1
|
Klein F, Kohl SH, Lührs M, Mehler DMA, Sorger B. From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230087. [PMID: 39428887 PMCID: PMC11513164 DOI: 10.1098/rstb.2023.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS—Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Simon H. Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute of Translational Psychiatry, Medical Faculty, University of Münster, Münster, Germany
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Iyer S, Maxson Jones K, Robinson JO, Provenza NR, Duncan D, Lázaro-Muñoz G, McGuire AL, Sheth SA, Majumder MA. The BRAIN Initiative data-sharing ecosystem: Characteristics, challenges, benefits, and opportunities. eLife 2024; 13:e94000. [PMID: 39602224 PMCID: PMC11602185 DOI: 10.7554/elife.94000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
In this paper, we provide an overview and analysis of the BRAIN Initiative data-sharing ecosystem. First, we compare and contrast the characteristics of the seven BRAIN Initiative data archives germane to data sharing and reuse, namely data submission and access procedures and aspects of interoperability. Second, we discuss challenges, benefits, and future opportunities, focusing on issues largely specific to sharing human data and drawing on N = 34 interviews with diverse stakeholders. The BRAIN Initiative-funded archive ecosystem faces interoperability and data stewardship challenges, such as achieving and maintaining interoperability of data and archives and harmonizing research participants' informed consents for tiers of access for human data across multiple archives. Yet, a benefit of this distributed archive ecosystem is the ability of more specialized archives to adapt to the needs of particular research communities. Finally, the multiple archives offer ample raw material for network evolution in response to the needs of neuroscientists over time. Our first objective in this paper is to provide a guide to the BRAIN Initiative data-sharing ecosystem for readers interested in sharing and reusing neuroscience data. Second, our analysis supports the development of empirically informed policy and practice aimed at making neuroscience data more findable, accessible, interoperable, and reusable.
Collapse
Affiliation(s)
- Sudhanvan Iyer
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
| | - Kathryn Maxson Jones
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
- Department of History, Purdue UniversityWest LafayetteUnited States
| | - Jill O Robinson
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesUnited States
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical SchoolBostonUnited States
- Department of Psychiatry, Massachusetts General HospitalBostonUnited States
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Mary A Majumder
- Center for Medical Ethics and Health Policy, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
3
|
Ekhtiari H, Zare-Bidoky M, Sangchooli A, Valyan A, Abi-Dargham A, Cannon DM, Carter CS, Garavan H, George TP, Ghobadi-Azbari P, Juchem C, Krystal JH, Nichols TE, Öngür D, Pernet CR, Poldrack RA, Thompson PM, Paulus MP. Reporting checklists in neuroimaging: promoting transparency, replicability, and reproducibility. Neuropsychopharmacology 2024; 50:67-84. [PMID: 39242922 PMCID: PMC11525976 DOI: 10.1038/s41386-024-01973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Neuroimaging plays a crucial role in understanding brain structure and function, but the lack of transparency, reproducibility, and reliability of findings is a significant obstacle for the field. To address these challenges, there are ongoing efforts to develop reporting checklists for neuroimaging studies to improve the reporting of fundamental aspects of study design and execution. In this review, we first define what we mean by a neuroimaging reporting checklist and then discuss how a reporting checklist can be developed and implemented. We consider the core values that should inform checklist design, including transparency, repeatability, data sharing, diversity, and supporting innovations. We then share experiences with currently available neuroimaging checklists. We review the motivation for creating checklists and whether checklists achieve their intended objectives, before proposing a development cycle for neuroimaging reporting checklists and describing each implementation step. We emphasize the importance of reporting checklists in enhancing the quality of data repositories and consortia, how they can support education and best practices, and how emerging computational methods, like artificial intelligence, can help checklist development and adherence. We also highlight the role that funding agencies and global collaborations can play in supporting the adoption of neuroimaging reporting checklists. We hope this review will encourage better adherence to available checklists and promote the development of new ones, and ultimately increase the quality, transparency, and reproducibility of neuroimaging research.
Collapse
Affiliation(s)
- Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Mehran Zare-Bidoky
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Arshiya Sangchooli
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Alireza Valyan
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
- Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, NY, USA
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, Center for Neuroimaging, Cognition & Genomics, College of Medicine, Nursing & Health Sciences, University of Galway, Galway, Ireland
| | - Cameron S Carter
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, CA, USA
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Tony P George
- Institute for Mental Health Policy and Research at CAMH, Toronto, ON, Canada
- Department of Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Peyman Ghobadi-Azbari
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University Fu Foundation, School of Engineering and Applied Science, New York, NY, USA
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Thomas E Nichols
- Nuffield Department of Population Health, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Dost Öngür
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Cyril R Pernet
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | | |
Collapse
|
4
|
Alkhatib R, Gaede KI. Data Management in Biobanking: Strategies, Challenges, and Future Directions. BIOTECH 2024; 13:34. [PMID: 39311336 PMCID: PMC11417763 DOI: 10.3390/biotech13030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
Biobanking plays a pivotal role in biomedical research by providing standardized processing, precise storing, and management of biological sample collections along with the associated data. Effective data management is a prerequisite to ensure the integrity, quality, and accessibility of these resources. This review provides a current landscape of data management in biobanking, discussing key challenges, existing strategies, and potential future directions. We explore multiple aspects of data management, including data collection, storage, curation, sharing, and ethical considerations. By examining the evolving technologies and methodologies in biobanking, we aim to provide insights into addressing the complexities and maximizing the utility of biobank data for research and clinical applications.
Collapse
Affiliation(s)
- Ramez Alkhatib
- Biomaterial Bank Nord, Research Center Borstel Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany;
- German Centre for Lung Research (DZL), Airway Research Centre North (ARCN), 22927 Großhansdorf, Germany
| | - Karoline I. Gaede
- Biomaterial Bank Nord, Research Center Borstel Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany;
- German Centre for Lung Research (DZL), Airway Research Centre North (ARCN), 22927 Großhansdorf, Germany
- PopGen 2.0 Biobanking Network (P2N), University Hospital Schleswig-Holstein, Campus Kiel, Kiel University, 24105 Kiel, Germany
| |
Collapse
|
5
|
Tecuatl C, Ljungquist B, Ascoli GA. Accelerating the continuous community sharing of digital neuromorphology data. FASEB Bioadv 2024; 6:207-221. [PMID: 38974113 PMCID: PMC11226999 DOI: 10.1096/fba.2024-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 h to 2 min. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Bioengineering Department and Center for Neural Informatics, Structures and Plasticity, College of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
| | - Bengt Ljungquist
- Bioengineering Department and Center for Neural Informatics, Structures and Plasticity, College of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
| | - Giorgio A. Ascoli
- Bioengineering Department and Center for Neural Informatics, Structures and Plasticity, College of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
- Interdisciplinary Program in Neuroscience, College of ScienceGeorge Mason UniversityFairfaxVirginiaUSA
| |
Collapse
|
6
|
Ji Z, Guo S, Qiao Y, McDougal RA. Automating literature screening and curation with applications to computational neuroscience. J Am Med Inform Assoc 2024; 31:1463-1470. [PMID: 38722233 PMCID: PMC11187430 DOI: 10.1093/jamia/ocae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE ModelDB (https://modeldb.science) is a discovery platform for computational neuroscience, containing over 1850 published model codes with standardized metadata. These codes were mainly supplied from unsolicited model author submissions, but this approach is inherently limited. For example, we estimate we have captured only around one-third of NEURON models, the most common type of models in ModelDB. To more completely characterize the state of computational neuroscience modeling work, we aim to identify works containing results derived from computational neuroscience approaches and their standardized associated metadata (eg, cell types, research topics). MATERIALS AND METHODS Known computational neuroscience work from ModelDB and identified neuroscience work queried from PubMed were included in our study. After pre-screening with SPECTER2 (a free document embedding method), GPT-3.5, and GPT-4 were used to identify likely computational neuroscience work and relevant metadata. RESULTS SPECTER2, GPT-4, and GPT-3.5 demonstrated varied but high abilities in identification of computational neuroscience work. GPT-4 achieved 96.9% accuracy and GPT-3.5 improved from 54.2% to 85.5% through instruction-tuning and Chain of Thought. GPT-4 also showed high potential in identifying relevant metadata annotations. DISCUSSION Accuracy in identification and extraction might further be improved by dealing with ambiguity of what are computational elements, including more information from papers (eg, Methods section), improving prompts, etc. CONCLUSION Natural language processing and large language model techniques can be added to ModelDB to facilitate further model discovery, and will contribute to a more standardized and comprehensive framework for establishing domain-specific resources.
Collapse
Affiliation(s)
- Ziqing Ji
- Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06510, United States
| | - Siyan Guo
- Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06510, United States
| | - Yujie Qiao
- Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06510, United States
- Integrative Genomics, Princeton University, Princeton, NJ 08540, United States
| | - Robert A McDougal
- Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06510, United States
- Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT 06510, United States
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, United States
- Wu Tsai Institute, Yale University, New Haven, CT 06510, United States
| |
Collapse
|
7
|
Renton AI, Dao TT, Johnstone T, Civier O, Sullivan RP, White DJ, Lyons P, Slade BM, Abbott DF, Amos TJ, Bollmann S, Botting A, Campbell MEJ, Chang J, Close TG, Dörig M, Eckstein K, Egan GF, Evas S, Flandin G, Garner KG, Garrido MI, Ghosh SS, Grignard M, Halchenko YO, Hannan AJ, Heinsfeld AS, Huber L, Hughes ME, Kaczmarzyk JR, Kasper L, Kuhlmann L, Lou K, Mantilla-Ramos YJ, Mattingley JB, Meier ML, Morris J, Narayanan A, Pestilli F, Puce A, Ribeiro FL, Rogasch NC, Rorden C, Schira MM, Shaw TB, Sowman PF, Spitz G, Stewart AW, Ye X, Zhu JD, Narayanan A, Bollmann S. Neurodesk: an accessible, flexible and portable data analysis environment for reproducible neuroimaging. Nat Methods 2024; 21:804-808. [PMID: 38191935 PMCID: PMC11180540 DOI: 10.1038/s41592-023-02145-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.
Collapse
Affiliation(s)
- Angela I Renton
- The University of Queensland, Queensland Brain Institute, St Lucia, Brisbane, Queensland, Australia.
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia.
| | - Thuy T Dao
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia
| | - Tom Johnstone
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Oren Civier
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Ryan P Sullivan
- The University of Sydney, School of Biomedical Engineering, Sydney, New South Wales, Australia
| | - David J White
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Paris Lyons
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Benjamin M Slade
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - David F Abbott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Toluwani J Amos
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, China
| | - Saskia Bollmann
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia
| | - Andy Botting
- Australian Research Data Commons (ARDC), Sydney, New South Wales, Australia
| | - Megan E J Campbell
- School of Psychological Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute Imaging Centre, Newcastle, New South Wales, Australia
| | - Jeryn Chang
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, Queensland, Australia
| | - Thomas G Close
- The University of Sydney, School of Biomedical Engineering, Sydney, New South Wales, Australia
| | - Monika Dörig
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Korbinian Eckstein
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia
| | - Gary F Egan
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Stefanie Evas
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
- Human Health, Health & Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Guillaume Flandin
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Kelly G Garner
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
- The University of Queensland, School of Psychology, St Lucia, Brisbane, Queensland, Australia
| | - Marta I Garrido
- Melbourne School of Psychological Sciences, he University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Satrajit S Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Martin Grignard
- GIGA CRC In-Vivo Imaging, University of Liège, Liège, Belgium
| | - Yaroslav O Halchenko
- Center for Open Neuroscience, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anibal S Heinsfeld
- Department of Psychology, Center for Perceptual Systems, Institute for Neuroscience, Center For Learning and Memory, The University of Texas at Austin, Austin, TX, USA
| | - Laurentius Huber
- National Institute of Mental Health (NIMH), National Institutes Health, Bethesda, MD, USA
| | - Matthew E Hughes
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jakub R Kaczmarzyk
- Department of Biomedical Informatics, Stony Brook University, New York, NY, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Lars Kasper
- BRAIN-TO Lab, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Melbourne, Victoria, Australia
| | - Kexin Lou
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yorguin-Jose Mantilla-Ramos
- Grupo Neuropsicología y Conducta (GRUNECO), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Jason B Mattingley
- The University of Queensland, Queensland Brain Institute, St Lucia, Brisbane, Queensland, Australia
- The University of Queensland, School of Psychology, St Lucia, Brisbane, Queensland, Australia
| | - Michael L Meier
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jo Morris
- Australian Research Data Commons (ARDC), Sydney, New South Wales, Australia
| | - Akshaiy Narayanan
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | - Franco Pestilli
- Department of Psychology, Center for Perceptual Systems, Institute for Neuroscience, Center For Learning and Memory, The University of Texas at Austin, Austin, TX, USA
| | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Fernanda L Ribeiro
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia
| | - Nigel C Rogasch
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Chris Rorden
- McCausland Center for Brain Imaging, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Mark M Schira
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Thomas B Shaw
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia
- The University of Queensland, Centre for Advanced Imaging, St Lucia, Brisbane, Queensland, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Paul F Sowman
- Macquarie University, School of Psychological Sciences, Sydney, New South Wales, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Ashley W Stewart
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Xincheng Ye
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia
| | - Judy D Zhu
- Macquarie University, School of Psychological Sciences, Sydney, New South Wales, Australia
| | - Aswin Narayanan
- The University of Queensland, Centre for Advanced Imaging, St Lucia, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- The University of Queensland, School of Electrical Engineering and Computer Science, St Lucia, Brisbane, Queensland, Australia.
- The University of Queensland, Centre for Advanced Imaging, St Lucia, Brisbane, Queensland, Australia.
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia.
- Queensland Digital Health Centre, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Tecuatl C, Ljungquist B, Ascoli GA. Accelerating the continuous community sharing of digital neuromorphology data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585306. [PMID: 38562736 PMCID: PMC10983892 DOI: 10.1101/2024.03.15.585306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 hours to 2 minutes. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Bengt Ljungquist
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
| |
Collapse
|
9
|
Levitas D, Hayashi S, Vinci-Booher S, Heinsfeld A, Bhatia D, Lee N, Galassi A, Niso G, Pestilli F. ezBIDS: Guided standardization of neuroimaging data interoperable with major data archives and platforms. Sci Data 2024; 11:179. [PMID: 38332144 PMCID: PMC10853279 DOI: 10.1038/s41597-024-02959-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Data standardization promotes a common framework through which researchers can utilize others' data and is one of the leading methods neuroimaging researchers use to share and replicate findings. As of today, standardizing datasets requires technical expertise such as coding and knowledge of file formats. We present ezBIDS, a tool for converting neuroimaging data and associated metadata to the Brain Imaging Data Structure (BIDS) standard. ezBIDS contains four major features: (1) No installation or programming requirements. (2) Handling of both imaging and task events data and metadata. (3) Semi-automated inference and guidance for adherence to BIDS. (4) Multiple data management options: download BIDS data to local system, or transfer to OpenNeuro.org or to brainlife.io. In sum, ezBIDS requires neither coding proficiency nor knowledge of BIDS, and is the first BIDS tool to offer guided standardization, support for task events conversion, and interoperability with OpenNeuro.org and brainlife.io.
Collapse
Affiliation(s)
- Daniel Levitas
- Department of Psychology, Department of Neuroscience, Center for Perceptual Systems, Center for Learning and Memory, Center for Aging Population Sciences, University of Texas, Austin, TX, 78712, USA
| | - Soichi Hayashi
- Department of Psychology, Department of Neuroscience, Center for Perceptual Systems, Center for Learning and Memory, Center for Aging Population Sciences, University of Texas, Austin, TX, 78712, USA
| | - Sophia Vinci-Booher
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN, 37203, USA
| | - Anibal Heinsfeld
- Department of Psychology, Department of Neuroscience, Center for Perceptual Systems, Center for Learning and Memory, Center for Aging Population Sciences, University of Texas, Austin, TX, 78712, USA
| | - Dheeraj Bhatia
- Department of Psychology, Department of Neuroscience, Center for Perceptual Systems, Center for Learning and Memory, Center for Aging Population Sciences, University of Texas, Austin, TX, 78712, USA
| | - Nicholas Lee
- Department of Psychology, Department of Neuroscience, Center for Perceptual Systems, Center for Learning and Memory, Center for Aging Population Sciences, University of Texas, Austin, TX, 78712, USA
| | - Anthony Galassi
- Center for Multimodal Neuroimaging, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Franco Pestilli
- Department of Psychology, Department of Neuroscience, Center for Perceptual Systems, Center for Learning and Memory, Center for Aging Population Sciences, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
10
|
Brancato V, Esposito G, Coppola L, Cavaliere C, Mirabelli P, Scapicchio C, Borgheresi R, Neri E, Salvatore M, Aiello M. Standardizing digital biobanks: integrating imaging, genomic, and clinical data for precision medicine. J Transl Med 2024; 22:136. [PMID: 38317237 PMCID: PMC10845786 DOI: 10.1186/s12967-024-04891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Advancements in data acquisition and computational methods are generating a large amount of heterogeneous biomedical data from diagnostic domains such as clinical imaging, pathology, and next-generation sequencing (NGS), which help characterize individual differences in patients. However, this information needs to be available and suitable to promote and support scientific research and technological development, supporting the effective adoption of the precision medicine approach in clinical practice. Digital biobanks can catalyze this process, facilitating the sharing of curated and standardized imaging data, clinical, pathological and molecular data, crucial to enable the development of a comprehensive and personalized data-driven diagnostic approach in disease management and fostering the development of computational predictive models. This work aims to frame this perspective, first by evaluating the state of standardization of individual diagnostic domains and then by identifying challenges and proposing a possible solution towards an integrative approach that can guarantee the suitability of information that can be shared through a digital biobank. Our analysis of the state of the art shows the presence and use of reference standards in biobanks and, generally, digital repositories for each specific domain. Despite this, standardization to guarantee the integration and reproducibility of the numerical descriptors generated by each domain, e.g. radiomic, pathomic and -omic features, is still an open challenge. Based on specific use cases and scenarios, an integration model, based on the JSON format, is proposed that can help address this problem. Ultimately, this work shows how, with specific standardization and promotion efforts, the digital biobank model can become an enabling technology for the comprehensive study of diseases and the effective development of data-driven technologies at the service of precision medicine.
Collapse
Affiliation(s)
| | - Giuseppina Esposito
- Bio Check Up S.R.L, 80121, Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131, Naples, Italy
| | | | | | - Peppino Mirabelli
- UOS Laboratori di Ricerca e Biobanca, AORN Santobono-Pausilipon, Via Teresa Ravaschieri, 8, 80122, Naples, Italy
| | - Camilla Scapicchio
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | - Rita Borgheresi
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | - Emanuele Neri
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | | | | |
Collapse
|
11
|
Rahimzadeh V, Jones KM, Majumder MA, Kahana MJ, Rutishauser U, Williams ZM, Cash SS, Paulk AC, Zheng J, Beauchamp MS, Collinger JL, Pouratian N, McGuire AL, Sheth SA. Benefits of sharing neurophysiology data from the BRAIN Initiative Research Opportunities in Humans Consortium. Neuron 2023; 111:3710-3715. [PMID: 37944519 PMCID: PMC10995938 DOI: 10.1016/j.neuron.2023.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Sharing human brain data can yield scientific benefits, but because of various disincentives, only a fraction of these data is currently shared. We profile three successful data-sharing experiences from the NIH BRAIN Initiative Research Opportunities in Humans (ROH) Consortium and demonstrate benefits to data producers and to users.
Collapse
Affiliation(s)
- Vasiliki Rahimzadeh
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathryn Maxson Jones
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77030, USA; Department of History, Purdue University, West Lafayette, IN 47907, USA
| | - Mary A Majumder
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jie Zheng
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael S Beauchamp
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Emissah H, Ljungquist B, Ascoli GA. Bibliometric analysis of neuroscience publications quantifies the impact of data sharing. Bioinformatics 2023; 39:btad746. [PMID: 38070153 PMCID: PMC10733721 DOI: 10.1093/bioinformatics/btad746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
SUMMARY Neural morphology, the branching geometry of brain cells, is an essential cellular substrate of nervous system function and pathology. Despite the accelerating production of digital reconstructions of neural morphology, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and limit synergy. We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via NeuroMorpho.Org leads to a significant increase of citations to the original article, thus directly benefiting authors. The rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative applications, which accrue on average twice the citations of re-analyses of individual datasets. We also released an open-source citation tracking web-service allowing researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and tools can facilitate the recognition of shared data reuse for merit evaluations and funding decisions. AVAILABILITY AND IMPLEMENTATION The application is available at: http://cng-nmo-dev3.orc.gmu.edu:8181/. The source code at https://github.com/HerveEmissah/nmo-authors-app and https://github.com/HerveEmissah/nmo-bibliometric-analysis.
Collapse
Affiliation(s)
- Herve Emissah
- Bioinformatics Program, College of Science, George Mason University, Fairfax, VA 22030, United States
- Center for Neural Informatics, Structures, & Plasticity (CN3) and Bioengineering Department, College of Engineering & Computing, George Mason University, Fairfax, VA 22030, United States
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures, & Plasticity (CN3) and Bioengineering Department, College of Engineering & Computing, George Mason University, Fairfax, VA 22030, United States
| | - Giorgio A Ascoli
- Bioinformatics Program, College of Science, George Mason University, Fairfax, VA 22030, United States
- Center for Neural Informatics, Structures, & Plasticity (CN3) and Bioengineering Department, College of Engineering & Computing, George Mason University, Fairfax, VA 22030, United States
| |
Collapse
|
13
|
Belliard F, Maineri AM, Plomp E, Ramos Padilla AF, Sun J, Zare Jeddi M. Ten simple rules for starting FAIR discussions in your community. PLoS Comput Biol 2023; 19:e1011668. [PMID: 38096152 PMCID: PMC10721007 DOI: 10.1371/journal.pcbi.1011668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
This work presents 10 rules that provide guidance and recommendations on how to start up discussions around the implementation of the FAIR (Findable, Accessible, Interoperable, Reusable) principles and creation of standardised ways of working. These recommendations will be particularly relevant if you are unsure where to start, who to involve, what the benefits and barriers of standardisation are, and if little work has been done in your discipline to standardise research workflows. When applied, these rules will support a more effective way of engaging the community with discussions on standardisation and practical implementation of the FAIR principles.
Collapse
Affiliation(s)
| | - Angelica Maria Maineri
- Erasmus University Rotterdam—Erasmus School of Social and Behavioral Sciences/ODISSEI, Rotterdam, the Netherlands
| | - Esther Plomp
- Delft University of Technology, Faculty of Applied Sciences, Delft, the Netherlands
| | | | - Junzi Sun
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
14
|
Lewis A, Young MJ, Rohaut B, Jox RJ, Claassen J, Creutzfeldt CJ, Illes J, Kirschen M, Trevick S, Fins JJ. Ethics Along the Continuum of Research Involving Persons with Disorders of Consciousness. Neurocrit Care 2023; 39:565-577. [PMID: 36977963 PMCID: PMC11023737 DOI: 10.1007/s12028-023-01708-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
Interest in disorders of consciousness (DoC) has grown substantially over the past decade and has illuminated the importance of improving understanding of DoC biology; care needs (use of monitoring, performance of interventions, and provision of emotional support); treatment options to promote recovery; and outcome prediction. Exploration of these topics requires awareness of numerous ethics considerations related to rights and resources. The Curing Coma Campaign Ethics Working Group used its expertise in neurocritical care, neuropalliative care, neuroethics, neuroscience, philosophy, and research to formulate an informal review of ethics considerations along the continuum of research involving persons with DoC related to the following: (1) study design; (2) comparison of risks versus benefits; (3) selection of inclusion and exclusion criteria; (4) screening, recruitment, and enrollment; (5) consent; (6) data protection; (7) disclosure of results to surrogates and/or legally authorized representatives; (8) translation of research into practice; (9) identification and management of conflicts of interest; (10) equity and resource availability; and (11) inclusion of minors with DoC in research. Awareness of these ethics considerations when planning and performing research involving persons with DoC will ensure that the participant rights are respected while maximizing the impact and meaningfulness of the research, interpretation of outcomes, and communication of results.
Collapse
Affiliation(s)
- Ariane Lewis
- NYU Langone Medical Center, 530 First Avenue, Skirball-7R, New York, NY, 10016, USA.
| | - Michael J Young
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Rohaut
- Inserm, CNRS, APHP - Hôpital de la Pitié Salpêtrière, Paris Brain Institute - ICM, DMU Neuroscience, Sorbonne University, Paris, France
| | - Ralf J Jox
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jan Claassen
- New York Presbyterian Hospital, Columbia University, New York, NY, USA
| | - Claire J Creutzfeldt
- Harborview Medical Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
- Cambia Palliative Care Center of Excellence, Seattle, WA, USA
| | - Judy Illes
- University of British Columbia, Vancouver, BC, Canada
| | | | | | - Joseph J Fins
- Weill Cornell Medical College, New York, NY, USA
- Yale Law School, New Haven, CT, USA
- Rockefeller University, New York, NY, USA
| |
Collapse
|
15
|
Mehta K, Ljungquist B, Ogden J, Nanda S, Ascoli RG, Ng L, Ascoli GA. Online conversion of reconstructed neural morphologies into standardized SWC format. Nat Commun 2023; 14:7429. [PMID: 37973857 PMCID: PMC10654402 DOI: 10.1038/s41467-023-42931-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Digital reconstructions provide an accurate and reliable way to store, share, model, quantify, and analyze neural morphology. Continuous advances in cellular labeling, tissue processing, microscopic imaging, and automated tracing catalyzed a proliferation of software applications to reconstruct neural morphology. These computer programs typically encode the data in custom file formats. The resulting format heterogeneity severely hampers the interoperability and reusability of these valuable data. Among these many alternatives, the SWC file format has emerged as a popular community choice, coalescing a rich ecosystem of related neuroinformatics resources for tracing, visualization, analysis, and simulation. This report presents a standardized specification of the SWC file format. In addition, we introduce xyz2swc, a free online service that converts all 26 reconstruction formats (and 72 variations) described in the scientific literature into the SWC standard. The xyz2swc service is available open source through a user-friendly browser interface ( https://neuromorpho.org/xyz2swc/ui/ ) and an Application Programming Interface (API).
Collapse
Affiliation(s)
- Ketan Mehta
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - James Ogden
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Sumit Nanda
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Ruben G Ascoli
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
16
|
Valevicius D, Beck N, Kasper L, Boroday S, Bayer J, Rioux P, Caron B, Adalat R, Evans AC, Khalili-Mahani N. Web-based processing of physiological noise in fMRI: addition of the PhysIO toolbox to CBRAIN. Front Neuroinform 2023; 17:1251023. [PMID: 37841811 PMCID: PMC10569687 DOI: 10.3389/fninf.2023.1251023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Neuroimaging research requires sophisticated tools for analyzing complex data, but efficiently leveraging these tools can be a major challenge, especially on large datasets. CBRAIN is a web-based platform designed to simplify the use and accessibility of neuroimaging research tools for large-scale, collaborative studies. In this paper, we describe how CBRAIN's unique features and infrastructure were leveraged to integrate TAPAS PhysIO, an open-source MATLAB toolbox for physiological noise modeling in fMRI data. This case study highlights three key elements of CBRAIN's infrastructure that enable streamlined, multimodal tool integration: a user-friendly GUI, a Brain Imaging Data Structure (BIDS) data-entry schema, and convenient in-browser visualization of results. By incorporating PhysIO into CBRAIN, we achieved significant improvements in the speed, ease of use, and scalability of physiological preprocessing. Researchers now have access to a uniform and intuitive interface for analyzing data, which facilitates remote and collaborative evaluation of results. With these improvements, CBRAIN aims to become an essential open-science tool for integrative neuroimaging research, supporting FAIR principles and enabling efficient workflows for complex analysis pipelines.
Collapse
Affiliation(s)
- Darius Valevicius
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Natacha Beck
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Lars Kasper
- BRAIN-TO Lab, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sergiy Boroday
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Johanna Bayer
- Center for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Orygen Youth Health, Orygen, Melbourne, VIC, Australia
| | - Pierre Rioux
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Bryan Caron
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Reza Adalat
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Alan C. Evans
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
| | - Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada
| |
Collapse
|
17
|
Emissah H, Ljungquist B, Ascoli GA. Bibliometric analysis of neuroscience publications quantifies the impact of data sharing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557386. [PMID: 37745378 PMCID: PMC10515804 DOI: 10.1101/2023.09.12.557386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Motivation Neural morphology, the branching geometry of neurons and glia in the nervous system, is an essential cellular substrate of brain function and pathology. Despite the accelerating production of digital reconstructions of neural morphology in laboratories worldwide, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and prevent researchers from building on others' work. Data sharing complements the development of computational resources and literature mining tools to accelerate scientific discovery. Results We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via the NeuroMorpho.Org online repository leads to a significant increase of citations to the original article, thus directly benefiting the authors. Moreover, the rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative meta-analysis applications, which accrue on average twice the citations of re-analyses of individual datasets. We also designed and deployed an open-source citation tracking web-service that allows researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and the released tool can facilitate the recognition of shared data reuse for promotion and tenure considerations, merit evaluations, and funding decisions.
Collapse
Affiliation(s)
- Herve Emissah
- Bioinformatics Program, College of Science, George Mason University
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures, and Plasticity, College of Engineering & Computing, George Mason University
| | - Giorgio A. Ascoli
- Bioinformatics Program, College of Science, George Mason University
- Center for Neural Informatics, Structures, and Plasticity, College of Engineering & Computing, George Mason University
| |
Collapse
|
18
|
Behan B, Jeanson F, Cheema H, Eng D, Khimji F, Vaccarino AL, Gee T, Evans SG, MacPhee FC, Dong F, Shahnazari S, Sparks A, Martens E, Lasalandra B, Arnott SR, Strother SC, Javadi M, Dharsee M, Evans KR, Nylen K, Mikkelsen T. FAIR in action: Brain-CODE - A neuroscience data sharing platform to accelerate brain research. Front Neuroinform 2023; 17:1158378. [PMID: 37274750 PMCID: PMC10233014 DOI: 10.3389/fninf.2023.1158378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 06/06/2023] Open
Abstract
The effective sharing of health research data within the healthcare ecosystem can have tremendous impact on the advancement of disease understanding, prevention, treatment, and monitoring. By combining and reusing health research data, increasingly rich insights can be made about patients and populations that feed back into the health system resulting in more effective best practices and better patient outcomes. To achieve the promise of a learning health system, data needs to meet the FAIR principles of findability, accessibility, interoperability, and reusability. Since the inception of the Brain-CODE platform and services in 2012, the Ontario Brain Institute (OBI) has pioneered data sharing activities aligned with FAIR principles in neuroscience. Here, we describe how Brain-CODE has operationalized data sharing according to the FAIR principles. Findable-Brain-CODE offers an interactive and itemized approach for requesters to generate data cuts of interest that align with their research questions. Accessible-Brain-CODE offers multiple data access mechanisms. These mechanisms-that distinguish between metadata access, data access within a secure computing environment on Brain-CODE and data access via export will be discussed. Interoperable-Standardization happens at the data capture level and the data release stage to allow integration with similar data elements. Reusable - Brain-CODE implements several quality assurances measures and controls to maximize data value for reusability. We will highlight the successes and challenges of a FAIR-focused neuroinformatics platform that facilitates the widespread collection and sharing of neuroscience research data for learning health systems.
Collapse
Affiliation(s)
| | | | | | - Derek Eng
- Ontario Brain Institute, Toronto, ON, Canada
| | | | | | - Tom Gee
- Indoc Research, Toronto, ON, Canada
| | | | | | - Fan Dong
- Indoc Research, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | - Kirk Nylen
- Ontario Brain Institute, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
19
|
Renton AI, Dao TT, Johnstone T, Civier O, Sullivan RP, White DJ, Lyons P, Slade BM, Abbott DF, Amos TJ, Bollmann S, Botting A, Campbell MEJ, Chang J, Close TG, Eckstein K, Egan GF, Evas S, Flandin G, Garner KG, Garrido MI, Ghosh SS, Grignard M, Hannan AJ, Huber R, Kaczmarzyk JR, Kasper L, Kuhlmann L, Lou K, Mantilla-Ramos YJ, Mattingley JB, Morris J, Narayanan A, Pestilli F, Puce A, Ribeiro FL, Rogasch NC, Rorden C, Schira M, Shaw TB, Sowman PF, Spitz G, Stewart A, Ye X, Zhu JD, Hughes ME, Narayanan A, Bollmann S. Neurodesk: An accessible, flexible, and portable data analysis environment for reproducible neuroimaging. RESEARCH SQUARE 2023:rs.3.rs-2649734. [PMID: 36993557 PMCID: PMC10055538 DOI: 10.21203/rs.3.rs-2649734/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.neurodesk.org/). Neurodesk includes a browser-accessible virtual desktop environment and a command line interface, mediating access to containerized neuroimaging software libraries on various computing platforms, including personal and high-performance computers, cloud computing and Jupyter Notebooks. This community-oriented, open-source platform enables a paradigm shift for neuroimaging data analysis, allowing for accessible, flexible, fully reproducible, and portable data analysis pipelines.
Collapse
Affiliation(s)
- Angela I. Renton
- The University of Queensland, Queensland Brain Institute, St Lucia 4072, Australia
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
| | - Thuy T. Dao
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
| | - Tom Johnstone
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Oren Civier
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Ryan P. Sullivan
- The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - David J. White
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Paris Lyons
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Benjamin M. Slade
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn 3122, Australia
| | - David F. Abbott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Toluwani J. Amos
- School of Life Science and Technology, University of Electronic Science and Technology, China
| | - Saskia Bollmann
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
| | - Andy Botting
- Australian Research Data Commons (ARDC), Australia
| | - Megan E. J. Campbell
- School of Psychological Sciences, University of Newcastle, Australia
- Hunter Medical Research Institute Imaging Centre, Newcastle, Australia
| | - Jeryn Chang
- The University of Queensland, School of Biomedical Sciences, St Lucia 4072, Australia
| | - Thomas G. Close
- The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - Korbinian Eckstein
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
| | - Gary F. Egan
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Stefanie Evas
- School of Psychology, University of Adelaide, Adelaide, 5000, Australia
- Human Health, Health & Biosecurity, CSIRO, Adelaide, 5000, Australia
| | - Guillaume Flandin
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Kelly G. Garner
- The University of Queensland, Queensland Brain Institute, St Lucia 4072, Australia
- The University of Queensland, School of Psychology, St Lucia 4072, Australia
| | - Marta I. Garrido
- Melbourne School of Psychological Sciences, The University of Melbourne
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne
| | - Satrajit S. Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Martin Grignard
- GIGA CRC In-Vivo Imaging, University of Liege, Liege, Belgium
| | - Anthony J. Hannan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Renzo Huber
- Functional Magnetic Resonance Imaging Core Facility (FMRIF), National Institute of Mental Health (NIMH), USA
| | - Jakub R. Kaczmarzyk
- Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, United States of America
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Lars Kasper
- Techna Institute, University Health Network, Toronto, Canada
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton VIC 3800, Australia
| | - Kexin Lou
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
| | | | - Jason B. Mattingley
- The University of Queensland, Queensland Brain Institute, St Lucia 4072, Australia
- The University of Queensland, School of Psychology, St Lucia 4072, Australia
| | - Jo Morris
- Australian Research Data Commons (ARDC), Australia
| | | | - Franco Pestilli
- Department of Psychology, Center for Perceptual Systems, Center for Theoretical and Computational Neuroscience, Center on Aging and Population Sciences, Center for Learning and Memory, The University of Texas at Austin, 108 E Dean Keeton St, Austin, TX 78712, USA
| | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Fernanda L. Ribeiro
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
| | - Nigel C. Rogasch
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria, Australia
| | - Chris Rorden
- McCausland Center for Brain Imaging, Department of Psychology, University of South Carolina, Columbia SC, 29208, USA
| | - Mark Schira
- School of Psychology, University of Wollongong, Wollongong, 2522, Australia
| | - Thomas B. Shaw
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
- The University of Queensland, Centre for Advanced Imaging, St Lucia 4072, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Paul F. Sowman
- Macquarie University, School of Psychological Sciences, North Ryde 2112, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Ashley Stewart
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
| | - Xincheng Ye
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
| | - Judy D. Zhu
- Macquarie University, School of Psychological Sciences, North Ryde 2112, Australia
| | - Matthew E. Hughes
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Aswin Narayanan
- The University of Queensland, Centre for Advanced Imaging, St Lucia 4072, Australia
| | - Steffen Bollmann
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia 4072, Australia
| |
Collapse
|
20
|
Mittal D, Mease R, Kuner T, Flor H, Kuner R, Andoh J. Data management strategy for a collaborative research center. Gigascience 2022; 12:giad049. [PMID: 37401720 PMCID: PMC10318494 DOI: 10.1093/gigascience/giad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/20/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
The importance of effective research data management (RDM) strategies to support the generation of Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience data grows with each advance in data acquisition techniques and research methods. To maximize the impact of diverse research strategies, multidisciplinary, large-scale neuroscience research consortia face a number of unsolved challenges in RDM. While open science principles are largely accepted, it is practically difficult for researchers to prioritize RDM over other pressing demands. The implementation of a coherent, executable RDM plan for consortia spanning animal, human, and clinical studies is becoming increasingly challenging. Here, we present an RDM strategy implemented for the Heidelberg Collaborative Research Consortium. Our consortium combines basic and clinical research in diverse populations (animals and humans) and produces highly heterogeneous and multimodal research data (e.g., neurophysiology, neuroimaging, genetics, behavior). We present a concrete strategy for initiating early-stage RDM and FAIR data generation for large-scale collaborative research consortia, with a focus on sustainable solutions that incentivize incremental RDM while respecting research-specific requirements.
Collapse
Affiliation(s)
- Deepti Mittal
- Institute of Pharmacology, Heidelberg University, 69120 Heidelberg, Germany
| | - Rebecca Mease
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Kuner
- Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jamila Andoh
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| |
Collapse
|
21
|
Appukuttan S, Davison AP. Reproducing and quantitatively validating a biologically-constrained point-neuron model of CA1 pyramidal cells. Front Integr Neurosci 2022; 16:1041423. [DOI: 10.3389/fnint.2022.1041423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
We have attempted to reproduce a biologically-constrained point-neuron model of CA1 pyramidal cells. The original models, developed for the Brian simulator, captured the frequency-current profiles of both strongly and weakly adapting cells. As part of the present study, we reproduced the model for different simulators, namely Brian2 and NEURON. The reproductions were attempted independent of the original Brian implementation, relying solely on the published article. The different implementations were quantitatively validated, to evaluate how well they mirror the original model. Additional tests were developed and packaged into a test suite, that helped further characterize and compare various aspects of these models, beyond the scope of the original study. Overall, we were able to reproduce the core features of the model, but observed certain unaccountable discrepancies. We demonstrate an approach for undertaking these evaluations, using the SciUnit framework, that allows for such quantitative validations of scientific models, to verify their accurate replication and/or reproductions. All resources employed and developed in our study have been publicly shared via the EBRAINS Live Papers platform.
Collapse
|
22
|
Bijari K, Zoubi Y, Ascoli GA. Assisted neuroscience knowledge extraction via machine learning applied to neural reconstruction metadata on NeuroMorpho.Org. Brain Inform 2022; 9:26. [PMID: 36344713 PMCID: PMC9640520 DOI: 10.1186/s40708-022-00174-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
The amount of unstructured text produced daily in scholarly journals is enormous. Systematically identifying, sorting, and structuring information from such a volume of data is increasingly challenging for researchers even in delimited domains. Named entity recognition is a fundamental natural language processing tool that can be trained to annotate, structure, and extract information from scientific articles. Here, we harness state-of-the-art machine learning techniques and develop a smart neuroscience metadata suggestion system accessible by both humans through a user-friendly graphical interface and machines via Application Programming Interface. We demonstrate a practical application to the public repository of neural reconstructions, NeuroMorpho.Org, thus expanding the existing web-based metadata management system currently in use. Quantitative analysis indicates that the suggestion system reduces personnel labor by at least 50%. Moreover, our results show that larger training datasets with the same software architecture are unlikely to further improve performance without ad-hoc heuristics due to intrinsic ambiguities in neuroscience nomenclature. All components of this project are released open source for community enhancement and extensions to additional applications.
Collapse
Affiliation(s)
- Kayvan Bijari
- College of Science, Neuroscience Program, George Mason University, Fairfax, USA
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, USA
| | - Yasmeen Zoubi
- College of Science, Neuroscience Program, George Mason University, Fairfax, USA
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, USA
| | - Giorgio A. Ascoli
- College of Science, Neuroscience Program, George Mason University, Fairfax, USA
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, USA
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, USA
| |
Collapse
|
23
|
Redolfi A, Archetti D, De Francesco S, Crema C, Tagliavini F, Lodi R, Ghidoni R, Gandini Wheeler-Kingshott CAM, Alexander DC, D'Angelo E. Italian, European, and international neuroinformatics efforts: An overview. Eur J Neurosci 2022. [PMID: 36310103 DOI: 10.1111/ejn.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
Neuroinformatics is a research field that focusses on software tools capable of identifying, analysing, modelling, organising and sharing multiscale neuroscience data. Neuroinformatics has exploded in the last two decades with the emergence of the Big Data phenomenon, characterised by the so-called 3Vs (volume, velocity and variety), which provided neuroscientists with an improved ability to acquire and process data faster and more cheaply thanks to technical improvements in clinical, genomic and radiological technologies. This situation has led to a 'data deluge', as neuroscientists can routinely collect more study data in a few days than they could in a year just a decade ago. To address this phenomenon, several neuroimaging-focussed neuroinformatics platforms have emerged, funded by national or transnational agencies, with the following goals: (i) development of tools for archiving and organising analytical data (XNAT, REDCap and LabKey); (ii) development of data-driven models evolving from reductionist approaches to multidimensional models (RIN, IVN, HBD, EuroPOND, E-DADS and GAAIN BRAIN); and (iii) development of e-infrastructures to provide sufficient computational power and storage resources (neuGRID, HBP-EBRAINS, LONI and CONP). Although the scenario is still fragmented, there are technological and economical attempts at both national and international levels to introduce high standards for open and Findable, Accessible, Interoperable and Reusable (FAIR) neuroscience worldwide.
Collapse
Affiliation(s)
- Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Damiano Archetti
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia De Francesco
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudio Crema
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizio Tagliavini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaele Lodi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Center, Department of Neuroinflammation, UCL Institute of Neurology, London, UK.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London, UK.,Department of Computer Science, University College London, London, UK
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|