/βCTX tertile, the prevalence of HF, after adjustment for multiple covariates, was 3-fold higher in the lowest tertile and 1.5 times higher in the middle tertile; presence of any fracture was 2.3- and 1.6-fold higher, respectively; patients with albumin levels in the lowest tertile had multivariate odds ratio (OR) of 4.6 for HF and 2.8 for any fracture, in the middle tertile the ORs were 2.2 and 1.3, respectively. The P1NP/βCTX <100.0 (median) and hypoalbuminemia (<33 g/L) demonstrated area under the curve values for HF of 0.802 and 0.806, respectively, and for any fractures of 0.711 and 0.706, respectively. When both characteristics were combined, the ORs for HF or any fracture, compared with the nonfractured group, were 7.8 and 3.2, respectively, with an accuracy of 79.6% and 71.6%, respectively. Conclusions In orthogeriatric patients, both serum P1NP/βCTX ratio and albumin levels demonstrated an inverse dose–effect relationship with the prevalence of nonvertebral fractures and independently indicated fracture presence with acceptable discriminatory power. Lower P1NP/βCTX (<100) and hypoalbuminemia could be useful simple additive prognostic tools for fracture risk stratification in the elderly.
Collapse
Affiliation(s)
- Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra, Australia.,Department of Orthopaedic Surgery, The Canberra Hospital, ACT Health, Canberra, Australia.,Australian National University Medical School, Canberra, ACT, Australia
| | - Wichat Srikusalanukul
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra, Australia
| | - Leon Fisher
- Department of Gastroenterology, Frankston Hospital, Peninsula Health, Melbourne, Australia
| | - Paul N Smith
- Department of Orthopaedic Surgery, The Canberra Hospital, ACT Health, Canberra, Australia.,Australian National University Medical School, Canberra, ACT, Australia
| |
Collapse
|
29
|
Abstract
Identifying children most susceptible to clinically significant fragility fractures (low trauma fractures or vertebral compression fractures) or recurrent fractures is an important issue facing general pediatricians and subspecialists alike. Over the last decade, several imaging technologies, including dual-energy X-ray absorptiometry and peripheral quantitative computed tomography, have become useful to identify abnormal bone mineralization in children and in adolescents. This review aimed to summarize the latest literature on the utility of these modalities as they pertain to use in pediatrics. In addition, we review several disease states associated with poor bone health and increased fracture risk in children, and discuss the implications of low bone mineral density in these patients. Finally, we will highlight the gaps in knowledge with regard to pediatric bone health and make recommendations for future areas of research.
Collapse
Affiliation(s)
- Halley Wasserman
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Catherine M Gordon
- Divisions of Adolescent Medicine and Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Tratamento da osteoporose pós‐menopáusica: um algoritmo baseado na literatura para uso no sistema público de saúde. REVISTA BRASILEIRA DE REUMATOLOGIA 2017. [DOI: 10.1016/j.rbr.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
31
|
Caires ELP, Bezerra MC, Junqueira AFTDA, Fontenele SMDA, Andrade SCDA, d'Alva CB. Treatment of postmenopausal osteoporosis: a literature-based algorithm for use in the public health care system. REVISTA BRASILEIRA DE REUMATOLOGIA 2017; 57:254-263. [PMID: 28535898 DOI: 10.1016/j.rbre.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 12/05/2016] [Indexed: 06/07/2023] Open
Abstract
Bisphosphonates are considered first-line agents in the treatment of postmenopausal osteoporosis based on extensive experience of use, safety, and proven efficacy in reducing vertebral, non-vertebral and femur fractures. However, post-marketing reports based on the treatment of millions of patients/year over lengthy periods of time have revealed the occurrence of initially unexpected adverse effects, such as osteonecrosis of the jaw and atypical femoral fracture, leading to the restriction of treatment duration with bisphosphonates by global regulatory agencies. However, despite the association between these effects and bisphosphonates, this risk should be analyzed in the context of osteoporosis treatment, alongside the benefit of preventing osteoporotic fractures and their clinical consequences. Therefore, we consider it plausible to discuss the restriction to the use of bisphosphonates, possible indications for prolonged treatment and alternative therapies following the suspension of this drug class for patients with persistent high risk of fracture after initial treatment, especially considering the problems of public health funding in Brazil and the shortage of drugs provided by the government. Thus, to standardize the treatment of osteoporosis in the public health care system, we aim to develop a proposal for a scientifically-based pharmacological treatment for postmenopausal osteoporosis, establishing criteria for indication and allowing the rational use of each pharmacological agent. We discuss the duration of the initial bisphosphonate treatment, the therapeutic options for refractory patients and potential indications of other classes of drugs as first-choice treatment in the sphere of public health, in which assessing risk and cost effectiveness is a priority.
Collapse
Affiliation(s)
- Ellen Luz Pereira Caires
- Universidade Federal do Ceará (UFC), Faculdade de Medicina, Serviço de Endocrinologia e Diabetes, Fortaleza, CE, Brazil
| | - Mailze Campos Bezerra
- Universidade Federal do Ceará (UFC), Faculdade de Medicina, Serviço de Reumatologia, Fortaleza, CE, Brazil; Universidade Federal do Ceará (UFC), Faculdade de Medicina, Núcleo de Atendimento Multidisciplinar às Doenças Osteometabólicas, Fortaleza, CE, Brazil
| | - Ana Flávia Torquato de Araújo Junqueira
- Universidade Federal do Ceará (UFC), Faculdade de Medicina, Serviço de Endocrinologia e Diabetes, Fortaleza, CE, Brazil; Universidade Federal do Ceará (UFC), Faculdade de Medicina, Núcleo de Atendimento Multidisciplinar às Doenças Osteometabólicas, Fortaleza, CE, Brazil
| | - Sheila Márcia de Araújo Fontenele
- Universidade Federal do Ceará (UFC), Faculdade de Medicina, Serviço de Reumatologia, Fortaleza, CE, Brazil; Universidade Federal do Ceará (UFC), Faculdade de Medicina, Núcleo de Atendimento Multidisciplinar às Doenças Osteometabólicas, Fortaleza, CE, Brazil
| | - Silvana Cristina de Albuquerque Andrade
- Universidade Federal do Ceará (UFC), Faculdade de Medicina, Núcleo de Atendimento Multidisciplinar às Doenças Osteometabólicas, Fortaleza, CE, Brazil; Universidade Federal do Ceará (UFC), Faculdade de Medicina, Serviço de Nefrologia e Transplante Renal, Fortaleza, CE, Brazil
| | - Catarina Brasil d'Alva
- Universidade Federal do Ceará (UFC), Faculdade de Medicina, Serviço de Endocrinologia e Diabetes, Fortaleza, CE, Brazil; Universidade Federal do Ceará (UFC), Faculdade de Medicina, Núcleo de Atendimento Multidisciplinar às Doenças Osteometabólicas, Fortaleza, CE, Brazil.
| |
Collapse
|
32
|
Abstract
Calcium and inorganic phosphate are of critical importance for many body functions, thus the regulations of their plasma concentrations are tightly controlled by the concerted actions of reabsorption/excretion in the kidney, absorption in the intestines, and exchange from bone, the major reservoir for calcium and phosphate in the body. Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH)2D) control calcium homeostasis, whereas PTH, 1,25(OH)2D, and bone-derived fibroblast growth factor 23 (FGF 23) control phosphate homeostasis. Hypoparathyroidism can cause hypocalcemia and hyperphosphatemia, whereas deficient vitamin D actions can cause osteomalacia in adults and rickets in children. Hyperparathyroidism, alternatively, can cause hypercalcemia and hypophosphatemia. Laboratory tests of calcium, phosphate, PTH, and 25-hydroxyvitamin D are very useful in the diagnosis of abnormalities associated with calcium and/or phosphate metabolisms. Bone is constantly remodeled throughout life in response to mechanical stress and a need for calcium in extracellular fluids. Metabolic bone diseases such as osteoporosis, osteomalacia in adults or rickets in children, and renal osteodystrophy develop when bone resorption exceeds bone formation. Bone turnover markers (BTM) such as serum N-terminal propeptide of type I procollagen (P1NP) and C-terminal collagen cross-link (CTX) may be useful in predicting future fracture risk or monitoring the response to anti-resorptive therapy. There is a need to standardize sample collection protocols because certain BTMs exhibit large circadian variations and tend to be influenced by food intakes. In the United States, a project to standardize BTM sample collection protocols and to establish the reference intervals for serum P1NP and serum CTX is ongoing. We anticipate the outcome of this project to shine lights on the standardization of BTM assays, sample collection protocols, reference intervals in relation to age, sex, and ethnic origins, and clinical utilities of BTMs. This review will briefly discuss the regulations of calcium and phosphate homeostasis, laboratory's role in the diagnosis, and monitoring of bone and calcium metabolism, as well as the usefulness and controversies of the utilities of BTMs in the diagnosis and monitoring of metabolic bone diseases.
Collapse
|