1
|
Cordero G, Paredes-Paredes JR, von Kriegstein K, Díaz B. Perceiving speech from a familiar speaker engages the person identity network. PLoS One 2025; 20:e0322927. [PMID: 40367292 PMCID: PMC12077772 DOI: 10.1371/journal.pone.0322927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/31/2025] [Indexed: 05/16/2025] Open
Abstract
Numerous studies show that speaker familiarity influences speech perception. Here, we investigated the brain regions and their changes in functional connectivity involved in the use of person-specific information during speech perception. We employed functional magnetic resonance imaging to study changes in functional connectivity and Blood-Oxygenation-Level-Dependent (BOLD) responses associated with speaker familiarity in human adults while they performed a speech perception task. Twenty-seven right-handed participants performed the speech task before and after being familiarized with the voice and numerous autobiographical details of one of the speakers featured in the task. We found that speech perception from a familiar speaker was associated with BOLD activity changes in regions of the person identity network: the right temporal pole, a voice-sensitive region, and the right supramarginal gyrus, a region sensitive to speaker-specific aspects of speech sound productions. A speech-sensitive region located in the left superior temporal gyrus also exhibited sensitivity to speaker familiarity during speech perception. Lastly, speaker familiarity increased connectivity strength between the right temporal pole and the right superior frontal gyrus, a region associated with verbal working memory. Our findings unveil that speaker familiarity engages the person identity network during speech perception, extending the neural basis of speech processing beyond the canonical language network.
Collapse
Affiliation(s)
- Gaël Cordero
- Department of Psychology, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jazmin R. Paredes-Paredes
- Department of Psychology, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Begoña Díaz
- Department of Psychology, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
2
|
Martini AL, Carli G, Caminiti SP, Kiferle L, Leo A, Perani D, Sestini S. Persistent dysfunctions of brain metabolic connectivity in long-covid with cognitive symptoms. Eur J Nucl Med Mol Imaging 2025; 52:810-822. [PMID: 39404791 DOI: 10.1007/s00259-024-06937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/29/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE Our study examines brain metabolic connectivity in SARS-CoV-2 survivors during the acute-subacute and chronic phases, aiming to elucidate the mechanisms underlying the persistence of neurological symptoms in long-COVID patients. METHODS We perfomed a cross-sectional study including 44 patients (pts) with neurological symptoms who underwent FDG-PET scans, and classified to timing infection as follows: acute (7 pts), subacute (17 pts), long-term (20 pts) phases. Interregional correlation analysis (IRCA) and ROI-based IRCA were applied on FDG-PET data to extract metabolic connectivity in resting state networks (ADMN, PDMN, EXN, ATTN, LIN, ASN) of neuro-COVID pts in acute/subacute and long-term groups compared with healthy controls (HCs). Univariate approach was used to investigate metabolic alterations from the acute to sub-acute and long-term phase. RESULTS The acute/subacute phase was characterized by hyperconnectivity in EXN and ATTN networks; the same networks showed hypoconnectivity in the chronic phase. EXN and ATTN hypoconnectivity was consistent with clinical findings in long-COVID patients, e.g. altered performances in neuropsychological tests of executive and attention domains. The ASN and LIN presented hyperconnectivity in acute/subacute phase and normalized in long-term phase. The ADMN and PDMN presented a preseverved connectivity. Univariate analysis showed hypometabolism in fronto-insular cortex in acute phase, which reduced in sub-acute phase and disappeared in long-term phase. CONCLUSION A compensatory EXN and ATTN hyperconnectivity was found in the acute/subacute phase and hypoconnectivity in long-term. Hypoconnectivity and absence of hypometabolism suggest that connectivity derangement in frontal networks could be related to protraction of neurological symptoms in long-term COVID patients.
Collapse
Affiliation(s)
- Anna Lisa Martini
- Nuclear Medicine Unit, Department of Diagnostic Imaging, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy
| | - Giulia Carli
- Department Neurology, University Michigan, Ann Arbor, USA
| | | | - Lorenzo Kiferle
- Neurology Unit, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy
| | - Andrea Leo
- Nuclear Medicine Unit, Department of Diagnostic Imaging, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Stelvio Sestini
- Nuclear Medicine Unit, Department of Diagnostic Imaging, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy.
| |
Collapse
|
3
|
Campbell I, Sharifpour R, Balda Aizpurua JF, Beckers E, Paparella I, Berger A, Koshmanova E, Mortazavi N, Read J, Zubkov M, Talwar P, Collette F, Sherif S, Phillips C, Lamalle L, Vandewalle G. Regional response to light illuminance across the human hypothalamus. eLife 2024; 13:RP96576. [PMID: 39466317 PMCID: PMC11517251 DOI: 10.7554/elife.96576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Light exerts multiple non-image-forming biological effects on physiology including the stimulation of alertness and cognition. However, the subcortical circuitry underlying the stimulating impact of light is not established in humans. We used 7 Tesla functional magnetic resonance imaging to assess the impact of variations in light illuminance on the regional activity of the hypothalamus while healthy young adults (N=26; 16 women; 24.3±2.9 y) were completing two auditory cognitive tasks. We find that, during both the executive and emotional tasks, higher illuminance triggered an activity increase over the posterior part of the hypothalamus, which includes part of the tuberomamillary nucleus and the posterior part of the lateral hypothalamus. In contrast, increasing illuminance evoked a decrease in activity over the anterior and ventral parts of the hypothalamus, encompassing notably the suprachiasmatic nucleus and another part of the tuberomammillary nucleus. Critically, the performance of the executive task was improved under higher illuminance and was negatively correlated with the activity of the posterior hypothalamus area. These findings reveal the distinct local dynamics of different hypothalamus regions that underlie the impact of light on cognition.
Collapse
Affiliation(s)
| | | | | | - Elise Beckers
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht UniversityMaastrichtNetherlands
| | | | - Alexandre Berger
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Synergia Medical SAMont-Saint-GuibertBelgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain (UCLouvain)Woluwe-Saint-LambertBelgium
| | | | | | - John Read
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Puneet Talwar
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Siya Sherif
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | | | | |
Collapse
|
4
|
Gruzman R, Hempel M, Domke AK, Hartling C, Stippl A, Carstens L, Bajbouj M, Gärtner M, Grimm S. Investigating the impact of rumination and adverse childhood experiences on resting-state neural activity and connectivity in depression. J Affect Disord 2024; 358:283-291. [PMID: 38387672 DOI: 10.1016/j.jad.2024.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Both ruminative thought processes and adverse childhood experiences (ACEs) are well-established risk factors for the emergence and maintenance of depression. However, the neurobiological mechanisms underlying these associations remain poorly understood. METHODS We examined resting-state functional magnetic resonance imaging data (3 T Tim Trio MR scanner; Siemens, Erlangen) of 44 individuals diagnosed with an acute depressive episode. Specifically, we focused on investigating functional brain activity and connectivity within and between three large-scale neural networks associated with processes affected in depression: the default mode network (DMN), the salience network (SN), and the central executive network (CEN). Correlational and regression-based analyses were performed. RESULTS Our regions of interest analyses revealed that region-specific spontaneous neural activity in the anterior DMN was associated with self-reported trait rumination, specifically, the pregenual anterior cingulate cortex (pgACC). Furthermore, using a liberal statistical threshold, we found that spontaneous neural activity of the ventromedial prefrontal cortex and the pgACC were associated with depression symptom severity. Neither spontaneous neural activity in the SN and CEN nor functional connectivity within and across the investigated networks was associated with depression severity or rumination. Furthermore, there was no association between ACEs and brain activity and connectivity. LIMITATIONS Lack of a formal control group or low-risk group for comparison. CONCLUSIONS Overall, our results indicate network-specific changes in spontaneous brain activity, that are linked to both depression severity and rumination. Findings underscore the crucial role of the pgACC in depression and contribute to a dimensional and symptom-based understanding of depression-related network imbalances.
Collapse
Affiliation(s)
- Rebecca Gruzman
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany.
| | - Moritz Hempel
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany
| | - Ann-Kathrin Domke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Corinna Hartling
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anna Stippl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Luisa Carstens
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany
| | - Malek Bajbouj
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Matti Gärtner
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Simone Grimm
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| |
Collapse
|
5
|
Labuschagne I, Dominguez JF, Grace S, Mizzi S, Henry JD, Peters C, Rabinak CA, Sinclair E, Lorenzetti V, Terrett G, Rendell PG, Pedersen M, Hocking DR, Heinrichs M. Specialization of amygdala subregions in emotion processing. Hum Brain Mapp 2024; 45:e26673. [PMID: 38590248 PMCID: PMC11002533 DOI: 10.1002/hbm.26673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The amygdala is important for human fear processing. However, recent research has failed to reveal specificity, with evidence that the amygdala also responds to other emotions. A more nuanced understanding of the amygdala's role in emotion processing, particularly relating to fear, is needed given the importance of effective emotional functioning for everyday function and mental health. We studied 86 healthy participants (44 females), aged 18-49 (mean 26.12 ± 6.6) years, who underwent multiband functional magnetic resonance imaging. We specifically examined the reactivity of four amygdala subregions (using regions of interest analysis) and related brain connectivity networks (using generalized psycho-physiological interaction) to fear, angry, and happy facial stimuli using an emotional face-matching task. All amygdala subregions responded to all stimuli (p-FDR < .05), with this reactivity strongly driven by the superficial and centromedial amygdala (p-FDR < .001). Yet amygdala subregions selectively showed strong functional connectivity with other occipitotemporal and inferior frontal brain regions with particular sensitivity to fear recognition and strongly driven by the basolateral amygdala (p-FDR < .05). These findings suggest that amygdala specialization to fear may not be reflected in its local activity but in its connectivity with other brain regions within a specific face-processing network.
Collapse
Affiliation(s)
- Izelle Labuschagne
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
- School of PsychologyThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Sally Grace
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Simone Mizzi
- School of Health and Biomedical ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Julie D. Henry
- School of PsychologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Craig Peters
- Department of Pharmacy PracticeWayne State UniversityDetroitMichiganUSA
| | | | - Erin Sinclair
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Valentina Lorenzetti
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Gill Terrett
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Peter G. Rendell
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Mangor Pedersen
- Department of Psychology and NeuroscienceAuckland University of TechnologyAucklandNew Zealand
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Darren R. Hocking
- Institute for Health & SportVictoria UniversityMelbourneVictoriaAustralia
| | - Markus Heinrichs
- Department of PsychologyAlbert‐Ludwigs‐University of FreiburgFreiburg im BreisgauGermany
- Freiburg Brain Imaging CenterUniversity Medical Center, Albert‐Ludwigs University of FreiburgFreiburg im BreisgauGermany
| |
Collapse
|
6
|
Koshmanova E, Berger A, Beckers E, Campbell I, Mortazavi N, Sharifpour R, Paparella I, Balda F, Berthomier C, Degueldre C, Salmon E, Lamalle L, Bastin C, Van Egroo M, Phillips C, Maquet P, Collette F, Muto V, Chylinski D, Jacobs HI, Talwar P, Sherif S, Vandewalle G. Locus coeruleus activity while awake is associated with REM sleep quality in older individuals. JCI Insight 2023; 8:e172008. [PMID: 37698926 PMCID: PMC10619502 DOI: 10.1172/jci.insight.172008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUNDThe locus coeruleus (LC) is the primary source of norepinephrine in the brain and regulates arousal and sleep. Animal research shows that it plays important roles in the transition between sleep and wakefulness, and between slow wave sleep and rapid eye movement sleep (REMS). It is unclear, however, whether the activity of the LC predicts sleep variability in humans.METHODSWe used 7-Tesla functional MRI, sleep electroencephalography (EEG), and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 33 healthy younger (~22 years old; 28 women, 5 men) and 19 older (~61 years old; 14 women, 5 men) individuals.RESULTSWe found that, in older but not in younger participants, higher LC activity, as probed during an auditory attentional task, was associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS. The results remained robust even when accounting for the age-related changes in the integrity of the LC.CONCLUSIONThese findings suggest that LC activity correlates with the perception of the sleep quality and an essential oscillatory mode of REMS, and we found that the LC may be an important target in the treatment of sleep- and age-related diseases.FUNDINGThis work was supported by Fonds National de la Recherche Scientifique (FRS-FNRS, T.0242.19 & J. 0222.20), Action de Recherche Concertée - Fédération Wallonie-Bruxelles (ARC SLEEPDEM 17/27-09), Fondation Recherche Alzheimer (SAO-FRA 2019/0025), ULiège, and European Regional Development Fund (Radiomed & Biomed-Hub).
Collapse
Affiliation(s)
- Ekaterina Koshmanova
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Alexandre Berger
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Islay Campbell
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Nasrin Mortazavi
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Roya Sharifpour
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Ilenia Paparella
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Fermin Balda
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | | | - Christian Degueldre
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Eric Salmon
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
- PsyNCog and
| | - Laurent Lamalle
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Christine Bastin
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- PsyNCog and
| | - Maxime Van Egroo
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Christophe Phillips
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- In Silico Medicine Unit, GIGA-Institute, ULiège, Liège, Belgium
| | - Pierre Maquet
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Fabienne Collette
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- PsyNCog and
| | - Vincenzo Muto
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Daphne Chylinski
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Heidi I.L. Jacobs
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Puneet Talwar
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
7
|
Domke AK, Hempel M, Hartling C, Stippl A, Carstens L, Gruzman R, Herrera Melendez AL, Bajbouj M, Gärtner M, Grimm S. Functional connectivity changes between amygdala and prefrontal cortex after ECT are associated with improvement in distinct depressive symptoms. Eur Arch Psychiatry Clin Neurosci 2023; 273:1489-1499. [PMID: 36715751 PMCID: PMC10465635 DOI: 10.1007/s00406-023-01552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression. However, the underlying mechanisms of action are not yet fully understood. The investigation of depression-specific networks using resting-state fMRI and the relation to differential symptom improvement might be an innovative approach providing new insights into the underlying processes. In this naturalistic study, we investigated the relationship between changes in resting-state functional connectivity (rsFC) and symptom improvement after ECT in 21 patients with treatment-resistant depression. We investigated rsFC before and after ECT and focused our analyses on FC changes directly related to symptom reduction and on FC at baseline to identify neural targets that might predict individual clinical responses to ECT. Additional analyses were performed to identify the direct relationship between rsFC change and symptom dimensions such as sadness, negative thoughts, detachment, and neurovegetative symptoms. An increase in rsFC between the left amygdala and left dorsolateral prefrontal cortex (DLPFC) after ECT was related to overall symptom reduction (Bonferroni-corrected p = 0.033) as well as to a reduction in specific symptoms such as sadness (r = 0.524, uncorrected p = 0.014), negative thoughts (r = 0.700, Bonferroni-corrected p = 0.002) and detachment (r = 0.663, p = 0.004), but not in neurovegetative symptoms. Furthermore, high baseline rsFC between the left amygdala and the right frontal pole (FP) predicted treatment outcome (uncorrected p = 0.039). We conclude that changes in FC in regions of the limbic-prefrontal network are associated with symptom improvement, particularly in affective and cognitive dimensions. Frontal-limbic connectivity has the potential to predict symptom improvement after ECT. Further research combining functional imaging biomarkers and a symptom-based approach might be promising.
Collapse
Affiliation(s)
- Ann-Kathrin Domke
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Moritz Hempel
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Corinna Hartling
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anna Stippl
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Luisa Carstens
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Rebecca Gruzman
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Ana Lucia Herrera Melendez
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Matti Gärtner
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| |
Collapse
|
8
|
van den Heuvel MI, Monk C, Hendrix CL, Hect J, Lee S, Feng T, Thomason ME. Intergenerational Transmission of Maternal Childhood Maltreatment Prior to Birth: Effects on Human Fetal Amygdala Functional Connectivity. J Am Acad Child Adolesc Psychiatry 2023; 62:1134-1146. [PMID: 37245707 PMCID: PMC10845129 DOI: 10.1016/j.jaac.2023.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/27/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Childhood maltreatment (CM) is a potent risk factor for developing psychopathology later in life. Accumulating research suggests that the influence is not limited to the exposed individual but may also be transmitted across generations. In this study, we examine the effect of CM in pregnant women on fetal amygdala-cortical function, prior to postnatal influences. METHOD Healthy pregnant women (N = 89) completed fetal resting-state functional magnetic resonance imaging (rsfMRI) scans between the late second trimester and birth. Women were primarily from low socioeconomic status households with relatively high CM. Mothers completed questionnaires prospectively evaluating prenatal psychosocial health and retrospectively evaluating trauma from their own childhood. Voxelwise functional connectivity was calculated from bilateral amygdala masks. RESULTS Connectivity of the amygdala network was relatively higher to left frontal areas (prefrontal cortex and premotor) and relatively lower to right premotor area and brainstem areas in fetuses of mothers exposed to higher CM. These associations persisted after controlling for maternal socioeconomic status, maternal prenatal distress, measures of fetal motion, and gestational age at the time of scan and at birth. CONCLUSION Pregnant women's experiences of CM are associated with offspring brain development in utero. The strongest effects were found in the left hemisphere, potentially indicating lateralization of the effects of maternal CM on the fetal brain. This study suggests that the time frame of the Developmental Origins of Health and Disease research should be extended to exposures from mothers' childhood, and indicates that the intergenerational transmission of trauma may occur prior to birth.
Collapse
Affiliation(s)
| | - Catherine Monk
- New York State Psychiatric Institute, New York; Columbia University, New York, NY
| | | | - Jasmine Hect
- University of Pittsburgh, Pennsylvania, Pittsburgh
| | - Seonjoo Lee
- New York State Psychiatric Institute, New York; Columbia University, New York, NY
| | - Tianshu Feng
- New York State Psychiatric Institute, New York; Research Foundation for Mental Hygiene, Inc., New York
| | - Moriah E Thomason
- NYU Langone Health, New York; Neuroscience Institute, NYU Langone Health, New York
| |
Collapse
|
9
|
Zhao S, Yuan R, Gao W, Liu Q, Yuan J. Neural substrates of behavioral inhibitory control during the two-choice oddball task: functional neuroimaging evidence. PSYCHORADIOLOGY 2023; 3:kkad012. [PMID: 38666128 PMCID: PMC10917370 DOI: 10.1093/psyrad/kkad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 04/28/2024]
Abstract
Background Behavioral inhibitory control (BIC) depicts a cognitive function of inhibiting inappropriate dominant responses to meet the context requirement. Despite abundant research into neural substrates of BIC during the go/no-go and stop signal tasks, these tasks were consistently shown hard to isolate neural processes of response inhibition, which is of primary interest, from those of response generation. Therefore, it is necessary to explore neural substrates of BIC using the two-choice oddball (TCO) task, whose design of dual responses is thought to produce an inhibition effect free of the confounds of response generation. Objective The current study aims at depicting neural substrates of performing behavioral inhibitory control in the two-choice oddball task, which designs dual responses to balance response generation. Also, neural substrates of performing BIC during this task are compared with those in the go/no-go task, which designs a motor response in a single condition. Methods The present study integrated go/no-go (GNG) and TCO tasks into a new Three-Choice BIC paradigm, which consists of standard (75%), deviant (12.5%), and no-go (12.5%) conditions simultaneously. Forty-eight college students participated in this experiment, which required them to respond to standard (frequent) and deviant stimuli by pressing different keys, while inhibiting motor response to no-go stimuli. Conjunction analysis and ROI (region of interest) analysis were adopted to identify the unique neural mechanisms that subserve the processes of BIC. Results Both tasks are effective in assessing BIC function, reflected by the significantly lower accuracy of no-go compared to standard condition in GNG, and the significantly lower accuracy and longer reaction time of deviant compared to standard condition in TCO. However, there were no significant differences between deviant and no-go conditions in accuracy. Moreover, functional neuroimaging has demonstrated that the anterior cingulate cortex (ACC) activation was observed for no-go vs. standard contrast in the GNG task, but not in deviant vs. standard contrast in the TCO task, suggesting that ACC involvement is not a necessary component of BIC. Second, ROI analysis of areas that were co-activated in TCO and GNG showed co-activations in the right inferior frontal cortex (triangle and orbital), with the signals in the TCO task significantly higher than those in the GNG task. Conclusions These findings show that the designed responses to both standard and deviant stimuli in the TCO task, compared to the GNG task, produced a more prominent prefrontal inhibitory processing and extinguished an unnecessary component of ACC activation during BIC. This implies that prefrontal involvement, but not that of ACC, is mandatory for the successful performance of inhibiting prepotent behaviors.
Collapse
Affiliation(s)
- Shirui Zhao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- Faculté des Sciences Psychologiques et de l’Éducation, Université Libre de Bruxelles (ULB)Brussels 1050, Belgium
| | - Ruosong Yuan
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Wei Gao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Qiang Liu
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jiajin Yuan
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision (Sichuan Normal University), Chengdu 610066, China
| |
Collapse
|
10
|
Boch M, Wagner IC, Karl S, Huber L, Lamm C. Functionally analogous body- and animacy-responsive areas are present in the dog (Canis familiaris) and human occipito-temporal lobe. Commun Biol 2023; 6:645. [PMID: 37369804 PMCID: PMC10300132 DOI: 10.1038/s42003-023-05014-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Comparing the neural correlates of socio-cognitive skills across species provides insights into the evolution of the social brain and has revealed face- and body-sensitive regions in the primate temporal lobe. Although from a different lineage, dogs share convergent visuo-cognitive skills with humans and a temporal lobe which evolved independently in carnivorans. We investigated the neural correlates of face and body perception in dogs (N = 15) and humans (N = 40) using functional MRI. Combining univariate and multivariate analysis approaches, we found functionally analogous occipito-temporal regions involved in the perception of animate entities and bodies in both species and face-sensitive regions in humans. Though unpredicted, we also observed neural representations of faces compared to inanimate objects, and dog compared to human bodies in dog olfactory regions. These findings shed light on the evolutionary foundations of human and dog social cognition and the predominant role of the temporal lobe.
Collapse
Affiliation(s)
- Magdalena Boch
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | - Isabella C Wagner
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sabrina Karl
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Berger A, Koshmanova E, Beckers E, Sharifpour R, Paparella I, Campbell I, Mortazavi N, Balda F, Yi YJ, Lamalle L, Dricot L, Phillips C, Jacobs HIL, Talwar P, El Tahry R, Sherif S, Vandewalle G. Structural and functional characterization of the locus coeruleus in young and late middle-aged individuals. FRONTIERS IN NEUROIMAGING 2023; 2:1207844. [PMID: 37554637 PMCID: PMC10406214 DOI: 10.3389/fnimg.2023.1207844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION The brainstem locus coeruleus (LC) influences a broad range of brain processes, including cognition. The so-called LC contrast is an accepted marker of the integrity of the LC that consists of a local hyperintensity on specific Magnetic Resonance Imaging (MRI) structural images. The small size of the LC has, however, rendered its functional characterization difficult in humans, including in aging. A full characterization of the structural and functional characteristics of the LC in healthy young and late middle-aged individuals is needed to determine the potential roles of the LC in different medical conditions. Here, we wanted to determine whether the activation of the LC in a mismatch negativity task changes in aging and whether the LC functional response was associated to the LC contrast. METHODS We used Ultra-High Field (UHF) 7-Tesla functional MRI (fMRI) to record brain response during an auditory oddball task in 53 healthy volunteers, including 34 younger (age: 22.15y ± 3.27; 29 women) and 19 late middle-aged (age: 61.05y ± 5.3; 14 women) individuals. RESULTS Whole-brain analyses confirmed brain responses in the typical cortical and subcortical regions previously associated with mismatch negativity. When focusing on the brainstem, we found a significant response in the rostral part of the LC probability mask generated based on individual LC images. Although bilateral, the activation was more extensive in the left LC. Individual LC activity was not significantly different between young and late middle-aged individuals. Importantly, while the LC contrast was higher in older individuals, the functional response of the LC was not significantly associated with its contrast. DISCUSSION These findings may suggest that the age-related alterations of the LC structural integrity may not be related to changes in its functional response. The results further suggest that LC responses may remain stable in healthy individuals aged 20 to 70.
Collapse
Affiliation(s)
- Alexandre Berger
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Ekaterina Koshmanova
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Alzheimer Centre Limburg, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Roya Sharifpour
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ilenia Paparella
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Islay Campbell
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Nasrin Mortazavi
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Fermin Balda
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Department of Natural Sciences, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Laurent Lamalle
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Laurence Dricot
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Christophe Phillips
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Heidi I. L. Jacobs
- Alzheimer Centre Limburg, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Puneet Talwar
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Koshmanova E, Berger A, Beckers E, Campbell I, Mortazavi N, Sharifpour R, Paparella I, Balda F, Berthomier C, Degueldre C, Salmon E, Lamalle L, Bastin C, Egroo MV, Phillips C, Maquet P, Collette F, Muto V, Chylinski D, Jacobs HI, Talwar P, Sherif S, Vandewalle G. In vivo Locus Coeruleus activity while awake is associated with REM sleep quality in healthy older individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527974. [PMID: 36993680 PMCID: PMC10054994 DOI: 10.1101/2023.02.10.527974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The locus coeruleus (LC) is the primary source of norepinephrine (NE) in the brain, and the LC-NE system is involved in regulating arousal and sleep. It plays key roles in the transition between sleep and wakefulness, and between slow wave sleep (SWS) and rapid eye movement sleep (REMS). However, it is not clear whether the LC activity during the day predicts sleep quality and sleep properties during the night, and how this varies as a function of age. Here, we used 7 Tesla functional Magnetic Resonance Imaging (7T fMRI), sleep electroencephalography (EEG) and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 52 healthy younger (N=33; ~22y; 28 women) and older (N=19; ~61y; 14 women) individuals. We find that, in older, but not in younger participants, higher LC activity, as probed during an auditory mismatch negativity task, is associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS (4-8Hz), which are two sleep parameters significantly correlated in our sample of older individuals. The results remain robust even when accounting for the age-related changes in the integrity of the LC. These findings suggest that the activity of the LC may contribute to the perception of the sleep quality and to an essential oscillatory mode of REMS, and that the LC may be an important target in the treatment of sleep disorders and age-related diseases.
Collapse
|
13
|
Polk SE, Kleemeyer MM, Bodammer NC, Misgeld C, Porst J, Wolfarth B, Kühn S, Lindenberger U, Düzel S, Wenger E. Aerobic exercise is associated with region-specific changes in volumetric, tensor-based, and fixel-based measures of white matter integrity in healthy older adults. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Age-related differences in Default Mode Network resting-state functional connectivity but not gray matter volume relate to sacrificial moral decision-making and working memory performance. Neuropsychologia 2022; 177:108399. [PMID: 36332697 DOI: 10.1016/j.neuropsychologia.2022.108399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Older adults make fewer utilitarian decisions than younger adults during sacrificial moral dilemmas, which are associated with age-related reductions in Default Mode Network resting-state functional connectivity. Decreases on tasks associated with fluid cognitive abilities, such as working memory capacity, are also associated with age-related Default Mode Network changes. Regions within this network demonstrate some of the greatest age-related gray matter atrophy. Age-related changes in structure and function of the Default Mode Network may be associated with poorer working memory capacity and reduced utilitarian moral decision-making. Alternatively, recent theories suggest that age-related changes to Default Mode Network function may be adaptive in the context of tasks that include socioemotional components. As such, reduced within-network resting-state functional connectivity of the Default Mode Network may be associated with differential outcomes in moral decision-making for younger and older adults. In the present study, there were no age-related differences in working memory capacity. Older adults were less likely than younger adults to indicate the utilitarian option when trials involved Instrumental harm. Generally, increased within-network resting-state functional connectivity of the Default Mode Network was associated with better working memory performance in both groups, and reduced bias to endorse the utilitarian option during Incidental dilemmas compared to Instrumental dilemmas in younger adults. Older adults with similar moral decision-making behavior to younger adults demonstrated increased coupling between Default Mode Network and Salience Network regions. These findings suggest that Default Mode Network functional integrity may be differentially associated with age-related changes to working memory capacity and sacrificial moral decision-making.
Collapse
|
15
|
Otani S, Fushimi Y, Iwanaga K, Tomotaki S, Shimotsuma T, Nakajima S, Sakata A, Okuchi S, Hinoda T, Wicaksono KP, Takita J, Kawai M, Nakamoto Y. Evaluation of deep gray matter for early brain development using quantitative susceptibility mapping. Eur Radiol 2022; 33:4488-4499. [PMID: 36418626 DOI: 10.1007/s00330-022-09267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/31/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate susceptibility values associated with iron accumulation in the deep gray matter during postnatal development and to compare magnetic susceptibility between patients with normal and delayed development. METHODS Patients with postmenstrual age (PMA) ≤ 1000 days underwent MR scans between August 2015 and April 2020 at our hospital. Quantitative susceptibility mapping (QSM) was performed, and magnetic susceptibility was measured using three-dimensional volumes of interest (VOIs) for the caudate nucleus (CN), globus pallidus (GP), putamen (PT), and ventrolateral thalamic nucleus (VL). Cross-sectional analysis was performed for 99 patients with normal development and 39 patients with delayed development. Longitudinal analysis was also performed to interpret changes over time in 13 patients with normal development. Correlations between magnetic susceptibility in VOIs and PMA or chronological age (CA) were assessed. RESULTS Susceptibility values for CN, GP, PT, and VL showed positive moderate correlations with both PMA (ρ = 0.45, 0.69, 0.62, and 0.33, respectively) and CA (ρ = 0.53, 0.69, 0.66, and 0.39, respectively). The slope of the correlation between susceptibility values and age was highest in the GP among the four gray matter areas. Susceptibility values for the CN, GP, PT, and VL were higher with normal development than with delayed development at early postnatal age, although a significant difference was only observed for the CN. Susceptibility values also increased with age in the longitudinal analysis. CONCLUSIONS Magnetic susceptibility values in deep gray matter increased with age ≤ 1000 days. The normal development group showed higher susceptibility values than the delayed development group at early postnatal age (PMA ≤ 285 days). KEY POINTS • Magnetic susceptibilities in deep gray matter nuclei increased with age (postmenstrual age ≤ 1000 days) in a large number of pediatric patients. • The normal development group showed higher susceptibility values than the delayed development group in the basal ganglia and ventrolateral thalamic nucleus at early postnatal age (PMA ≤ 285 days).
Collapse
Affiliation(s)
- Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kogoro Iwanaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Seiichi Tomotaki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Taiki Shimotsuma
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Krishna Pandu Wicaksono
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
16
|
Gruzman R, Hartling C, Domke AK, Stippl A, Carstens L, Bajbouj M, Gärtner M, Grimm S. Investigation of Neurofunctional Changes Over the Course of Electroconvulsive Therapy. Int J Neuropsychopharmacol 2022; 26:20-31. [PMID: 36173403 PMCID: PMC9850659 DOI: 10.1093/ijnp/pyac063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is an effective treatment for patients suffering from depression. Yet the exact neurobiological mechanisms underlying the efficacy of ECT and indicators of who might respond best to it remain to be elucidated. Identifying neural markers that can inform about an individual's response to ECT would enable more optimal treatment strategies and increase clinical efficacy. METHODS Twenty-one acutely depressed inpatients completed an emotional working memory task during functional magnetic resonance imaging before and after receiving treatment with ECT. Neural activity was assessed in 5 key regions associated with the pathophysiology of depression: bilateral dorsolateral prefrontal cortex and pregenual, subgenual, and dorsal anterior cingulate cortex. Associations between brain activation and clinical improvement, as reflected by Montgomery-Åsberg Depression Rating Scale scores, were computed using linear regression models, t tests, and Pearson correlational analyses. RESULTS Significant neurobiological prognostic markers or changes in neural activity from pre- to post ECT did not emerge. CONCLUSIONS We could not confirm normalization effects and did not find significant neural markers related to treatment response. These results demonstrate that the search for reliable and clinically useful biomarkers for ECT treatment remains in its initial stages and still faces challenges.
Collapse
Affiliation(s)
- Rebecca Gruzman
- Correspondence: Rebecca Gruzman, MSc, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany ()
| | | | - Ann-Kathrin Domke
- Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Anna Stippl
- Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | | | - Malek Bajbouj
- Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Matti Gärtner
- MSB Medical School Berlin, Berlin, Germany,Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Simone Grimm
- MSB Medical School Berlin, Berlin, Germany,Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Switzerland
| |
Collapse
|
17
|
Hendrix CL, Srinivasan H, Feliciano I, Carré JM, Thomason ME. Fetal Hippocampal Connectivity Shows Dissociable Associations with Maternal Cortisol and Self-Reported Distress during Pregnancy. Life (Basel) 2022; 12:943. [PMID: 35888033 PMCID: PMC9316091 DOI: 10.3390/life12070943] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Maternal stress can shape long-term child neurodevelopment beginning in utero. One mechanism by which stress is transmitted from mothers to their offspring is via alterations in maternal cortisol, which can cross the placenta and bind to glucocorticoid receptor-rich regions in the fetal brain, such as the hippocampus. Although prior studies have demonstrated associations between maternal prenatal stress and cortisol levels with child brain development, we lack information about the extent to which these associations originate prior to birth and prior to confounding postnatal influences. Pregnant mothers (n = 77) completed questionnaires about current perceived stress, depressive symptoms, and anxiety symptoms, provided three to four salivary cortisol samples, and completed a fetal resting-state functional MRI scan during their second or third trimester of pregnancy (mean gestational age = 32.8 weeks). Voxelwise seed-based connectivity analyses revealed that higher prenatal self-reported distress and higher maternal cortisol levels corresponded to dissociable differences in fetal hippocampal functional connectivity. Specifically, self-reported distress was correlated with increased positive functional coupling between the hippocampus and right posterior parietal association cortex, while higher maternal cortisol was associated with stronger positive hippocampal coupling with the dorsal anterior cingulate cortex and left medial prefrontal cortex. Moreover, the association between maternal distress, but not maternal cortisol, on fetal hippocampal connectivity was moderated by fetal sex. These results suggest that prenatal stress and peripheral cortisol levels may shape fetal hippocampal development through unique mechanisms.
Collapse
Affiliation(s)
- Cassandra L. Hendrix
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY 10016, USA; (H.S.); (I.F.); (M.E.T.)
| | - Harini Srinivasan
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY 10016, USA; (H.S.); (I.F.); (M.E.T.)
| | - Integra Feliciano
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY 10016, USA; (H.S.); (I.F.); (M.E.T.)
| | - Justin M. Carré
- Department of Psychology, Nipissing University, North Bay, ON P1B 8L7, Canada;
| | - Moriah E. Thomason
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY 10016, USA; (H.S.); (I.F.); (M.E.T.)
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
18
|
Rainer LJ, Kronbichler M, Kuchukhidze G, Trinka E, Langthaler PB, Kronbichler L, Said-Yuerekli S, Kirschner M, Zimmermann G, Höfler J, Schmid E, Braun M. Emotional Word Processing in Patients With Juvenile Myoclonic Epilepsy. Front Neurol 2022; 13:875950. [PMID: 35720080 PMCID: PMC9201996 DOI: 10.3389/fneur.2022.875950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objective According to Panksepp's hierarchical emotion model, emotion processing relies on three functionally and neuroanatomically distinct levels. These levels comprise subcortical networks (primary level), the limbic system (secondary level), and the neocortex (tertiary level) and are suggested to serve differential emotional processing. We aimed to validate and extend previous evidence of discrete and dimensional emotion processing in patient with juvenile myoclonic epilepsy (JME). Methods We recorded brain activity of patients with JME and healthy controls in response to lexical decisions to words reflecting the discrete emotion fear and the affective dimension negativity previously suggested to rely on different brain regions and to reflect different levels of processing. In all study participants, we tested verbal cognitive functions, as well as the relationship of psychiatric conditions, seizure types and duration of epilepsy and emotional word processing. Results In support of the hierarchical emotion model, we found an interaction of discrete emotion and affective dimensional processing in the right amygdala likely to reflect secondary level processing. Brain activity related to affective dimensional processing was found in the right inferior frontal gyrus and is suggested to reflect tertiary level processing. Psychiatric conditions, type of seizure nor mono- vs. polytherapy and duration of epilepsy within patients did not have any effect on the processing of emotional words. In addition, no differences in brain activity or response times between patients and controls were observed, despite neuropsychological testing revealed slightly decreased verbal intelligence, verbal fluency and reading speed in patients with JME. Significance These results were interpreted to be in line with the hierarchical emotion model and to highlight the amygdala's role in processing biologically relevant stimuli, as well as to suggest a semantic foundation of affective dimensional processing in prefrontal cortex. A lack of differences in brain activity of patients with JME and healthy controls in response to the emotional content of words could point to unaffected implicit emotion processing in patients with JME.
Collapse
Affiliation(s)
- Lucas Johannes Rainer
- Department of Neurology, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience Salzburg, Member of the European Reference Network, Epicare, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience, Salzburg, Austria
- Department of Psychiatry, Psychotherapy & Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Martin Kronbichler
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience, Salzburg, Austria
- Department of Psychology, Naturwissenschaftliche Fakultaet, Centre for Cognitive Neuroscience, Paris-Lodron University, Salzburg, Austria
| | - Giorgi Kuchukhidze
- Department of Neurology, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience Salzburg, Member of the European Reference Network, Epicare, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience Salzburg, Member of the European Reference Network, Epicare, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience, Salzburg, Austria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT–University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
- Karl-Landsteiner Institute for Neurorehabilitation and Space Neurology, Salzburg, Austria
| | - Patrick Benjamin Langthaler
- Department of Neurology, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience Salzburg, Member of the European Reference Network, Epicare, Salzburg, Austria
- Department of Mathematics, Paris-Lodron University, Naturwissenschaftliche Fakultaet, Salzburg, Austria
| | - Lisa Kronbichler
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience, Salzburg, Austria
- Department of Psychiatry, Psychotherapy & Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Said-Yuerekli
- Department of Neurology, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience Salzburg, Member of the European Reference Network, Epicare, Salzburg, Austria
- Department of Psychology, Naturwissenschaftliche Fakultaet, Centre for Cognitive Neuroscience, Paris-Lodron University, Salzburg, Austria
| | - Margarita Kirschner
- Department of Neurology, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience Salzburg, Member of the European Reference Network, Epicare, Salzburg, Austria
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University, Salzburg, Austria
- Research and Innovation Management, Paracelsus Medical University, Salzburg, Austria
| | - Julia Höfler
- Department of Neurology, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience Salzburg, Member of the European Reference Network, Epicare, Salzburg, Austria
| | - Elisabeth Schmid
- Department of Neurology, Christian-Doppler Medical Centre, Paracelsus Medical University, Centre for Cognitive Neuroscience Salzburg, Member of the European Reference Network, Epicare, Salzburg, Austria
| | - Mario Braun
- Department of Psychology, Naturwissenschaftliche Fakultaet, Centre for Cognitive Neuroscience, Paris-Lodron University, Salzburg, Austria
| |
Collapse
|
19
|
Hartmann H, Lengersdorff L, Hitz HH, Stepnicka P, Silani G. Emotional Ego- and Altercentric Biases in High-Functioning Autism Spectrum Disorder: Behavioral and Neurophysiological Evidence. Front Psychiatry 2022; 13:813969. [PMID: 35250667 PMCID: PMC8894325 DOI: 10.3389/fpsyt.2022.813969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Self-other distinction is a crucial aspect of social cognition, as it allows us to differentiate our own mental and emotional states from those of others. Research suggests that this ability might be impaired in individuals on the autism spectrum, but convincing evidence of self-other distinction difficulties in the emotional domain is lacking. Here we aimed at evaluating emotional self-other distinction abilities in autistic and non-autistic adults, in two behavioral pilot studies and one fMRI study. By using a newly developed virtual ball-tossing game that induced simultaneous positive and negative emotional states in each participant and another person, we were able to measure emotional egocentric and altercentric biases (namely the tendency to ascribe self-/other-related emotions to others/ourselves, respectively). Despite no behavioral differences, individuals on the autism spectrum showed decreased activation (1) in the right temporoparietal junction (rTPJ) during active overcoming of the emotional egocentric bias vs. passive game viewing, and (2) in the right supramarginal gyrus (rSMG) during ego- vs. altercentric biases, compared to neurotypical participants. These results suggest a different recruitment of these two regions in autistic individuals when dealing with conflicting emotional states of oneself and another person. Furthermore, they highlight the importance of considering different control conditions when interpreting the involvement of rTPJ and rSMG during self-other distinction processes.
Collapse
Affiliation(s)
- Helena Hartmann
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Lukas Lengersdorff
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Hannah H. Hitz
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Philipp Stepnicka
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Giorgia Silani
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Schöne M, Seidenbecher S, Kaufmann J, Antonucci LA, Frodl T, Koutsouleris N, Schiltz K, Bogerts B. Appetitive aggression is associated with lateralized activation in nucleus accumbens. Psychiatry Res Neuroimaging 2022; 319:111425. [PMID: 34891023 DOI: 10.1016/j.pscychresns.2021.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 12/01/2022]
Abstract
Aggression can have a hedonistic aspect in predisposed individuals labeled as appetitive aggression. The present study investigates the neurobiological correlates of this appetitive type of aggression in non-clinical samples from community. Applying functional magnet resonance imaging (fMRI), we tested whether 20 martial artists compared to 26 controls had a higher activation in the nucleus accumbens (NAcc), a central part of the dopaminergic, mesolimbic reward system. Subjects had to watch violent vs. neutral pictures representing appetitive aggression. The affinity towards hedonistic violence was assessed by the Appetitive and Facilitative Aggression Scale (AFAS). Furthermore, the subjects rated all the pictures with regard to how pleasant and violent they were. The martial artists reported a higher AFAS-score and a more positive perception of violent pictures. On the neural level, across all subjects, there was a significant positive correlation between the AFAS-score and the activation in the left NAcc and an inverse association with the activation of the right NAcc when watching violent compared to neutral pictures. This lateralization effect indicates a different processing of hedonistic aspects of aggression in the two hemispheres.
Collapse
Affiliation(s)
- Maria Schöne
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Salus Institute, Salus gGmbH, Magdeburg, Germany.
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Salus Institute, Salus gGmbH, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Linda Antonella Antonucci
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Institute of Neuroscience, Dublin, Ireland; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatic, RWTH-University, Aachen, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Department of Forensic Psychiatry, Mental Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Salus Institute, Salus gGmbH, Magdeburg, Germany
| |
Collapse
|
21
|
Pruitt PJ, Tang L, Hayes JM, Ofen N, Damoiseaux JS. Age moderation of the association between negative subsequent memory effects and episodic memory performance. AGING BRAIN 2021; 1:100021. [PMID: 36911506 PMCID: PMC9997129 DOI: 10.1016/j.nbas.2021.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/24/2023] Open
Abstract
Negative subsequent memory effects in functional MRI studies of memory formation have been linked to individual differences in memory performance, yet the effect of age on this association is currently unclear. To provide insight into the brain systems related to memory across the lifespan, we examined functional neuroimaging data acquired during episodic memory formation and behavioral performance from a memory recognition task in a sample of 109 participants, including three developmental age groups (8-12, 13-17, 18-25 year-olds) and one additional group of older adults (55-85 year-olds). Young adults showed the highest memory performance and strongest negative subsequent memory effects, while older adults showed reduced negative subsequent memory effects relative to young adults. Across the sample, negative subsequent memory effects were associated with better memory performance, and there was a significant interaction between negative subsequent memory effects and memory performance by age group. Posthoc analyses revealed that this moderation effect was driven by a stronger association between negative subsequent memory effects and memory performance in young adults than children, and that neither children nor older adults showed a significant association. These findings suggest that negative subsequent memory effects may differentially support memory performance across a lifespan trajectory characterized by developmental maturation and support further investigation of this effect in aging.
Collapse
Affiliation(s)
- Patrick J. Pruitt
- Institute of Gerontology, Wayne State University, 87 E. Ferry St., Detroit, MI 48202, United States
| | - Lingfei Tang
- Institute of Gerontology, Wayne State University, 87 E. Ferry St., Detroit, MI 48202, United States
- Department of Psychology, Wayne State University, 5057 Woodward Ave. 7th Floor Suite 7908, Detroit, MI 48201, United States
| | - Jessica M. Hayes
- Institute of Gerontology, Wayne State University, 87 E. Ferry St., Detroit, MI 48202, United States
- Department of Psychology, Wayne State University, 5057 Woodward Ave. 7th Floor Suite 7908, Detroit, MI 48201, United States
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, 87 E. Ferry St., Detroit, MI 48202, United States
- Department of Psychology, Wayne State University, 5057 Woodward Ave. 7th Floor Suite 7908, Detroit, MI 48201, United States
| | - Jessica S. Damoiseaux
- Institute of Gerontology, Wayne State University, 87 E. Ferry St., Detroit, MI 48202, United States
- Department of Psychology, Wayne State University, 5057 Woodward Ave. 7th Floor Suite 7908, Detroit, MI 48201, United States
| |
Collapse
|
22
|
Garrett AS, Chang KD, Singh MK, Armstrong CC, Walshaw PD, Miklowitz DJ. Neural changes in youth at high risk for bipolar disorder undergoing family-focused therapy or psychoeducation. Bipolar Disord 2021; 23:604-614. [PMID: 33432670 PMCID: PMC8273209 DOI: 10.1111/bdi.13045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 10/12/2020] [Accepted: 12/13/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Patients with mood disorders may benefit from psychosocial interventions through changes in brain networks underlying emotion processing. In this study, we used functional magnetic resonance imaging (fMRI) to investigate treatment-related changes in emotion processing networks in youth at familial high risk for bipolar disorder (BD). METHODS Youth, ages 9-17, were randomly assigned to family-focused therapy for high-risk youth (FFT-HR) or an active comparison treatment, Enhanced Care (EC). Before and after these 4-month treatments, participants underwent fMRI while viewing happy, fearful, and calm facial expressions. Twenty youth in FFT-HR and 20 in EC were included in analyses of pre- to post-treatment changes in activation across the whole brain. Significant clusters were assessed for correlation with mood symptom improvement. RESULTS In the dorsolateral prefrontal cortex (DLPFC), activation increased from pre- to post-treatment in the FFT-HR group and decreased in the EC group. Insula activation decreased in the FFT-HR group and did not change in the EC group. Across both treatments, decreasing activation in the hippocampus and amygdala was correlated with pre- to post-treatment improvement in hypomania, while increasing activation in the DLPFC was correlated with pre- to post-treatment improvement in depression. DISCUSSION Psychosocial treatment addresses abnormalities in emotion regulation networks in youth at high risk for BD. Increased prefrontal cortex activation suggests enhanced emotion regulation from pre- to post-treatment with FFT-HR. Improvements in family interactions may facilitate the development of prefrontal resources that provide protection against future mood episodes.
Collapse
Affiliation(s)
- Amy S Garrett
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey C Armstrong
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| | - Patricia D Walshaw
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| | - David J Miklowitz
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
23
|
Hartmann H, Riva F, Rütgen M, Lamm C. Placebo Analgesia Does Not Reduce Empathy for Naturalistic Depictions of Others' Pain in a Somatosensory Specific Way. Cereb Cortex Commun 2021; 2:tgab039. [PMID: 34296184 PMCID: PMC8276832 DOI: 10.1093/texcom/tgab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
The shared representations account postulates that sharing another's pain recruits underlying brain functions also engaged during first-hand pain. Critically, direct causal evidence for this was mainly shown for affective pain processing, while the contribution of somatosensory processes to empathy remains controversial. This controversy may be explained, however, by experimental paradigms that did not direct attention towards a specific body part, or that did not employ naturalistic depictions of others' pain. In this preregistered functional magnetic resonance imaging study, we aimed to test whether causal manipulation of first-hand pain affects empathy for naturalistic depictions of pain in a somatosensory-matched manner. Forty-five participants underwent a placebo analgesia induction in their right hand and observed pictures of other people's right and left hands in pain. We found neither behavioral nor neural evidence for somatosensory-specific modulation of pain empathy. However, exploratory analyses revealed a general effect of the placebo on empathy, and higher brain activity in bilateral anterior insula when viewing others' right hands in pain (i.e., corresponding to one's own placebo hand). These results refine our knowledge regarding the neural mechanisms of pain empathy, and imply that the sharing of somatosensory representations seems to play less of a causal role than the one of affective representations.
Collapse
Affiliation(s)
- Helena Hartmann
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Federica Riva
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
24
|
Ardizzi M, Ferroni F, Umiltà MA, Pinardi C, Errante A, Ferri F, Fadda E, Gallese V. Visceromotor Roots of Aesthetic Evaluation of Pain in art: an fMRI Study. Soc Cogn Affect Neurosci 2021; 16:1113-1122. [PMID: 33988702 PMCID: PMC8599194 DOI: 10.1093/scan/nsab066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/15/2022] Open
Abstract
Empathy for pain involves sensory and visceromotor brain regions relevant also in the first-person pain experience. Focusing on brain activations associated with vicarious experiences of pain triggered by artistic or non-artistic images, the present study aims to investigate common and distinct brain activation patterns associated with these two vicarious experiences of pain and to assess whether empathy for pain brain regions contributes to the formation of an aesthetic judgement (AJ) in non-art expert observers. Artistic and non-artistic facial expressions (painful and neutral) were shown to participants inside the scanner and then aesthetically rated in a subsequent behavioural session. Results showed that empathy for pain brain regions (i.e. bilateral insular cortex, posterior sector of the anterior cingulate cortex and the anterior portion of the middle cingulate cortex) and bilateral inferior frontal gyrus are commonly activated by artistic and non-artistic painful facial expressions. For the artistic representation of pain, the activity recorded in these regions directly correlated with participants’ AJ. Results also showed the distinct activation of a large cluster located in the posterior cingulate cortex/precuneus for non-artistic stimuli. This study suggests that non-beauty-specific mechanisms such as empathy for pain are crucial components of the aesthetic experience of artworks.
Collapse
Affiliation(s)
- Martina Ardizzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Lab Neuroscience & Humanities, University of Parma, Parma, Italy
| | - Francesca Ferroni
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Lab Neuroscience & Humanities, University of Parma, Parma, Italy
| | - Maria Alessandra Umiltà
- Lab Neuroscience & Humanities, University of Parma, Parma, Italy.,Department of Food and Drug, University of Parma, Parma, Italy.,Department of Art History Columbia University, Italian Academy for Advanced Studies, Columbia University, New York, NY, USA
| | - Chiara Pinardi
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Science, University G. d'Annunzio, Chieti, Italy
| | - Elisabetta Fadda
- Lab Neuroscience & Humanities, University of Parma, Parma, Italy.,Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Parma, Italy
| | - Vittorio Gallese
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Lab Neuroscience & Humanities, University of Parma, Parma, Italy.,Department of Art History Columbia University, Italian Academy for Advanced Studies, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Grotell M, den Hollander B, Jalkanen A, Törrönen E, Ihalainen J, de Miguel E, Dudek M, Kettunen MI, Hyytiä P, Forsberg MM, Kankuri E, Korpi ER. Alcohol Co-Administration Changes Mephedrone-Induced Alterations of Neuronal Activity. Front Pharmacol 2021; 12:679759. [PMID: 33995109 PMCID: PMC8115874 DOI: 10.3389/fphar.2021.679759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Mephedrone (4-MMC), despite its illegal status, is still a widely used psychoactive substance. Its effects closely mimic those of the classical stimulant drug methamphetamine (METH). Recent research suggests that unlike METH, 4-MMC is not neurotoxic on its own. However, the neurotoxic effects of 4-MMC may be precipitated under certain circumstances, such as administration at high ambient temperatures. Common use of 4-MMC in conjunction with alcohol raises the question whether this co-consumption could also precipitate neurotoxicity. A total of six groups of adolescent rats were treated twice daily for four consecutive days with vehicle, METH (5 mg/kg) or 4-MMC (30 mg/kg), with or without ethanol (1.5 g/kg). To investigate persistent delayed effects of the administrations at two weeks after the final treatments, manganese-enhanced magnetic resonance imaging brain scans were performed. Following the scans, brains were collected for Golgi staining and spine analysis. 4-MMC alone had only subtle effects on neuronal activity. When administered with ethanol, it produced a widespread pattern of deactivation, similar to what was seen with METH-treated rats. These effects were most profound in brain regions which are known to have high dopamine and serotonin activities including hippocampus, nucleus accumbens and caudate-putamen. In the regions showing the strongest activation changes, no morphological changes were observed in spine analysis. By itself 4-MMC showed few long-term effects. However, when co-administered with ethanol, the apparent functional adaptations were profound and comparable to those of neurotoxic METH.
Collapse
Affiliation(s)
- Milo Grotell
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Essi Törrönen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jouni Ihalainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elena de Miguel
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mateusz Dudek
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later. Proc Natl Acad Sci U S A 2021; 118:2014464118. [PMID: 33876747 DOI: 10.1073/pnas.2014464118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.
Collapse
|
27
|
Aytur SA, Ray KL, Meier SK, Campbell J, Gendron B, Waller N, Robin DA. Neural Mechanisms of Acceptance and Commitment Therapy for Chronic Pain: A Network-Based fMRI Approach. Front Hum Neurosci 2021; 15:587018. [PMID: 33613207 PMCID: PMC7892587 DOI: 10.3389/fnhum.2021.587018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/12/2021] [Indexed: 01/29/2023] Open
Abstract
Over 100 million Americans suffer from chronic pain (CP), which causes more disability than any other medical condition in the United States at a cost of $560-$635 billion per year (Institute of Medicine, 2011). Opioid analgesics are frequently used to treat CP. However, long term use of opioids can cause brain changes such as opioid-induced hyperalgesia that, over time, increase pain sensation. Also, opioids fail to treat complex psychological factors that worsen pain-related disability, including beliefs about and emotional responses to pain. Cognitive behavioral therapy (CBT) can be efficacious for CP. However, CBT generally does not focus on important factors needed for long-term functional improvement, including attainment of personal goals and the psychological flexibility to choose responses to pain. Acceptance and Commitment Therapy (ACT) has been recognized as an effective, non-pharmacologic treatment for a variety of CP conditions (Gutierrez et al., 2004). However, little is known about the neurologic mechanisms underlying ACT. We conducted an ACT intervention in women (n = 9) with chronic musculoskeletal pain. Functional magnetic resonance imaging (fMRI) data were collected pre- and post-ACT, and changes in functional connectivity (FC) were measured using Network-Based Statistics (NBS). Behavioral outcomes were measured using validated assessments such as the Acceptance and Action Questionnaire (AAQ-II), the Chronic Pain Acceptance Questionnaire (CPAQ), the Center for Epidemiologic Studies Depression Scale (CES-D), and the NIH Toolbox Neuro-QoLTM (Quality of Life in Neurological Disorders) scales. Results suggest that, following the 4-week ACT intervention, participants exhibited reductions in brain activation within and between key networks including self-reflection (default mode, DMN), emotion (salience, SN), and cognitive control (frontal parietal, FPN). These changes in connectivity strength were correlated with changes in behavioral outcomes including decreased depression and pain interference, and increased participation in social roles. This study is one of the first to demonstrate that improved function across the DMN, SN, and FPN may drive the positive outcomes associated with ACT. This study contributes to the emerging evidence supporting the use of neurophysiological indices to characterize treatment effects of alternative and complementary mind-body therapies.
Collapse
Affiliation(s)
- Semra A. Aytur
- Department of Health Management and Policy, University of New Hampshire, Durham, NH, United States
| | - Kimberly L. Ray
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Sarah K. Meier
- Department of Communication Sciences and Disorders, University of New Hampshire, Durham, NH, United States
| | - Jenna Campbell
- Department of Communication Sciences and Disorders, University of New Hampshire, Durham, NH, United States
| | - Barry Gendron
- Wentworth Health Partners Seacoast Physiatry, Somersworth, NH, United States
| | - Noah Waller
- Department of Communication Sciences and Disorders, University of New Hampshire, Durham, NH, United States
| | - Donald A. Robin
- Department of Communication Sciences and Disorders, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
28
|
Osimo SA, Piretti L, Ionta S, Rumiati RI, Aiello M. The neural substrates of subliminal attentional bias and reduced inhibition in individuals with a higher BMI: A VBM and resting state connectivity study. Neuroimage 2021; 229:117725. [PMID: 33484850 DOI: 10.1016/j.neuroimage.2021.117725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that individuals with overweight and obesity may experience attentional biases and reduced inhibition toward food stimuli. However, evidence is scarce as to whether the attentional bias is present even before stimuli are consciously recognized. Moreover, it is not known whether or not differences in the underlying brain morphometry and connectivity may co-occur with attentional bias and impulsivity towards food in individuals with different BMIs. To address these questions, we asked fifty-three participants (age M = 23.2, SD = 2.9, 13 males) to perform a breaking Continuous Flash Suppression (bCFS) task to measure the speed of subliminal processing, and a Go/No-Go task to measure inhibition, using food and nonfood stimuli. We collected whole-brain structural magnetic resonance images and functional resting-state activity. A higher BMI predicted slower subliminal processing of images independently of the type of stimulus (food or nonfood, p = 0.001, εp2 = 0.17). This higher threshold of awareness is linked to lower grey matter (GM) density of key areas involved in awareness, high-level sensory integration, and reward, such as the orbitofrontal cortex [t = 4.55, p = 0.003], the right temporal areas [t = 4.18, p = 0.002], the operculum and insula [t = 4.14, p = 0.005] only in individuals with a higher BMI. In addition, individuals with a higher BMI exhibit a specific reduced inhibition to food in the Go/No-Go task [p = 0.02, εp2 = 0.02], which is associated with lower GM density in reward brain regions [orbital gyrus, t = 4.97, p = 0.005, and parietal operculum, t = 5.14, p < 0.001] and lower resting-state connectivity of the orbital gyrus to visual areas [fusiform gyrus, t = -4.64, p < 0.001 and bilateral occipital cortex, t = -4.51, p < 0.001 and t = -4.34, p < 0.001]. Therefore, a higher BMI is predictive of non food-specific slower visual subliminal processing, which is linked to morphological alterations of key areas involved in awareness, high-level sensory integration, and reward. At a late, conscious stage of visual processing a higher BMI is associated with a specific bias towards food and with lower GM density in reward brain regions. Finally, independently of BMI, volumetric variations and connectivity patterns in different brain regions are associated with variability in bCFS and Go/No-Go performances.
Collapse
Affiliation(s)
- S A Osimo
- Cognitive Neuroscience Department, SISSA, via Bonomea 265, 34136 Trieste, Italy.
| | - L Piretti
- Cognitive Neuroscience Department, SISSA, via Bonomea 265, 34136 Trieste, Italy; Department of Psychology and Cognitive Sciences, University of Trento, corso Bettini 84, 38068 Rovereto, Italy; Fondazione ONLUS Marica De Vincenzi, via Alessandro Manzoni, 11, 38122 Rovereto, Italy
| | - S Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Av. de France 15, 1002 Lausanne, Switzerland
| | - R I Rumiati
- Cognitive Neuroscience Department, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - M Aiello
- Cognitive Neuroscience Department, SISSA, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
29
|
Hartmann H, Rütgen M, Riva F, Lamm C. Another's pain in my brain: No evidence that placebo analgesia affects the sensory-discriminative component in empathy for pain. Neuroimage 2021; 224:117397. [PMID: 32971262 DOI: 10.1016/j.neuroimage.2020.117397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
The shared representations account of empathy suggests that sharing other people's emotions relies on neural processes similar to those engaged when directly experiencing such emotions. Recent research corroborated this by showing that placebo analgesia induced for first-hand pain resulted in reduced pain empathy and decreased activation in shared neural networks. However, those studies did not report any placebo-related variation of somatosensory engagement during pain empathy. The experimental paradigms used in these studies did not direct attention towards a specific body part in pain, which may explain the absence of effects for somatosensation. The main objective of this preregistered study was to implement a paradigm overcoming this limitation, and to investigate whether placebo analgesia may also modulate the sensory-discriminative component of empathy for pain. We induced a localized, first-hand placebo analgesia effect in the right hand of 45 participants by means of a placebo gel and conditioning techniques, and compared this to the left hand as a control condition. Participants underwent a pain task in the MRI scanner, receiving painful or non-painful electrical stimulation on their left or right hand, or witnessing another person receiving such stimulation. In contrast to a robust localized placebo analgesia effect for self-experienced pain, the empathy condition showed no differences between the two hands, neither for behavioral nor neural responses. We thus report no evidence for somatosensory sharing in empathy, while replicating previous studies showing overlapping brain activity in the affective-motivational component for first-hand and empathy for pain. Hence, in a more rigorous test aiming to overcome limitations of previous work, we again find no causal evidence for the engagement of somatosensory sharing in empathy. Our study refines the understanding of the neural underpinnings of empathy for pain, and the use of placebo analgesia in investigating such models.
Collapse
Affiliation(s)
- Helena Hartmann
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Federica Riva
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| |
Collapse
|
30
|
Meier SK, Ray KL, Waller NC, Gendron BC, Aytur SA, Robin DA. Network Analysis of Induced Neural Plasticity Post-Acceptance and Commitment Therapy for Chronic Pain. Brain Sci 2020; 11:E10. [PMID: 33374858 PMCID: PMC7823706 DOI: 10.3390/brainsci11010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 01/05/2023] Open
Abstract
Chronic musculoskeletal pain is a costly and prevalent condition that affects the lives of over 50 million individuals in the United States. Chronic pain leads to functional brain changes in those suffering from the condition. Not only does the primary pain network transform as the condition changes from acute to persistent pain, a state of hyper-connectivity also exists between the default mode, frontoparietal, and salience networks. Graph theory analysis has recently been used to investigate treatment-driven brain network changes. For example, current research suggests that Acceptance and Commitment Therapy (ACT) may reduce the chronic pain associated hyper-connectivity between the default mode, frontoparietal, and salience networks, as well as within the salience network. This study extended previous work by examining the associations between the three networks above and a meta-analytically derived pain network. Results indicate decreased connectivity within the pain network (including left putamen, right insula, left insula, and right thalamus) in addition to triple network connectivity changes after the four-week Acceptance and Commitment Therapy intervention.
Collapse
Affiliation(s)
- Sarah K. Meier
- Department of Communication Sciences and Disorders, University of New Hampshire, Durham, NH 03824, USA; (N.C.W.); (D.A.R.)
| | - Kimberly L. Ray
- Department of Psychology, University of Texas, Austin, TX 78712, USA;
| | - Noah C. Waller
- Department of Communication Sciences and Disorders, University of New Hampshire, Durham, NH 03824, USA; (N.C.W.); (D.A.R.)
| | | | - Semra A. Aytur
- Department of Health Management and Policy, University of New Hampshire, Durham, NH 03824, USA;
| | - Donald A. Robin
- Department of Communication Sciences and Disorders, University of New Hampshire, Durham, NH 03824, USA; (N.C.W.); (D.A.R.)
- Interdisciplinary Program in Neuroscience and Behavior, University of New Hampshire, Durham, NH 03824, USA
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
31
|
Ang YS, Kaiser R, Deckersbach T, Almeida J, Phillips ML, Chase HW, Webb CA, Parsey R, Fava M, McGrath P, Weissman M, Adams P, Deldin P, Oquendo MA, McInnis MG, Carmody T, Bruder G, Cooper CM, Fatt CRC, Trivedi MH, Pizzagalli DA. Pretreatment Reward Sensitivity and Frontostriatal Resting-State Functional Connectivity Are Associated With Response to Bupropion After Sertraline Nonresponse. Biol Psychiatry 2020; 88:657-667. [PMID: 32507389 PMCID: PMC7529779 DOI: 10.1016/j.biopsych.2020.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Standard guidelines recommend selective serotonin reuptake inhibitors as first-line antidepressants for adults with major depressive disorder, but success is limited and patients who fail to benefit are often switched to non-selective serotonin reuptake inhibitor agents. This study investigated whether brain- and behavior-based markers of reward processing might be associated with response to bupropion after sertraline nonresponse. METHODS In a two-stage, double-blinded clinical trial, 296 participants were randomized to receive 8 weeks of sertraline or placebo in stage 1. Individuals who responded continued on another 8-week course of the same intervention in stage 2, while sertraline and placebo nonresponders crossed over to bupropion and sertraline, respectively. Data from 241 participants were analyzed. The stage 2 sample comprised 87 patients with major depressive disorder who switched medication and 38 healthy control subjects. A total of 116 participants with major depressive disorder treated with sertraline in stage 1 served as an independent replication sample. The probabilistic reward task and resting-state functional magnetic resonance imaging were administered at baseline. RESULTS Greater pretreatment reward sensitivity and higher resting-state functional connectivity between bilateral nucleus accumbens and rostral anterior cingulate cortex were associated with positive response to bupropion but not sertraline. Null findings for sertraline were replicated in the stage 1 sample. CONCLUSIONS Pretreatment reward sensitivity and frontostriatal connectivity may identify patients likely to benefit from bupropion following selective serotonin reuptake inhibitor failures. Results call for a prospective replication based on these biomarkers to advance clinical care.
Collapse
Affiliation(s)
- Yuen-Siang Ang
- Department of Psychiatry, Harvard Medical School, Boston, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| | - Roselinde Kaiser
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80302
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Jorge Almeida
- Department of Psychiatry, University of Texas at Austin, Dell Medical School, 1601 Trinity St., Austin, TX 78712
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, 3811 O’Hara St, Pittsburgh, PA 15213
| | - Henry W. Chase
- Department of Psychiatry, University of Pittsburgh, 3811 O’Hara St, Pittsburgh, PA 15213
| | - Christian A. Webb
- Department of Psychiatry, Harvard Medical School, Boston, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| | - Ramin Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, 100 Nicolls Road, Stony Brook, NY 11794
| | - Maurizio Fava
- Department of Psychiatry, Harvard Medical School, Boston, 25 Shattuck Street, Boston, MA 02115,Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114
| | - Patrick McGrath
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032
| | - Myrna Weissman
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032
| | - Phil Adams
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032
| | - Patricia Deldin
- Department of Psychiatry, University of Michigan, 500 S State Street, Ann Arbor, MI 48109
| | - Maria A. Oquendo
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan, 500 S State Street, Ann Arbor, MI 48109
| | - Thomas Carmody
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Gerard Bruder
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032
| | - Crystal M. Cooper
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Cherise R. Chin Fatt
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Madhukar H. Trivedi
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Diego A. Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, 25 Shattuck Street, Boston, MA 02115,Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
32
|
Lin CS, Lin HH, Wang SJ, Fuh JL. Association between regional brain volume and masticatory performance differed in cognitively impaired and non-impaired older people. Exp Gerontol 2020; 137:110942. [DOI: 10.1016/j.exger.2020.110942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
|
33
|
Metwali H, Raemaekers M, Ibrahim T, Samii A. The Fluctuations of Blood Oxygen Level-Dependent Signals as a Method of Brain Tumor Characterization: A Preliminary Report. World Neurosurg 2020; 142:e10-e17. [PMID: 32360673 DOI: 10.1016/j.wneu.2020.04.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE In this study we present the nature and characteristic of the fluctuation of blood oxygen level-dependent (BOLD) signals measured from brain tumors. METHODS Supratentorial astrocytomas, which were neither operated nor previously managed with chemotherapy or radiotherapy, were segmented, and the time series of the BOLD signal fluctuations were extracted. The mean (across patients) power spectra were plotted for the different World Health Organization tumor grades. One-way analysis of variance (ANOVA) was performed to identify significant differences between the power spectra of different tumor grades. Results were considered significant at P < 0.05. RESULTS A total of 58 patients were included in the study. This group of patients included 1 patient with grade I glioma; 15 with grade II; 12 with grade III; and 30 with grade IV. The power spectra of the tumor time series were individually inspected, and all tumors exhibited high peaks at the lower frequency signals, but these were more pronounced in high-grade tumors. ANOVA showed a significant difference in power spectra between groups (P = 0.000). Post hoc analysis with Bonferroni correction showed a significant difference between grade II and grade III (P = 0.012) and grade IV (P = 0.000). There was no significant power spectra difference between grade III and IV tumors (P = 1). CONCLUSIONS The power spectra of BOLD signals from tumor tissue showed fluctuations in the low-frequency signals and were significantly correlated with tumor grade. These signals could have a misleading effect when analyzing resting state functional magnetic resonance imaging and could be also viewed as a potential method of tumor characterization.
Collapse
Affiliation(s)
- Hussam Metwali
- Kliniken Nordoberpfalz AG, Klinikum Weiden, Department of Neurosurgery, Weiden, Germany.
| | - Mathijs Raemaekers
- Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - Tamer Ibrahim
- Department of Neurosurgery, University of Alexandria, Alexandria, Egypt
| | - Amir Samii
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany
| |
Collapse
|
34
|
Korb S, Goldman R, Davidson RJ, Niedenthal PM. Increased Medial Prefrontal Cortex and Decreased Zygomaticus Activation in Response to Disliked Smiles Suggest Top-Down Inhibition of Facial Mimicry. Front Psychol 2019; 10:1715. [PMID: 31402888 PMCID: PMC6677088 DOI: 10.3389/fpsyg.2019.01715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/09/2019] [Indexed: 12/03/2022] Open
Abstract
Spontaneous facial mimicry is modulated by many factors, and often needs to be suppressed to comply with social norms. The neural basis for the inhibition of facial mimicry was investigated in a combined functional magnetic resonance imaging and electromyography study in 39 healthy participants. In an operant conditioning paradigm, face identities were associated with reward or punishment and were later shown expressing dynamic smiles and anger expressions. Face identities previously associated with punishment, compared to reward, were disliked by participants overall, and their smiles generated less mimicry. Consistent with previous research on the inhibition of finger/hand movements, the medial prefrontal cortex (mPFC) was activated when previous conditioning was incongruent with the valence of the expression. On such trials there was also greater functional connectivity of the mPFC with insula and premotor cortex as tested with psychophysiological interaction, suggesting inhibition of areas associated with the production of facial mimicry and the processing of facial feedback. The findings suggest that the mPFC supports the inhibition of facial mimicry, and support the claim of theories of embodied cognition that facial mimicry constitutes a spontaneous low-level motor imitation.
Collapse
Affiliation(s)
- Sebastian Korb
- Department of Applied Psychology: Health, Development, Enhancement and Intervention, Faculty of Psychology, University of Vienna, Vienna, Austria.,Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Robin Goldman
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, United States
| | - Richard J Davidson
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States.,Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, United States
| | - Paula M Niedenthal
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Garrett A, Cohen JA, Zack S, Carrion V, Jo B, Blader J, Rodriguez A, Vanasse TJ, Reiss AL, Agras WS. Longitudinal changes in brain function associated with symptom improvement in youth with PTSD. J Psychiatr Res 2019; 114:161-169. [PMID: 31082658 PMCID: PMC6633919 DOI: 10.1016/j.jpsychires.2019.04.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Previous studies indicate that youth with posttraumatic stress disorder (PTSD) have abnormal activation in brain regions important for emotion processing. It is unknown whether symptom improvement is accompanied by normative changes in these regions. This study identified neural changes associated with symptom improvement with the long-term goal of identifying malleable targets for interventions. METHODS A total of 80 functional magnetic resonance imaging (fMRI) scans were collected, including 20 adolescents with PTSD (ages 9-17) and 20 age- and sex-matched healthy control subjects, each scanned before and after a 5-month period. Trauma-focused cognitive behavioral therapy was provided to the PTSD group to ensure improvement in symptoms. Whole brain voxel-wise activation and region of interest analyses of facial expression task data were conducted to identify abnormalities in the PTSD group versus HC at baseline (BL), and neural changes correlated with symptom improvement from BL to EOS of study (EOS). RESULTS At BL, the PTSD group had abnormally elevated activation in the cingulate cortex, hippocampus, amygdala, and medial frontal cortex compared to HC. From BL to EOS, PTSD symptoms improved an average of 39%. Longitudinal improvement in symptoms of PTSD was associated with decreasing activation in posterior cingulate, mid-cingulate, and hippocampus, while improvement in dissociative symptoms was correlated with decreasing activation in the amygdala. CONCLUSIONS Abnormalities in emotion-processing brain networks in youth with PTSD normalize when symptoms improve, demonstrating neural plasticity of these regions in young patients and the importance of early intervention.
Collapse
Affiliation(s)
- Amy Garrett
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, USA; Research Imaging Institute, University of Texas Health Science Center San Antonio, USA.
| | - Judith A. Cohen
- Department of Psychiatry Drexel University College of Medicine, Allegheny Health Network
| | - Sanno Zack
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine
| | - Victor Carrion
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine
| | - Booil Jo
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine
| | - Joseph Blader
- Department of Psychiatry, University of Texas Health Science Center, San Antonio
| | - Alexis Rodriguez
- Department of Psychiatry, University of Texas Health Science Center, San Antonio
| | - Thomas J. Vanasse
- Research Imaging Institute, University of Texas Health Science Center San Antonio
| | - Allan L. Reiss
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine
| | - W. Stewart Agras
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine
| |
Collapse
|
36
|
Metwali H, Raemaekers M, Kniese K, Samii A. Resting-State Functional Connectivity in Neurosurgical Patients Under Propofol Anesthesia: Detectability and Variability Between Patients and Between Sessions. World Neurosurg 2019; 125:e1160-e1169. [DOI: 10.1016/j.wneu.2019.01.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 01/03/2023]
|
37
|
Yeo S, van den Noort M, Bosch P, Lim S. A study of the effects of 8-week acupuncture treatment on patients with Parkinson's disease. Medicine (Baltimore) 2018; 97:e13434. [PMID: 30557997 PMCID: PMC6320216 DOI: 10.1097/md.0000000000013434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a degenerative brain disorder, resulting in decreased neural responses in the supplementary motor area, putamen, and thalamus. Previous research showed that acupuncture was able to improve the motor dysfunction. The primary aim of this study is to assess the efficacy of longer acupuncture treatment for preventing brain degeneration in patients with PD. METHODS Ten outpatients with PD were recruited from Kyung Hee Medical Hospital. Behavioral and neural responses were examined before and after 8 weeks of acupuncture treatment. A semi-individualized treatment approach was used; patients were treated for 15 minutes with 120-Hz electro-acupuncture at the right GB34 and Taechung (LR3), followed by manual acupuncture based on the individual symptoms of the patient. RESULTS Immediately after 8 weeks of acupuncture treatment, the Unified Parkinson's Disease Rating Scale (UPDRS) sub-scores and the depression scores for the patients had statistically decreased compared to the scores before acupuncture treatment; moreover, 8 weeks later, these scores remained stable. Compared to the neural responses before the acupuncture stimulation, those after the acupuncture treatment were significantly higher in the thalamus, cingulate gyrus, anterior cingulate, lingual gyrus, parahippocampal gyrus, lateral globus pallidus, mammillary body, middle temporal gyrus, cuneus, and fusiform gyrus. Finally, a positive correlation was found between the UPDRS and the mean magnetic resonance signal change for the thalamus. CONCLUSION This study found beneficial clinical effects of 8-week acupuncture treatment in the brains of patients with PD.
Collapse
Affiliation(s)
- Sujung Yeo
- College of Korean Medicine, Sang Ji University, Wonju
| | - Maurits van den Noort
- Department of Meridian and Acupoint, College of Korean Medicine and Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Peggy Bosch
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Nijmegen, The Netherlands
| | - Sabina Lim
- Department of Meridian and Acupoint, College of Korean Medicine and Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Kaiser RH, Snyder HR, Goer F, Clegg R, Ironside M, Pizzagalli DA. Attention Bias in Rumination and Depression: Cognitive Mechanisms and Brain Networks. Clin Psychol Sci 2018; 6:765-782. [PMID: 31106040 DOI: 10.1177/2167702618797935] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Depressed individuals exhibit biased attention to negative emotional information. However, much remains unknown about (1) the neurocognitive mechanisms of attention bias (e.g., qualities of negative information that evoke attention bias, or functional brain network dynamics that may reflect a propensity for biased attention) and (2) distinctions in the types of attention bias related to different dimensions of depression (e.g., ruminative depression). Here, in 50 women, clinical depression was associated with facilitated processing of negative information only when such information was self-descriptive and task-relevant. However, among depressed individuals, trait rumination was associated with biases towards negative self-descriptive information regardless of task goals, especially when negative self-descriptive material was paired with self-referential images that should be ignored. Attention biases in ruminative depression were mediated by dynamic variability in frontoinsular resting-state functional connectivity. These findings highlight potential cognitive and functional network mechanisms of attention bias specifically related to the ruminative dimension of depression.
Collapse
Affiliation(s)
- Roselinde H Kaiser
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | | | - Franziska Goer
- Center for Depression, Anxiety and Stress Research, McLean Hospital
| | - Rachel Clegg
- Center for Depression, Anxiety and Stress Research, McLean Hospital
| | - Manon Ironside
- Center for Depression, Anxiety and Stress Research, McLean Hospital
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital.,Mclean Imaging Center, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School
| |
Collapse
|
39
|
Zois E, Kiefer F, Vollstädt-Klein S, Lemenager T, Mann K, Fauth-Bühler M. Amygdala grey matter volume increase in gambling disorder with depression symptoms of clinical relevance: a voxel-based morphometry study. INTERNATIONAL GAMBLING STUDIES 2018. [DOI: 10.1080/14459795.2018.1452276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Evangelos Zois
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Tagrid Lemenager
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Karl Mann
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
| | - Mira Fauth-Bühler
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
- iwp Institute for Economic Psychology, FOM University of Applied Sciences for Economics and Management , Essen, Germany
| |
Collapse
|
40
|
Kaiser RH, Clegg R, Goer F, Pechtel P, Beltzer M, Vitaliano G, Olson DP, Teicher MH, Pizzagalli DA. Childhood stress, grown-up brain networks: corticolimbic correlates of threat-related early life stress and adult stress response. Psychol Med 2018; 48:1157-1166. [PMID: 28942738 PMCID: PMC5867194 DOI: 10.1017/s0033291717002628] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Exposure to threat-related early life stress (ELS) has been related to vulnerability for stress-related disorders in adulthood, putatively via disrupted corticolimbic circuits involved in stress response and regulation. However, previous research on ELS has not examined both the intrinsic strength and flexibility of corticolimbic circuits, which may be particularly important for adaptive stress responding, or associations between these dimensions of corticolimbic dysfunction and acute stress response in adulthood. METHODS Seventy unmedicated women varying in history of threat-related ELS completed a functional magnetic resonance imaging scan to evaluate voxelwise static (overall) and dynamic (variability over a series of sliding windows) resting-state functional connectivity (RSFC) of bilateral amygdala. In a separate session and subset of participants (n = 42), measures of salivary cortisol and affect were collected during a social-evaluative stress challenge. RESULTS Higher severity of threat-related ELS was related to more strongly negative static RSFC between amygdala and left dorsolateral prefrontal cortex (DLPFC), and elevated dynamic RSFC between amygdala and rostral anterior cingulate cortex (rACC). Static amygdala-DLPFC antagonism mediated the relationship between higher severity of threat-related ELS and blunted cortisol response to stress, but increased dynamic amygdala-rACC connectivity weakened this mediated effect and was related to more positive post-stress mood. CONCLUSIONS Threat-related ELS was associated with RSFC within lateral corticolimbic circuits, which in turn was related to blunted physiological response to acute stress. Notably, increased flexibility between the amygdala and rACC compensated for this static disruption, suggesting that more dynamic medial corticolimbic circuits might be key to restoring healthy stress response.
Collapse
Affiliation(s)
- Roselinde H. Kaiser
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychology, University of California Los Angeles
| | - Rachel Clegg
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Franziska Goer
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Pia Pechtel
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Miranda Beltzer
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Gordana Vitaliano
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - David P. Olson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | | | - Diego A. Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
41
|
Wang X, Zhou X, Dai Q, Ji B, Feng Z. The Role of Motivation in Cognitive Reappraisal for Depressed Patients. Front Hum Neurosci 2017; 11:516. [PMID: 29163097 PMCID: PMC5671608 DOI: 10.3389/fnhum.2017.00516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Background: People engage in emotion regulation in service of motive goals (typically, to approach a desired emotional goal or avoid an undesired emotional goal). However, how motives (goals) in emotion regulation operate to shape the regulation of emotion is rarely known. Furthermore, the modulatory role of motivation in the impaired reappraisal capacity and neural abnormalities typical of depressed patients is not clear. Our hypothesis was that (1) approach and avoidance motivation may modulate emotion regulation and the underlying neural substrates; (2) approach/avoidance motivation may modulate emotion regulation neural abnormalities in depressed patients. Methods: Twelve drug-free depressed patients and fifteen matched healthy controls reappraised emotional pictures with approach/avoidant strategies and self-rated their emotional intensities during fMRI scans. Approach/avoidance motivation was measured using Behavioral Inhibition System and Behavioral Activation System (BIS/BAS) Scale. We conducted whole-brain analyses and correlation analyses of regions of interest to identify alterations in regulatory prefrontal-amygdala circuits which were modulated by motivation. Results: Depressed patients had a higher level of BIS and lower levels of BAS-reward responsiveness and BAS-drive. BIS scores were positively correlated with depressive severity. We found the main effect of motivation as well as the interactive effect of motivation and group on the neural correlates of emotion regulation. Specifically, hypoactivation of IFG underlying the group differences in the motivation-related neural correlates during reappraisal may be partially explained by the interaction between group and reappraisal. Consistent with our prediction, dlPFC and vmPFC was differentially between groups which were modulated by motivation. Specifically, the avoidance motivation of depressed patients could predict the right dlPFC activation during decreasing positive emotion, while the approach motivation of normal individuals could predict the right vmPFC activation during decreasing negative emotion. Notably, striatal regions were observed when examining the neural substrates underlying the main effect of motivation (lentiform nucleus) and the interactive effect between motivation and group (midbrain). Conclusions: Our findings highlight the modulatory role of approach and avoidance motivation in cognitive reappraisal, which is dysfunctional in depressed patients. The results could enlighten the CBT directed at modifying the motivation deficits in cognitive regulation of emotion.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Basic Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xiaoyan Zhou
- Department of Clinical Psychology, Chongqing City Mental Health Center, Chongqing, China
| | - Qin Dai
- Department of Psychological Nursing, School of Nursing, Third Military Medical University, Chongqing, China
| | - Bing Ji
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhengzhi Feng
- Department of Behavioral Medicine, School of Psychology, Third Military Medical University, Chongqing, China
| |
Collapse
|
42
|
Zois E, Vollstädt-Klein S, Hoffmann S, Reinhard I, Charlet K, Beck A, Jorde A, Kirsch M, Walter H, Heinz A, Kiefer F. Orbitofrontal structural markers of negative affect in alcohol dependence and their associations with heavy relapse-risk at 6 months post-treatment. Eur Psychiatry 2017; 46:16-22. [PMID: 28992531 DOI: 10.1016/j.eurpsy.2017.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alcohol relapse is often occurring to regulate negative affect during withdrawal. On the neurobiological level, alcoholism is associated with gray matter (GM) abnormalities in regions that regulate emotional experience such as the orbitofrontal cortex (OFC). However, no study to our knowledge has investigated the neurobiological unpinning of affect in alcoholism at early withdrawal and the associations of OFC volume with long-term relapse risk. METHODS One hundred and eighty-two participants were included, 95 recently detoxified alcohol dependent patients (ADP) and 87 healthy controls (HC). We measured affective states using the positive and negative affect schedule (PANAS). We collected T1-weighted brain structural images and performed Voxel-based morphometry (VBM). RESULTS Findings revealed GM volume decrease in alcoholics in the prefrontal cortex (including medial OFC), anterior cingulate gyrus, and insula. GM volume in the medial OFC was positively associated with NA in the ADP group. Cox regression analysis predicted that risk to heavy relapse at 6 months increases with decreased GM volume in the medial OFC. CONCLUSIONS Negative affect during alcohol withdrawal was positively associated with OFC volume. What is more, increased GM volume in the OFC also moderated risk to heavy relapse at 6 months. Reduced GM in the OFC poses as risk to recovery from alcohol dependence and provides valuable insights into transient negative affect states during withdrawal that can trigger relapse. Implications exist for therapeutic interventions signifying the OFC as a neurobiological marker to relapse and could explain the inability of ADP to regulate internal negative affective states.
Collapse
Affiliation(s)
- E Zois
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany.
| | - S Vollstädt-Klein
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - S Hoffmann
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - I Reinhard
- Department of biostatistics, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - K Charlet
- Department of psychiatry and psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Beck
- Department of psychiatry and psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Jorde
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - M Kirsch
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - H Walter
- Department of psychiatry and psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Heinz
- Department of psychiatry and psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - F Kiefer
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| |
Collapse
|
43
|
Zois E, Kiefer F, Lemenager T, Vollstädt-Klein S, Mann K, Fauth-Bühler M. Frontal cortex gray matter volume alterations in pathological gambling occur independently from substance use disorder. Addict Biol 2017; 22:864-872. [PMID: 26771165 DOI: 10.1111/adb.12368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022]
Abstract
Neuroimaging in pathological gambling (PG) allows studying brain structure independent of pharmacological/neurotoxic effects occurring in substance addiction. Because of high comorbidity of PG with substance use disorder (SUD), first results on structural deficits in PG are controversial. The current investigation is the first to examine gray matter (GM) volume alterations in PG controlling for the impact of SUD by comparing non-comorbid (PGPURE ) and two comorbid (PGALCOHOL and PGPOLY ) groups. Two hundred and five individuals were included in the analysis: 107 patients diagnosed with PG and 98 healthy controls (HCs). We employed voxel-based morphometry to look for GM volume differences between the groups controlling for age, smoking and depression. GM decreases in the superior medial and orbital frontal cortex occur independently of substance use in PGPURE compared with HCs. The frontal pattern of GM decrease was comparable with PGALCOHOL group where additionally GM volume was decreased in the anterior cingulate but increased in the amygdala. Moreover, regions in PGALCOHOL + POLY with reduced GM volume were the medial frontal, anterior cingulate and occipital lobe regions. PGALCOHOL + POLY not only exhibited structural deficits in comparison with HCs but also relative to PGPURE in the precuneus and post-central gyrus. We demonstrated specific frontal cortex GM deficits in PG without SUD comorbidities. Whereas some target regions reported in earlier studies might result from comorbid substance abuse, there seems to be a core set of frontal alterations associated with addicted gambling behaviour independent of toxic substance effects.
Collapse
Affiliation(s)
- Evangelos Zois
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Tagrid Lemenager
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Karl Mann
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Mira Fauth-Bühler
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
44
|
Gilat M, Bell PT, Ehgoetz Martens KA, Georgiades MJ, Hall JM, Walton CC, Lewis SJG, Shine JM. Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease. Neuroimage 2017; 152:207-220. [PMID: 28263926 DOI: 10.1016/j.neuroimage.2017.02.073] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022] Open
Abstract
Impairments in motor automaticity cause patients with Parkinson's disease to rely on attentional resources during gait, resulting in greater motor variability and a higher risk of falls. Although dopaminergic circuitry is known to play an important role in motor automaticity, little evidence exists on the neural mechanisms underlying the breakdown of locomotor automaticity in Parkinson's disease. This impedes clinical management and is in great part due to mobility restrictions that accompany the neuroimaging of gait. This study therefore utilized a virtual reality gait paradigm in conjunction with functional MRI to investigate the role of dopaminergic medication on lower limb motor automaticity in 23 patients with Parkinson's disease that were measured both on and off dopaminergic medication. Participants either operated foot pedals to navigate a corridor ('walk' condition) or watched the screen while a researcher operated the paradigm from outside the scanner ('watch' condition), a setting that controlled for the non-motor aspects of the task. Step time variability during walk was used as a surrogate measure for motor automaticity (where higher variability equates to reduced automaticity), and patients demonstrated a predicted increase in step time variability during the dopaminergic "off" state. During the "off" state, subjects showed an increased blood oxygen level-dependent response in the bilateral orbitofrontal cortices (walk>watch). To estimate step time variability, a parametric modulator was designed that allowed for the examination of brain regions associated with periods of decreased automaticity. This analysis showed that patients on dopaminergic medication recruited the cerebellum during periods of increasing variability, whereas patients off medication instead relied upon cortical regions implicated in cognitive control. Finally, a task-based functional connectivity analysis was conducted to examine the manner in which dopamine modulates large-scale network interactions during gait. A main effect of medication was found for functional connectivity within an attentional motor network and a significant condition by medication interaction for functional connectivity was found within the striatum. Furthermore, functional connectivity within the striatum correlated strongly with increasing step time variability during walk in the off state (r=0.616, p=0.002), but not in the on state (r=-0.233, p=0.284). Post-hoc analyses revealed that functional connectivity in the dopamine depleted state within an orbitofrontal-striatal limbic circuit was correlated with worse step time variability (r=0.653, p<0.001). Overall, this study demonstrates that dopamine ameliorates gait automaticity in Parkinson's disease by altering striatal, limbic and cerebellar processing, thereby informing future therapeutic avenues for gait and falls prevention.
Collapse
Affiliation(s)
- Moran Gilat
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Peter T Bell
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Kaylena A Ehgoetz Martens
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Georgiades
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Julie M Hall
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Courtney C Walton
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - James M Shine
- Department of Psychology, Stanford University, Stanford, CA, United States of America; Neuroscience Research Australia, Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
45
|
Ipsilateral Putamen and Insula Activation by Both Left and Right GB34 Acupuncture Stimulation: An fMRI Study on Healthy Participants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4173185. [PMID: 28053642 PMCID: PMC5178348 DOI: 10.1155/2016/4173185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/25/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022]
Abstract
The modulatory effects on the brain during right versus left side acupuncture stimulation of the same acupuncture point have been a subject of controversy. For clarification of this important methodological issue, the present study was designed to compare the blood oxygen level-dependent responses of acupuncture stimulation on the right versus left Yanglingquan (GB34). Twenty-two healthy subjects received right or left GB34 acupuncture. Our results show that acupuncture on the left GB34 induced neural responses in the left putamen, caudate body, insula, postcentral gyrus, claustrum, right and left thalamus, right middle frontal gyrus, hypothalamus, and subthalamic nucleus. Acupuncture on the right GB34 induced neural responses in the right middle frontal gyrus, inferior parietal lobule, thalamus, putamen, lateral globus pallidus, medial globus pallidus, and insula. Interestingly, the putamen and insula were ipsilaterally activated by acupuncture on either the left or right GB34; therefore, they seem to be the main target areas affected by GB34 acupuncture. This is the first reported functional magnetic resonance imaging study directly comparing needling on the right and left GB34. Although more replication studies are needed, our preliminary results prove that acupuncture has different modulatory effects on the brain when performed on the right versus left side.
Collapse
|
46
|
Clarkson BD, Tyagi S, Griffiths DJ, Resnick NM. Test-retest repeatability of patterns of brain activation provoked by bladder filling. Neurourol Urodyn 2016; 36:1472-1478. [PMID: 27778370 DOI: 10.1002/nau.23153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/15/2016] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To assess short-term repeatability of an fMRI protocol widely used to assess brain control of the bladder. fMRI offers the potential to discern incontinence phenotypes as well as the mechanisms mediating therapeutic response. If so, this could enable more targeted efforts to enhance therapy. Such data, however, require excellent test-retest repeatability. METHODS Fifty-nine older women (age ≥60 years) with urgency incontinence underwent two fMRI scans within 5-10 min with a concurrent bladder infusion/withdrawal protocol. Activity in three brain regions relevant to bladder control was compared using paired t tests and intra-class correlation. RESULTS There were no statistically significant differences in brain activity between the two consecutive scans in the regions of interest. Intra-class correlation was 0.19 in the right insula, 0.32 in the dorsal anterior cingulate cortex/supplementary motor area, and 0.44 in the medial pre-frontal cortex. Such correlations are considered fair or poor, but are comparable to those from studies of other repeated fMRI tasks. CONCLUSIONS This is the first evaluation of the repeatability of a bladder fMRI protocol. The technique used provides a framework for comparing different fMRI protocols applied to brain-bladder research. Despite universal patient response to the stimulus, brain response had limited repeatability within individuals. Improvement of the investigational protocol should magnify brain response and reduce variability. These results suggest that although analysis of fMRI data among groups of subjects yields valuable insight into bladder control, fMRI is not yet appropriate for evaluation of the brain's role in continence on an individual level.
Collapse
Affiliation(s)
- Becky D Clarkson
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shachi Tyagi
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Derek J Griffiths
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Neil M Resnick
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
47
|
Wicking M, Steiger F, Nees F, Diener SJ, Grimm O, Ruttorf M, Schad LR, Winkelmann T, Wirtz G, Flor H. Deficient fear extinction memory in posttraumatic stress disorder. Neurobiol Learn Mem 2016; 136:116-126. [PMID: 27686278 DOI: 10.1016/j.nlm.2016.09.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) might be maintained by deficient extinction memory. We used a cued fear conditioning design with extinction and a post-extinction phase to provoke the return of fear and examined the role of the interplay of amygdala, hippocampus and prefrontal regions. METHODS We compared 18 PTSD patients with two healthy control groups: 18 trauma-exposed subjects without PTSD (nonPTSD) and 18 healthy controls (HC) without trauma experience. They underwent a three-day ABC-conditioning procedure in a functional magnetic resonance imaging scanner. Two geometric shapes that served as conditioned stimuli (CS) were presented in the context of virtual reality scenes. Electric painful stimuli were delivered after one of the two shapes (CS+) during acquisition (in context A), while the other (CS-) was never paired with pain. Extinction was performed in context B and extinction memory was tested in a novel context C. RESULTS The PTSD patients showed significantly higher differential skin conductance responses than the non-PTSD and HC and higher differential amygdala and hippocampus activity than the HC in context C. In addition, elevated arousal to the CS+ during extinction and to the CS- throughout the experiment was present in the PTSD patients but self-reported differential valence or contingency were not different. During extinction recall, differential amygdala activity correlated positively with the intensity of numbing and ventromedial prefrontal cortex activity correlated positively with behavioral avoidance. CONCLUSIONS PTSD patients show heightened return of fear in neural and peripheral measures. In addition, self-reported arousal was high to both danger (CS+) and safety (CS-) cues. These results suggest that a deficient maintenance of extinction and a failure to identify safety signals might contribute to PTSD symptoms, whereas non-PTSD subjects seem to show normal responses.
Collapse
Affiliation(s)
- Manon Wicking
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| | - Frauke Steiger
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| | - Slawomira J Diener
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| | - Oliver Grimm
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany; Klinik für Psychiatrie, Psychosomatik und Psychotherapie, Klinikum der J.W. Goethe-Universität, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany.
| | - Michaela Ruttorf
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Tobias Winkelmann
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| | - Gustav Wirtz
- Department of Psychiatry and Psychotherapy, SRH Klinikum Karlsbad-Langensteinbach GmbH, Guttmannstr. 1, 76307 Karlsbad, Germany.
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| |
Collapse
|
48
|
Zois E, Vollstädt-Klein S, Hoffmann S, Reinhard I, Bach P, Charlet K, Beck A, Treutlein J, Frank J, Jorde A, Kirsch M, Degenhardt F, Walter H, Heinz A, Kiefer F. GATA4 variant interaction with brain limbic structure and relapse risk: A voxel-based morphometry study. Eur Neuropsychopharmacol 2016; 26:1431-1437. [PMID: 27397865 DOI: 10.1016/j.euroneuro.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/25/2016] [Accepted: 06/18/2016] [Indexed: 01/08/2023]
Abstract
Atrial natriuretic peptide (ANP) receptors are highly expressed in the amygdala, caudate and hypothalamus. GATA4 gene encodes a transcription factor of ANP associated with the pathophysiology of alcohol dependence. We have previously demonstrated that the GATA4 single nucleotide polymorphism (SNP) rs13273672 revealed stronger alcohol-specific amygdala activation associated with lowered relapse risk to heavy drinking at 90 days in the AA-homozygotes. Our understanding however with respect to GATA4 variation on gray matter (GM) regional amygdala, caudate and hypothalamus volume is limited. We investigated GM differences specific to GATA4 and hypothesized that GM alterations will be predictive of heavy relapse. Eighty-three recently detoxified alcohol dependent patients were included. Neuroimaging data was analyzed using Voxel Based Morphometry (VBM). The main effects of GM volume and genotype as well as their interaction effect on time to heavy relapse (60 and 90 days) were analyzed using cox regression. Significant higher GM volume was found for the AA-genotype group compared with AG/GG-genotype in the hypothalamus and caudate. A significant interaction was revealed between caudate and amygdala GM volume and GATA4 genotype on time to heavy relapse. The interaction was expressed by means of higher GM in the AA genotype group to be associated with reduced risk to relapse whereas in the AG/GG group higher GM was associated with increased risk to relapse. This is the first report on GM regional volume alterations specific to GATA4 genotype [(SNP) rs13273672] and its association with relapse in alcohol dependence. Current findings further support the role of GATA4 in alcoholism.
Collapse
Affiliation(s)
- Evangelos Zois
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Katrin Charlet
- Department of Psychiatry and Psychotherapy, Charité, University Medicine, Campus Mitte, Berlin, Germany
| | - Anne Beck
- Department of Psychiatry and Psychotherapy, Charité, University Medicine, Campus Mitte, Berlin, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University Heidelberg, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University Heidelberg, Mannheim, Germany
| | - Anne Jorde
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Martina Kirsch
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | | | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité, University Medicine, Campus Mitte, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité, University Medicine, Campus Mitte, Berlin, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
49
|
Dudek M, Hyytiä P. Alcohol preference and consumption are controlled by the caudal linear nucleus in alcohol-preferring rats. Eur J Neurosci 2016; 43:1440-8. [PMID: 27038036 DOI: 10.1111/ejn.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/26/2016] [Accepted: 03/22/2016] [Indexed: 01/09/2023]
Abstract
The neuroanatomical and neurochemical basis of alcohol drinking has been extensively studied, but the neural circuitry mediating alcohol reinforcement has not been fully delineated. In the present experiments, we used both neuroimaging and pharmacological tools to identify neural systems associated with alcohol preference and high voluntary alcohol drinking in alcohol-preferring AA (Alko Alcohol) rats. First, we compared the basal brain activity of AA rats with that of heterogeneous Wistar rats with manganese-enhanced magnetic resonance imaging (MEMRI). Briefly, alcohol-naïve rats were implanted with subcutaneous osmotic minipumps delivering 120 mg/kg MnCl2 over a 7-day period, and were then imaged using a three-dimensional rapid acquisition-relaxation enhanced pulse sequence. MEMRI analysis revealed that the most conspicuous subcortical activation difference was located in the caudal linear nucleus of raphe (CLi), with AA rats displaying significantly lower T1 signal in this region compared to Wistar rats. However, following long-term alcohol drinking, CLi activity was increased in AA rats. In the second experiment, the CLi was targeted with pharmacological tools. AA rats trained to drink 10% alcohol during 2-h sessions were implanted with guide cannulas aimed at the CLi and were given injections of the GABAA receptor agonist muscimol into the CLi before drinking sessions. Muscimol dose-dependently increased alcohol drinking, and co-administration of the gamma aminobutyric acid (GABA)A antagonist bicuculline blocked muscimol's effect. These findings suggest that the mediocaudal region of the ventral tegmental area, particularly the CLi, is important for the propensity for high alcohol drinking and controls alcohol reward via GABAergic transmission.
Collapse
Affiliation(s)
- Mateusz Dudek
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, POB 63 00014, Helsinki, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, POB 63 00014, Helsinki, Finland
| |
Collapse
|
50
|
Modulation of nucleus accumbens connectivity by alcohol drinking and naltrexone in alcohol-preferring rats: A manganese-enhanced magnetic resonance imaging study. Eur Neuropsychopharmacol 2016; 26:445-55. [PMID: 26851200 DOI: 10.1016/j.euroneuro.2016.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/31/2015] [Accepted: 01/15/2016] [Indexed: 11/23/2022]
Abstract
The nonselective opioid receptor antagonist naltrexone is now used for the treatment of alcoholism, yet naltrexone's central mechanism of action remains poorly understood. One line of evidence suggests that opioid antagonists regulate alcohol drinking through interaction with the mesolimbic dopamine system. Hence, our goal here was to examine the role of the nucleus accumbens connectivity in alcohol reinforcement and naltrexone's actions using manganese-enhanced magnetic resonance imaging (MEMRI). Following long-term free-choice drinking of alcohol and water, AA (Alko Alcohol) rats received injections of MnCl2 into the nucleus accumbens for activity-dependent tracing of accumbal connections. Immediately after the accumbal injections, rats were imaged using MEMRI, and then allowed to drink either alcohol or water for the next 24h. Naltrexone was administered prior to the active dark period, and the second MEMRI was performed 24h after the first scan. Comparison of signal intensity at 1 and 24h after accumbal MnCl2 injections revealed an ipsilateral continuum through the ventral pallidum, bed nucleus of the stria terminalis, globus pallidus, and lateral hypothalamus to the substantia nigra and ventral tegmental area. Activation was also seen in the rostral part of the insular cortex and regions of the prefrontal cortex. Alcohol drinking resulted in enhanced activation of these connections, whereas naltrexone suppressed alcohol-induced activity. These data support the involvement of the accumbal connections in alcohol reinforcement and mediation of naltrexone's suppressive effects on alcohol drinking through their deactivation.
Collapse
|