1
|
Bosch R, Mora A, Cuellar C, Ferrer G, Gorlatov S, Nomdedéu J, Montserrat E, Sierra J, Rai KR, Chiorazzi N, Moreno C. FcγRIIb-BCR coligation inhibits BCR signaling in chronic lymphocytic leukemia. Haematologica 2021; 106:306-309. [PMID: 32336680 PMCID: PMC7776347 DOI: 10.3324/haematol.2019.245795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rosa Bosch
- Laboratory of Oncology/Hematology and Transplantation, IIB Sant Pau, Barcelona
| | - Alba Mora
- Laboratory of Oncology/Hematology and Transplantation, IIB Sant Pau, Barcelona
| | - Carolina Cuellar
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research
| | | | - Josep Nomdedéu
- Laboratory of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona
| | | | - Jorge Sierra
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona
| | - Kanti R Rai
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research
| | - Carol Moreno
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona
| |
Collapse
|
2
|
Tahir M, Arshid S, Fontes B, S. Castro M, Sidoli S, Schwämmle V, Luz IS, Roepstorff P, Fontes W. Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. Int J Mol Sci 2020; 21:ijms21165799. [PMID: 32823483 PMCID: PMC7460855 DOI: 10.3390/ijms21165799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Intestinal ischemia reperfusion injury (iIRI) is a severe clinical condition presenting high morbidity and mortality worldwide. Some of the systemic consequences of IRI can be prevented by applying ischemic preconditioning (IPC), a series of short ischemia/reperfusion events preceding the major ischemia. Although neutrophils are key players in the pathophysiology of ischemic injuries, neither the dysregulation presented by these cells in iIRI nor the protective effect of iIPC have their regulation mechanisms fully understood. Protein phosphorylation, as well as the regulation of the respective phosphatases and kinases are responsible for regulating a large number of cellular functions in the inflammatory response. Moreover, in previous work we found hydrolases and transferases to be modulated in iIR and iIPC, suggesting the possible involvement of phosphatases and kinases in the process. Therefore, in the present study, we analyzed the phosphoproteome of neutrophils from rats submitted to mesenteric ischemia and reperfusion, either submitted or not to IPC, compared to quiescent controls and sham laparotomy. Proteomic analysis was performed by multi-step enrichment of phosphopeptides, isobaric labeling, and LC-MS/MS analysis. Bioinformatics was used to determine phosphosite and phosphopeptide abundance and clustering, as well as kinases and phosphatases sites and domains. We found that most of the phosphorylation-regulated proteins are involved in apoptosis and migration, and most of the regulatory kinases belong to CAMK and CMGC families. An interesting finding revealed groups of proteins that are modulated by iIR, but such modulation can be prevented by iIPC. Among the regulated proteins related to the iIPC protective effect, Vamp8 and Inpp5d/Ship are discussed as possible candidates for control of the iIR damage.
Collapse
Affiliation(s)
- Muhammad Tahir
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Samina Arshid
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Belchor Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Mariana S. Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Isabelle S. Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Correspondence:
| |
Collapse
|
3
|
Georgescu MT, Moorehead PC, Liu T, Dumont J, Scott DW, Hough C, Lillicrap D. Recombinant Factor VIII Fc Inhibits B Cell Activation via Engagement of the FcγRIIB Receptor. Front Immunol 2020; 11:138. [PMID: 32117285 PMCID: PMC7025534 DOI: 10.3389/fimmu.2020.00138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023] Open
Abstract
The development of neutralizing antibodies (inhibitors) against factor VIII (FVIII) is a major complication of hemophilia A treatment. The sole clinical therapy to restore FVIII tolerance in patients with inhibitors remains immune tolerance induction (ITI) which is expensive, difficult to administer and not always successful. Although not fully understood, the mechanism of ITI is thought to rely on inhibition of FVIII-specific B cells (1). Its efficacy might therefore be improved through more aggressive B cell suppression. FcγRIIB is an inhibitory Fc receptor that down-regulates B cell signaling when cross-linked with the B cell receptor (BCR). We sought to investigate if recombinant FVIII Fc (rFVIIIFc), an Fc fusion molecule composed of FVIII and the Fc region of immunoglobulin G1 (IgG1) (2), is able to inhibit B cell activation more readily than FVIII. rFVIIIFc was able to bind FVIII-exposed and naïve B cells from hemophilia A mice as well as a FVIII-specific murine B cell hybridoma line (413 cells). An anti-FcγRIIB antibody and FVIII inhibited binding, suggesting that rFVIIIFc is able to interact with both FcγRIIB and the BCR. Furthermore, incubation of B cells from FVIII-exposed mice and 413 cells with rFVIIIFc resulted in increased phosphorylation of SH-2 containing inositol 5-phosphatase (SHIP) when compared to FVIII. B cells from FVIII-exposed hemophilia A mice also exhibited decreased extracellular signal-regulated kinase (ERK) phosphorylation when exposed to rFVIIIFc. These differences were absent in B cells from naïve, non-FVIII exposed hemophilic mice suggesting an antigen-dependent effect. Finally, rFVIIIFc was able to inhibit B cell calcium flux induced by anti-Ig F(ab)2. Our results therefore indicate that rFVIIIFc is able to crosslink FcγRIIB and the BCR of FVIII-specific B cells, causing inhibitory signaling in these cells.
Collapse
Affiliation(s)
- Maria T Georgescu
- Clinical and Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Paul C Moorehead
- Janeway Children's Health and Rehabilitation Centre, St. John's, NL, Canada.,Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Tongyao Liu
- Bioverativ, a Sanofi Company, Cambridge, MA, United States
| | | | - David W Scott
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Christine Hough
- Clinical and Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David Lillicrap
- Clinical and Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
4
|
Zare N, Haghjooy Javanmard SH, Mehrzad V, Eskandari N, Andalib AR. Effect of Plasma-Derived Exosomes of Refractory/Relapsed or Responsive Patients with Diffuse Large B-Cell Lymphoma on Natural Killer Cells Functions. CELL JOURNAL 2019; 22:40-54. [PMID: 31606965 PMCID: PMC6791076 DOI: 10.22074/cellj.2020.6550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Objective The purpose of this study was to investigate effect of plasma-derived exosomes of refractory/relapsed or
responsive diffuse large B-cell lymphoma (DLBCL) patients on natural killer (NK) cell functions.
Materials and Methods In this cross-sectional and experimental study, NK cells were purified from responsive patients
(n=10) or refractory/relapsed patients (n=12) and healthy donors (n=12). NK cells were treated with plasma-derived
exosomes of responsive or refractory/relapsed patients. We examined the expression levels of hsa-miR-155-5p, hsa-
let-7g-5p, INPP5D (SHIP-1) and SOCS-1 in NK cells quantitative reverse transcription-polymerase chain reaction
(qRT-PCR). Percentages of NK cells expressing CD69, NKG2D and CD16, NK cell cytotoxicity and NK cell proliferation
(using flow-cytometry) as well as interferon-gamma (IFN-γ) level in the supernatant of NK cells using ELISA were also
investigated.
Results We observed an increased level of hsa-miR-155-5p and a decreased level of SOCS-1 in NK cells
treated with exosomes compared to untreated NK cell in healthy donors and DLBCL patients. An increase in
hsa-miR-155-5p level was associated with an increased level of IFN-γ in healthy donors. The decreased levels
of hsa-let-7g-5p were observed in NK cells treated with exosomes in comparison with untreated NK cells in
DLBCL patients (P<0.05). There was no significant difference in the percentage of CD69+NK cells and NKG2D+
NK cells in the absence or presence of exosomes of DLBCL patients in each group. Furthermore, we observed
significant reduction of NK cell proliferation in DLBCL patients and healthy donors in the presence of exosomes
of refractory/relapsed patients (P<0.05). A significant decrease was observed in cytotoxicity of NK cell in patients
with DLBCL treated with exosomes of responsive patients.
Conclusion Our findings demonstrated adverse effect of plasma-derived exosomes of DLBCL patients on some functions
of NK cell. It was also determined that low NK cell count might be associated with impaired response to R-CHOP and an
increased recurrence risk of cancer.
Collapse
Affiliation(s)
- Nasrin Zare
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S Haghayegh Haghjooy Javanmard
- Department of Physiology, School of Medicine and Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Valiollah Mehrzad
- Department of Hematology and Medical Oncology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.Electronic Address:
| | - Ali Reza Andalib
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Chen A, Yang D, Xuan X, Miller H, Luo X, Yu J, Yang G, Wang H, Liu C. Dock5 controls the peripheral B cell differentiation via regulating BCR signaling and actin reorganization. Cell Immunol 2019; 337:15-21. [PMID: 30661670 DOI: 10.1016/j.cellimm.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/25/2018] [Accepted: 01/10/2019] [Indexed: 01/29/2023]
Abstract
As an atypical guanine nucleotide exchange factor (GEF), Dock5 has been extensively studied in cellular functions. However, the role of Dock5 on B-cell immunity still remain elusive. In this study, we generated a Dock5 knockout mouse model to study the effect of Dock5 deficiency on B cell development, differentiation and BCR signaling. We found that the absence of Dock5 leads to a moderate effect on B cell development in the bone marrow and reduces follicular (FO) and marginal zone (MZ) B cells. Mechanistically, the key positive upstream B-cell receptor (BCR) signaling molecules, CD19 and Brutons tyrosine kinase (Btk), whose activation determines the fate of FO and MZ B cells, is reduced in Dock5 KO B cells upon antigenic stimulation by using total internal reflection fluorscence microscopy (TIRF) and immunoblot. Interestingly we found that the cellular filamentous actin (F-actin), also decreased in Dock5 KO B cells upon stimulation, which, in turn, offers feedback to BCR signaling. Our study has unveiled that Dock5 regulates the peripheral B cell differentiation via controlling the CD19-Btk signaling axis as well as actin reorganization.
Collapse
Affiliation(s)
- Anwei Chen
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China; Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Di Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Xingtian Xuan
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Xiaoyan Luo
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hua Wang
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Chaohong Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China; Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Ribeiro MFP, Pais KC, de Jesus BSM, Fernandez-Lafuente R, Freire DMG, Manoel EA, Simas ABC. Lipase Regioselective O
-Acetylations of a myo
-Inositol Derivative: Efficient Desymmetrization of 1,3-Di-O
-benzyl-myo
-inositol. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcela F. P. Ribeiro
- Departamento de Bioquímica; Instituto de Química (IQ); Universidade Federal do Rio de Janeiro (UFRJ); CT, bloco A, 5 21941-909 Rio de Janeiro Brazil
| | - Karla C. Pais
- Instituto de Pesquisas de Produtos Naturais (IPPN); Universidade Federal do Rio de Janeiro (UFRJ); CCS, bloco H 21941-902 Rio de Janeiro Brazil
| | - Barbara S. M. de Jesus
- Instituto de Pesquisas de Produtos Naturais (IPPN); Universidade Federal do Rio de Janeiro (UFRJ); CCS, bloco H 21941-902 Rio de Janeiro Brazil
| | | | - Denise M. G. Freire
- Departamento de Bioquímica; Instituto de Química (IQ); Universidade Federal do Rio de Janeiro (UFRJ); CT, bloco A, 5 21941-909 Rio de Janeiro Brazil
| | - Evelin A. Manoel
- Departamento de Bioquímica; Instituto de Química (IQ); Universidade Federal do Rio de Janeiro (UFRJ); CT, bloco A, 5 21941-909 Rio de Janeiro Brazil
- Departamento de Biotecnologia Farmacêutica; Faculdade de Farmácia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Alessandro B. C. Simas
- Instituto de Pesquisas de Produtos Naturais (IPPN); Universidade Federal do Rio de Janeiro (UFRJ); CCS, bloco H 21941-902 Rio de Janeiro Brazil
| |
Collapse
|
7
|
Dobranowski P, Sly LM. SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol 2018; 103:1053-1064. [PMID: 29345374 DOI: 10.1002/jlb.3mir0817-340r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
SHIP is a hematopoietic-specific lipid phosphatase that dephosphorylates PI3K-generated PI(3,4,5)-trisphosphate. SHIP removes this second messenger from the cell membrane blunting PI3K activity in immune cells. Thus, SHIP negatively regulates mast cell activation downstream of multiple receptors. SHIP has been referred to as the "gatekeeper" of mast cell degranulation as loss of SHIP dramatically increases degranulation or permits degranulation in response to normally inert stimuli. SHIP also negatively regulates Mϕ activation, including both pro-inflammatory cytokine production downstream of pattern recognition receptors, and alternative Mϕ activation by the type II cytokines, IL-4, and IL-13. In the SHIP-deficient (SHIP-/- ) mouse, increased mast cell and Mϕ activation leads to spontaneous inflammatory pathology at mucosal sites, which is characterized by high levels of type II inflammatory cytokines. SHIP-/- mast cells and Mϕs have both been implicated in driving inflammation in the SHIP-/- mouse lung. SHIP-/- Mϕs drive Crohn's disease-like intestinal inflammation and fibrosis, which is dependent on heightened responses to innate immune stimuli generating IL-1, and IL-4 inducing abundant arginase I. Both lung and gut pathology translate to human disease as low SHIP levels and activity have been associated with allergy and with Crohn's disease in people. In this review, we summarize seminal literature and recent advances that provide insight into SHIP's role in mast cells and Mϕs, the contribution of these cell types to pathology in the SHIP-/- mouse, and describe how these findings translate to human disease and potential therapies.
Collapse
Affiliation(s)
- Peter Dobranowski
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Schieffer KM, Choi CS, Emrich S, Harris L, Deiling S, Karamchandani DM, Salzberg A, Kawasawa YI, Yochum GS, Koltun WA. RNA-seq implicates deregulation of the immune system in the pathogenesis of diverticulitis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G277-G284. [PMID: 28619727 PMCID: PMC6146301 DOI: 10.1152/ajpgi.00136.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/31/2023]
Abstract
Individuals with diverticula or outpouchings of the colonic mucosa and submucosa through the colonic wall have diverticulosis, which is usually asymptomatic. In 10-25% of individuals, the diverticula become inflamed, resulting in diverticulitis. Very little is known about the pathophysiology or gene regulatory pathways involved in the development of diverticulitis. To identify these pathways, we deep sequenced RNAs isolated from full-thickness sections of sigmoid colon from diverticulitis patients and control individuals. Specifically for diverticulitis cases, we analyzed tissue adjacent to areas affected by chronic disease. Since the tissue was collected during elective sigmoid resection, the disease was in a quiescent state. A comparison of differentially expressed genes found that gene ontology (GO) pathways associated with the immune response were upregulated in diverticulitis patients compared with nondiverticulosis controls. Next, weighted gene coexpression network analysis was performed to identify the interaction among coexpressed genes. This analysis revealed RASAL3, SASH3, PTPRC, and INPP5D as hub genes within the brown module eigengene, which highly correlated (r = 0.67, P = 0.0004) with diverticulitis. Additionally, we identified elevated expression of downstream interacting genes. In summary, transcripts associated with the immune response were upregulated in adjacent tissue from the sigmoid colons of chronic, recurrent diverticulitis patients. Further elucidating the genetic or epigenetic mechanisms associated with these alterations can help identify those at risk for chronic disease and may assist in clinical decision management.NEW & NOTEWORTHY By using an unbiased approach to analyze transcripts expressed in unaffected colonic tissues adjacent to those affected by chronic diverticulitis, our study implicates that a defect in the immune response may be involved in the development of the disease. This finding expands on the current data that suggest the pathophysiology of diverticulitis is mediated by dietary, age, and obesity-related factors. Further characterizing the immunologic differences in diverticulitis may better inform clinical decision-making.
Collapse
Affiliation(s)
- Kathleen M Schieffer
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christine S Choi
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Scott Emrich
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Leonard Harris
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sue Deiling
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Dipti M Karamchandani
- Division of Anatomic Pathology, Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Anna Salzberg
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Yuka I Kawasawa
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - Gregory S Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Walter A Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania;
| |
Collapse
|
9
|
Huang L, Zhang Y, Xu C, Gu X, Niu L, Wang J, Sun X, Bai X, Xuan X, Li Q, Shi C, Yu B, Miller H, Yang G, Westerberg LS, Liu W, Song W, Zhao X, Liu C. Rictor positively regulates B cell receptor signaling by modulating actin reorganization via ezrin. PLoS Biol 2017; 15:e2001750. [PMID: 28821013 PMCID: PMC5562439 DOI: 10.1371/journal.pbio.2001750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/25/2017] [Indexed: 01/13/2023] Open
Abstract
As the central hub of the metabolism machinery, the mammalian target of rapamycin complex 2 (mTORC2) has been well studied in lymphocytes. As an obligatory component of mTORC2, the role of Rictor in T cells is well established. However, the role of Rictor in B cells still remains elusive. Rictor is involved in B cell development, especially the peripheral development. However, the role of Rictor on B cell receptor (BCR) signaling as well as the underlying cellular and molecular mechanism is still unknown. This study used B cell-specfic Rictor knockout (KO) mice to investigate how Rictor regulates BCR signaling. We found that the key positive and negative BCR signaling molecules, phosphorylated Brutons tyrosine kinase (pBtk) and phosphorylated SH2-containing inositol phosphatase (pSHIP), are reduced and enhanced, respectively, in Rictor KO B cells. This suggests that Rictor positively regulates the early events of BCR signaling. We found that the cellular filamentous actin (F-actin) is drastically increased in Rictor KO B cells after BCR stimulation through dysregulating the dephosphorylation of ezrin. The high actin-ezrin intensity area restricts the lateral movement of BCRs upon stimulation, consequently reducing BCR clustering and BCR signaling. The reduction in the initiation of BCR signaling caused by actin alteration is associated with a decreased humoral immune response in Rictor KO mice. The inhibition of actin polymerization with latrunculin in Rictor KO B cells rescues the defects of BCR signaling and B cell differentiation. Overall, our study provides a new pathway linking cell metablism to BCR activation, in which Rictor regulates BCR signaling via actin reorganization.
Collapse
Affiliation(s)
- Lu Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjie Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chenguang Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaomei Gu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Linlin Niu
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhi Wang
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Sun
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Bai
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xingtian Xuan
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qubei Li
- Children’s Hospital Respiratory Center of Chongqing Medical University, Chongqing, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Stage E, Duran T, Risacher SL, Goukasian N, Do TM, West JD, Wilhalme H, Nho K, Phillips M, Elashoff D, Saykin AJ, Apostolova LG. The effect of the top 20 Alzheimer disease risk genes on gray-matter density and FDG PET brain metabolism. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 5:53-66. [PMID: 28054028 PMCID: PMC5198883 DOI: 10.1016/j.dadm.2016.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We analyzed the effects of the top 20 Alzheimer disease (AD) risk genes on gray-matter density (GMD) and metabolism. METHODS We ran stepwise linear regression analysis using posterior cingulate hypometabolism and medial temporal GMD as outcomes and all risk variants as predictors while controlling for age, gender, and APOE ε4 genotype. We explored the results in 3D using Statistical Parametric Mapping 8. RESULTS Significant predictors of brain GMD were SLC24A4/RIN3 in the pooled and mild cognitive impairment (MCI); ZCWPW1 in the MCI; and ABCA7, EPHA1, and INPP5D in the AD groups. Significant predictors of hypometabolism were EPHA1 in the pooled, and SLC24A4/RIN3, NME8, and CD2AP in the normal control group. DISCUSSION Multiple variants showed associations with GMD and brain metabolism. For most genes, the effects were limited to specific stages of the cognitive continuum, indicating that the genetic influences on brain metabolism and GMD in AD are complex and stage dependent.
Collapse
Affiliation(s)
- Eddie Stage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tugce Duran
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Naira Goukasian
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Triet M. Do
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John D. West
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holly Wilhalme
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meredith Phillips
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Indiana University Network Science Institute, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Abstract
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA Promega Corporation, Madison, WI, USA
| |
Collapse
|
12
|
Kurochkina N, Guha U, Lu Z. SH Domains and Epidermal Growth Factor Receptors. SH DOMAINS 2015:133-158. [DOI: 10.1007/978-3-319-20098-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Khalaj M, Tavakkoli M, Stranahan AW, Park CY. Pathogenic microRNA's in myeloid malignancies. Front Genet 2014; 5:361. [PMID: 25477897 PMCID: PMC4237136 DOI: 10.3389/fgene.2014.00361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/27/2014] [Indexed: 12/21/2022] Open
Abstract
Recent studies have significantly improved our understanding of the role microRNAs (miRNAs) play in regulating normal hematopoiesis. miRNAs are critical for maintaining hematopoietic stem cell function and the development of mature progeny. Thus, perhaps it is not surprising that miRNAs serve as oncogenes and tumor suppressors in hematologic malignancies arising from hematopoietic stem and progenitor cells, such as the myeloid disorders. A number of studies have extensively documented the widespread dysregulation of miRNA expression in human acute myeloid leukemia (AML), inspiring numerous explorations of the functional role of miRNAs in myeloid leukemogenesis. While these investigations have confirmed that a large number of miRNAs exhibit altered expression in AML, only a small fraction has been confirmed as functional mediators of AML development or maintenance. Herein, we summarize the miRNAs for which strong experimental evidence supports their functional roles in AML pathogenesis. We also discuss the implications of these studies on the development of miRNA-directed therapies in AML.
Collapse
Affiliation(s)
- Mona Khalaj
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Montreh Tavakkoli
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Alec W Stranahan
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Christopher Y Park
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA ; Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center NY, USA
| |
Collapse
|
14
|
Actin-binding protein 1 links B-cell antigen receptors to negative signaling pathways. Proc Natl Acad Sci U S A 2014; 111:9881-6. [PMID: 24958882 DOI: 10.1073/pnas.1321971111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prolonged or uncontrolled B-cell receptor (BCR) signaling is associated with autoimmunity. We previously demonstrated a role for actin in BCR signal attenuation. This study reveals that actin-binding protein 1 (Abp1/HIP-55/SH3P7) is a negative regulator of BCR signaling and links actin to negative regulatory pathways of the BCR. In both Abp1(-/-) and bone marrow chimeric mice, in which only B cells lack Abp1 expression, the number of spontaneous germinal center and marginal zone B cells and the level of autoantibody are significantly increased. Serum levels of T-independent antibody responses and total antibody are elevated, whereas T-dependent antibody responses are markedly reduced and fail to undergo affinity maturation. Upon activation, surface BCR clustering is enhanced and B-cell contraction delayed in Abp1(-/-) B cells, concurrent with slow but persistent increases in F-actin at BCR signalosomes. Furthermore, BCR signaling is enhanced in Abp1(-/-) B cells compared with wild-type B cells, including Ca(2+) flux and phosphorylation of B-cell linker protein, the mitogen-activated protein kinase kinase MEK1/2, and ERK, coinciding with reductions in recruitment of the inhibitory signaling molecules hematopoietic progenitor kinase 1 and SH2-containing inositol 5-phosphatase to BCR signalosomes. Our results indicate that Abp1 negatively regulates BCR signaling by coupling actin remodeling to B-cell contraction and activation of inhibitory signaling molecules, which contributes to the regulation of peripheral B-cell development and antibody responses.
Collapse
|
15
|
Song W, Liu C, Seeley-Fallen MK, Miller H, Ketchum C, Upadhyaya A. Actin-mediated feedback loops in B-cell receptor signaling. Immunol Rev 2014; 256:177-89. [PMID: 24117821 DOI: 10.1111/imr.12113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Upon recognizing cognate antigen, B cells mobilize multiple cellular apparatuses to propagate an optimal response. Antigen binding is transduced into cytoplasmic signaling events through B-cell antigen receptor (BCR)-based signalosomes at the B-cell surface. BCR signalosomes are dynamic and transient and are subsequently endocytosed for antigen processing. The function of BCR signalosomes is one of the determining factors for the fate of B cells: clonal expansion, anergy, or apoptosis. Accumulating evidence underscores the importance of the actin cytoskeleton in B-cell activation. We have begun to appreciate the role of actin dynamics in regulating BCR-mediated tonic signaling and the formation of BCR signalosomes. Our recent studies reveal an additional function of the actin cytoskeleton in the downregulation of BCR signaling, consequently contributing to the generation and maintenance of B-cell self-tolerance. In this review, we discuss how actin remodels its organization and dynamics in close coordination with BCR signaling and how actin remodeling in turn amplifies the activation and subsequent downregulation process of BCR signaling, providing vital feedback for optimal BCR activation.
Collapse
Affiliation(s)
- Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | | | | | | | |
Collapse
|
16
|
Jin HM, Kim TJ, Choi JH, Kim MJ, Cho YN, Nam KI, Kee SJ, Moon JB, Choi SY, Park DJ, Lee SS, Park YW. MicroRNA-155 as a proinflammatory regulator via SHIP-1 down-regulation in acute gouty arthritis. Arthritis Res Ther 2014; 16:R88. [PMID: 24708712 PMCID: PMC4060367 DOI: 10.1186/ar4531] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 03/25/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Gout is characterized by episodes of intense joint inflammation in response to intra-articular monosodium urate monohydrate (MSU) crystals. miR-155 is crucial for the proinflammatory activation of human myeloid cells and antigen-driven inflammatory arthritis. The functional role of miR-155 in acute gouty arthritis has not been defined. Therefore, the aim of this study was to examine the role of miR-155 in pathogenesis of acute gouty arthritis. Methods Samples from 14 patients with acute gouty arthritis and 10 healthy controls (HCs) were obtained. Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were cultured in vitro with MSU crystals, and gene expression (human miR-155 and SHIP-1) were assessed by real-time PCR. THP-1 cells were stimulated by MSU crystals and/or miR-155 transfection and then subjected to Western blot analysis. Levels of human tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β in cell culture supernatants were measured by Luminex. Immunohistochemistry was performed on formalin-fixed gout tissues with anti–SHIP-1 antibody. A C57BL/6 J male mouse model of gout was used to analyze the expressions of miR-155, SHIP-1, and inflammatory cytokines. Results The samples from gouty arthritis were highly enriched in miR-155, with levels of expression being higher than those found in PBMC from HC. Treatment of the cells with MSU crystals strongly induced miR-155. In addition, overexpression of miR-155 in the cells decreased levels of SHIP-1 and promoted production of MSU-induced proinflammatory cytokines, such as TNF-α and IL-1β. Consistent with in vitro observations, miR-155 expression was elevated in the mouse model of gout. The production of inflammatory cytokines was markedly increased in MSU crystal induced peritonitis mice. Conclusions Overexpression of miR-155 in the gouty SFMC leads to suppress SHIP-1 levels and enhance proinflammatory cytokines.
Collapse
|
17
|
Rosenthal SL, Kamboh MI. Late-Onset Alzheimer's Disease Genes and the Potentially Implicated Pathways. CURRENT GENETIC MEDICINE REPORTS 2014; 2:85-101. [PMID: 24829845 PMCID: PMC4013444 DOI: 10.1007/s40142-014-0034-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is a devastating neurodegenerative disease with no effective treatment or cure. In addition to APOE, recent large genome-wide association studies have identified variation in over 20 loci that contribute to disease risk: CR1, BIN1, INPP5D, MEF2C, TREM2, CD2AP, HLA-DRB1/HLA-DRB5, EPHA1, NME8, ZCWPW1, CLU, PTK2B, PICALM, SORL1, CELF1, MS4A4/MS4A6E, SLC24A4/RIN3,FERMT2, CD33, ABCA7, CASS4. In addition, rare variants associated with LOAD have also been identified in APP, TREM2 and PLD3 genes. Previous research has identified inflammatory response, lipid metabolism and homeostasis, and endocytosis as the likely modes through which these gene products participate in Alzheimer's disease. Despite the clustering of these genes across a few common pathways, many of their roles in disease pathogenesis have yet to be determined. In this review, we examine both general and postulated disease functions of these genes and consider a comprehensive view of their potential roles in LOAD risk.
Collapse
Affiliation(s)
- Samantha L. Rosenthal
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
18
|
Wu R, Li Y, Guo Z, Gong J, Zhu W, Li N, Li J. Triptolide ameliorates ileocolonic anastomosis inflammation in IL-10 deficient mice by mechanism involving suppression of miR-155/SHIP-1 signaling pathway. Mol Immunol 2013; 56:340-346. [PMID: 23911388 DOI: 10.1016/j.molimm.2013.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 02/08/2023]
Abstract
The model of ileocaecal resection (ICR) in IL-10(-/-) mice provides us a new way to investigate the postsurgical inflammation of intestinal anastomosis. As an extracts isolated from Tripterygium wilfordii Hook F (TWHF), triptolide has been used to treat Crohn's disease for years. Several mechanisms have been interpreted in previous studies. MiR-155, which can be inhibited by triptolide, has a powerful ability in regulating immune cells. As a target of miR-155, SHIP-1 is a potent inhibitor of many inflammatory pathways. MiR-155/SHIP-1 pathway plays an important role in the inflammatory conditions. We hypothesized that triptolide would ameliorate the postsurgical intestine inflammation especially the anastomosis inflammation by inhibition of miR-155/SHIP-1 pathway. Histological examination, as well as examination of calprotectin and MPO, demonstrated triptolide significantly reduced the severity of postsurgical intestine inflammation. Our data also suggested triptolide could suppress miR-155/SHIP-1 signaling pathway and attenuated expression of inflammatory cytokines in IL-10(-/-) mice performed ICR.
Collapse
Affiliation(s)
- Rong Wu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Liu C, Bai X, Wu J, Sharma S, Upadhyaya A, Dahlberg CIM, Westerberg LS, Snapper SB, Zhao X, Song W. N-wasp is essential for the negative regulation of B cell receptor signaling. PLoS Biol 2013; 11:e1001704. [PMID: 24223520 PMCID: PMC3818172 DOI: 10.1371/journal.pbio.1001704] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR) signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP), which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antibodies, Antinuclear/blood
- Antigens/immunology
- Autoantibodies/blood
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cells, Cultured
- Humans
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Protein Transport
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Wiskott-Aldrich Syndrome/immunology
- Wiskott-Aldrich Syndrome/metabolism
- Wiskott-Aldrich Syndrome Protein/metabolism
- Wiskott-Aldrich Syndrome Protein, Neuronal/physiology
Collapse
Affiliation(s)
- Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Xiaoming Bai
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junfeng Wu
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shruti Sharma
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, Maryland, United States of America
| | - Carin I. M. Dahlberg
- Translational Immunology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lisa S. Westerberg
- Translational Immunology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Scott B. Snapper
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaodong Zhao
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Packard TA, Cambier JC. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000PRIME REPORTS 2013; 5:40. [PMID: 24167721 PMCID: PMC3790562 DOI: 10.12703/p5-40] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
B lymphocytes and their differentiated daughters are charged with responding to the myriad pathogens in our environment and production of protective antibodies. A sample of the protective antibody produced by each clone is utilized as a component of the cell's antigen receptor (BCR). Transmembrane signals generated upon antigen binding to this receptor provide the primary directive for the cell's subsequent response. In this report, we discuss recent progress and current controversy regarding B cell receptor signal initiation, transduction and regulation.
Collapse
Affiliation(s)
- Thomas A. Packard
- Integrated Department of Immunology, University of Colorado School of Medicine & National Jewish Health1400 Jackson St, Denver, CO 80206
| | - John C. Cambier
- Integrated Department of Immunology, University of Colorado School of Medicine & National Jewish Health1400 Jackson St, Denver, CO 80206
| |
Collapse
|
21
|
Srivastava N, Sudan R, Kerr WG. Role of inositol poly-phosphatases and their targets in T cell biology. Front Immunol 2013; 4:288. [PMID: 24069021 PMCID: PMC3779868 DOI: 10.3389/fimmu.2013.00288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
T lymphocytes play a critical role in host defense in all anatomical sites including mucosal surfaces. This not only includes the effector arm of the immune system, but also regulation of immune responses in order to prevent autoimmunity. Genetic targeting of PI3K isoforms suggests that generation of PI(3,4,5)P3 by PI3K plays a critical role in promoting effector T cell responses. Consequently, the 5'- and 3'-inositol poly-phosphatases SHIP1, SHIP2, and phosphatase and tensin homolog capable of targeting PI(3,4,5)P3 are potential genetic determinants of T cell effector functions in vivo. In addition, the 5'-inositol poly-phosphatases SHIP1 and 2 can shunt PI(3,4,5)P3 to the rare but potent signaling phosphoinositide species PI(3,4)P2 and thus these SHIP1/2, and the INPP4A/B enzymes that deplete PI(3,4)P2 may have precise roles in T cell biology to amplify or inhibit effectors of PI3K signaling that are selectively recruited to and activated by PI(3,4)P2. Here we summarize recent genetic and chemical evidence that indicates the inositol poly-phosphatases have important roles in both the effector and regulatory functions of the T cell compartment. In addition, we will discuss future genetic studies that might be undertaken to further elaborate the role of these enzymes in T cell biology as well as potential pharmaceutical manipulation of these enzymes for therapeutic purposes in disease settings where T cell function is a key in vivo target.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Microbiology and Immunology, SUNY Upstate Medical University , Syracuse, NY , USA
| | | | | |
Collapse
|
22
|
Abstract
Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | | | | |
Collapse
|
23
|
Song W, Liu C, Upadhyaya A. The pivotal position of the actin cytoskeleton in the initiation and regulation of B cell receptor activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:569-78. [PMID: 23886914 DOI: 10.1016/j.bbamem.2013.07.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 01/14/2023]
Abstract
The actin cytoskeleton is a dynamic cellular network known for its function in cell morphology and motility. Recent studies using high resolution and real time imaging techniques have revealed that actin plays a critical role in signal transduction, primarily by modulating the dynamics and organization of membrane-associated receptors and signaling molecules. This review summarizes what we have learned so far about a regulatory niche of the actin cytoskeleton in the signal transduction of the B cell receptor (BCR). The activation of the BCR is initiated and regulated by a close coordination between the dynamics of surface BCRs and the cortical actin network. The actin cytoskeleton is involved in regulating the signaling threshold of the BCR to antigenic stimulation, the kinetics and amplification of BCR signaling activities, and the timing and kinetics of signaling downregulation. Actin exerts its regulatory function by controlling the kinetics, magnitude, subcellular location, and nature of BCR clustering and BCR signaling complex formation at every stage of signaling. The cortical actin network is remodeled by initial detachment from the plasma membrane, disassembly and subsequent reassembly into new actin structures in response to antigenic stimulation. Signaling responsive actin regulators translate BCR stimulatory and inhibitory signals into a series of actin remodeling events, which enhance signaling activation and down-regulation by modulating the lateral mobility and spatial organization of surface BCR. The mechanistic understanding of actin-mediated signaling regulation in B cells will help us explore B cell-specific manipulations of the actin cytoskeleton as treatments for B cell-mediated autoimmunity and B cell cancer. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA.
| | - Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Arpita Upadhyaya
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
24
|
Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 2012; 120:4609-20. [DOI: 10.1182/blood-2012-05-428896] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
The pathogenesis of classical Hodgkin lymphoma (cHL), the most common lymphoma in the young, is still enigmatic, largely because its Hodgkin and Reed-Sternberg (HRS) tumor cells are rare in the involved lymph node and therefore difficult to analyze. Here, by overcoming this technical challenge and performing, for the first time, a genome-wide transcriptional analysis of microdissected HRS cells compared with other B-cell lymphomas, cHL lines, and normal B-cell subsets, we show that they differ extensively from the usually studied cHL cell lines, that the lost B-cell identity of cHLs is not linked to the acquisition of a plasma cell-like gene expression program, and that Epstein-Barr virus infection of HRS cells has a minor transcriptional influence on the established cHL clone. Moreover, although cHL appears a distinct lymphoma entity overall, HRS cells of its histologic subtypes diverged in their similarity to other related lymphomas. Unexpectedly, we identified 2 molecular subgroups of cHL associated with differential strengths of the transcription factor activity of the NOTCH1, MYC, and IRF4 proto-oncogenes. Finally, HRS cells display deregulated expression of several genes potentially highly relevant to lymphoma pathogenesis, including silencing of the apoptosis-inducer BIK and of INPP5D, an inhibitor of the PI3K-driven oncogenic pathway.
Collapse
|
25
|
Foster JG, Blunt MD, Carter E, Ward SG. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 2012; 64:1027-54. [PMID: 23023033 DOI: 10.1124/pr.110.004051] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phosphoinositide 3-kinase/mammalian target of rapamycin/protein kinase B (PI3K/mTOR/Akt) signaling pathway is central to a plethora of cellular mechanisms in a wide variety of cells including leukocytes. Perturbation of this signaling cascade is implicated in inflammatory and autoimmune disorders as well as hematological malignancies. Proteins within the PI3K/mTOR/Akt pathway therefore represent attractive targets for therapeutic intervention. There has been a remarkable evolution of PI3K inhibitors in the past 20 years from the early chemical tool compounds to drugs that are showing promise as anticancer agents in clinical trials. The use of animal models and pharmacological tools has expanded our knowledge about the contribution of individual class I PI3K isoforms to immune cell function. In addition, class II and III PI3K isoforms are emerging as nonredundant regulators of immune cell signaling revealing potentially novel targets for disease treatment. Further complexity is added to the PI3K/mTOR/Akt pathway by a number of novel signaling inputs and feedback mechanisms. These can present either caveats or opportunities for novel drug targets. Here, we consider recent advances in 1) our understanding of the contribution of individual PI3K isoforms to immune cell function and their relevance to inflammatory/autoimmune diseases as well as lymphoma and 2) development of small molecules with which to inhibit the PI3K pathway. We also consider whether manipulating other proximal elements of the PI3K signaling cascade (such as class II and III PI3Ks or lipid phosphatases) are likely to be successful in fighting off different immune diseases.
Collapse
Affiliation(s)
- John G Foster
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
26
|
Brauer H, Strauss J, Wegner W, Müller-Tidow C, Horstmann M, Jücker M. Leukemia-associated mutations in SHIP1 inhibit its enzymatic activity, interaction with the GM-CSF receptor and Grb2, and its ability to inactivate PI3K/AKT signaling. Cell Signal 2012; 24:2095-101. [PMID: 22820502 DOI: 10.1016/j.cellsig.2012.07.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/28/2012] [Accepted: 07/14/2012] [Indexed: 12/16/2022]
Abstract
The inositol 5-phosphatase SHIP1 is a negative regulator of the PI3K/AKT pathway, which is constitutively activated in 50-70% of acute myeloid leukemias (AML). Ten different missense mutations in SHIP1 have been described in 3% of AML patients suggesting a functional role of SHIP1 in AML. Here, we report the identification of two new SHIP1 mutations T162P and R225W that were detected in 2 and 1 out of 96 AML patients, respectively. The functional analysis of all 12 AML-associated SHIP1 mutations, one ALL-associated SHIP1 mutation (Q1076X) and a missense SNP (H1168Y) revealed that two mutations i.e. Y643H and P1039S abrogated the ability of SHIP1 to reduce constitutive PI3K/AKT signaling in Jurkat cells. The loss of function of SHIP1 mutant Y643H which is localized in the inositol phosphatase domain was due to a reduction of the specific activity by 84%. Because all other SHIP1 mutants had a normal enzymatic activity, we assumed that these SHIP1 mutants may be functionally impaired due to a loss of interaction with plasma membrane receptors or adapter proteins. In agreement with this model, we found that the SHIP1 mutant F28L located in the FLVR motif of the SH2 domain was incapable of binding tyrosine-phosphorylated proteins including the GM-CSF receptor and that the SHIP1 mutant Q1076X lost its ability to bind to the C-terminal SH3 domain of the adapter protein Grb2. In addition, SHIP1 mutant P1039S which does not reduce PI3K/AKT signaling anymore is located in a PXXP SH3 domain consensus binding motif suggesting that mutation of the conserved proline residue interferes with binding of SHIP1 to a so far unidentified SH3 domain containing protein. In summary, our data indicate that SHIP1 mutations detected in human leukemia patients impair the negative regulatory function of SHIP1 on PI3K/AKT signaling in leukemia cells either directly by reduced enzymatic activity or indirectly by disturbed protein interaction with tyrosine-phosphorylated membrane receptors or adapter proteins. These results further support a functional role of SHIP1 as tumor suppressor protein in the pathogenesis of AML.
Collapse
Affiliation(s)
- Helena Brauer
- Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
GC–MS-based metabolic profiling reveals metabolic changes in anaphylaxis animal models. Anal Bioanal Chem 2012; 404:887-93. [DOI: 10.1007/s00216-012-6129-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 01/05/2023]
|
28
|
Pevec B, Radulovic Pevec M, Stipic Markovic A, Batista I, Rijavec M, Silar M, Kosnik M, Korosec P. House dust mite-specific immunotherapy alters the basal expression of T regulatory and FcεRI pathway genes. Int Arch Allergy Immunol 2012; 159:287-96. [PMID: 22722803 DOI: 10.1159/000338289] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/14/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells and IgE-mediated signaling pathways could play important roles in the induction of allergen tolerance during house dust mite-specific subcutaneous immunotherapy (HDM-SCIT). Our aim was to compare the basal expression levels of Treg, T helper 1 (Th1) and Th2 transcription factors and components involved in IgE-mediated signaling in healthy subjects with those in HDM-allergic patients both untreated and successfully treated with HDM-SCIT. METHODS Thirty-nine HDM-allergic patients who completed a 3- to 5-year course of mite extract SCIT, 20 mite-allergic controls and 25 healthy controls participated in this study. The efficacy of SCIT was monitored using skin-prick tests (SPTs), total immunoglobulin E (tIgE), specific IgE (sIgE), sIgG(4), nasal challenge and visual analog scale (VAS) scores at several time points. The mRNA levels of forkhead box protein 3 (FOXP3), T-BET, GATA-3, FcεRI, spleen tyrosine kinase (Syk), phosphatidylinositol 3 kinase (PI3K) and SH2 domain-containing inositol phosphatase (SHIP) were quantified by real-time RT-PCR using nonstimulated whole blood samples. RESULTS Decreased wheal sizes and VAS scores, negative challenges and increased sIgG(4) levels indicated that SCIT was effective in the treated patients. Basal expression levels of FOXP3 and GATA-3 decreased and T-BET levels increased in both treated patients and in healthy controls compared to untreated patients. The IgE-mediated pathway kinases Syk and PI3K exhibited reduced expression, whereas SHIP phosphatase levels were elevated in both treated patients and healthy controls relative to untreated patients. The expression levels of FcεRI were not significantly altered. CONCLUSIONS Immunotherapy using HDM extracts results in a modification of the basal expression levels of several IgE-related signaling factors and induces a highly significant upregulation of Th1-response and downregulation of Th2-response transcription factors. Interestingly, this therapy also appears to reduce the basal expression of FOXP3.
Collapse
Affiliation(s)
- Branko Pevec
- Clinical Hospital Sveti Duh, Zagreb, Croatia. branko.pevec @ gmail.com
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Edimo WE, Janssens V, Waelkens E, Erneux C. Reversible Ser/Thr SHIP phosphorylation: a new paradigm in phosphoinositide signalling?: Targeting of SHIP1/2 phosphatases may be controlled by phosphorylation on Ser and Thr residues. Bioessays 2012; 34:634-42. [PMID: 22641604 DOI: 10.1002/bies.201100195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphoinositide (PI) phosphatases such as the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been shown to interact with SHIP2, a putative mechanism for reversing SHIP2 Ser/Thr phosphorylation can be anticipated. PI phosphatases are potential target molecules in human diseases, particularly, but not exclusively, in cancer and diabetes. Therefore, this novel regulatory mechanism deserves further attention in the hunt for discovering novel or complementary therapeutic strategies. This mechanism may be more broadly involved in regulating PI signalling in the case of synaptojanin1 or the phosphatase, tensin homolog, deleted on chromosome TEN.
Collapse
Affiliation(s)
- William's Elong Edimo
- Institut de Recherche Interdisciplinaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | | | | | | |
Collapse
|
30
|
Mondal S, Subramanian KK, Sakai J, Bajrami B, Luo HR. Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion. Mol Biol Cell 2012; 23:1219-30. [PMID: 22323291 PMCID: PMC3315799 DOI: 10.1091/mbc.e11-10-0889] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SHIP1 regulates PtdIns(3,4,5)P3 production in response to cell adhesion. Loss of SHIP1 leads to elevated PtdIns(3,4,5)P3 and Akt activation upon adhesion. SHIP1−/− neutrophils lose polarity upon cell adhesion. They are extremely adherent, which impairs chemotaxis. Chemotaxis in SHIP1−/− neutrophils can be rescued by reducing cell adhesion. The second messenger phosphatidylinositol(3,4,5)P3 (PtdIns(3,4,5)P3) is formed by stimulation of various receptors, including G protein–coupled receptors and integrins. The lipid phosphatases PTEN and SHIP1 are critical in regulating the level of PtdIns(3,4,5)P3 during chemotaxis. Observations that loss of PTEN had minor and loss of SHIP1 resulted in a severe chemotaxis defect in neutrophils led to the belief that SHIP1 rather than PTEN acts as a predominant phospholipid phosphatase in establishing a PtdIns(3,4,5)P3 compass. In this study, we show that SHIP1 regulates PtdIns(3,4,5)P3 production in response to cell adhesion and plays a limited role when cells are in suspension. SHIP1−/− neutrophils lose their polarity upon cell adhesion and are extremely adherent, which impairs chemotaxis. However, chemotaxis can be restored by reducing adhesion. Loss of SHIP1 elevates Akt activation following cell adhesion due to increased PtdIns(3,4,5)P3 production. From our observations, we conclude that SHIP1 prevents formation of top-down PtdIns(3,4,5)P3 polarity to facilitate proper cell attachment and detachment during chemotaxis.
Collapse
Affiliation(s)
- Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Leng RX, Pan HF, Qin WZ, Chen GM, Ye DQ. Role of microRNA-155 in autoimmunity. Cytokine Growth Factor Rev 2011; 22:141-7. [PMID: 21703910 DOI: 10.1016/j.cytogfr.2011.05.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) have recently emerged as a major class of gene expression regulators linked to most biological functions. MiR-155 is encoded within a region known as B cell integration cluster (Bic) gene, identified originally as a frequent integration site for the avian leukosis virus. Disregulation of endogenous miR-155 has been implicated in the pathogenesis of human cancers. Recently, aberrant expression of miR-155 was observed in many autoimmune conditions, including rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic lupus erythematosus (SLE). Moreover, functional analysis demonstrated that miR-155 has powerful regulatory potential in a wide variety of immune cells through targeting specific mRNAs. Since pathogenic immune cells play a pivotal role in pathogenesis of human autoimmune diseases, miR-155 might be a versatile therapeutic target. This review will discuss the current understandings for the role of miR-155 in autoimmunity.
Collapse
Affiliation(s)
- Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, PR China
| | | | | | | | | |
Collapse
|
32
|
MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci U S A 2011; 108:11193-8. [PMID: 21690378 DOI: 10.1073/pnas.1019536108] [Citation(s) in RCA: 456] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MicroRNA (miRNA) species (miR) regulate mRNA translation and are implicated as mediators of disease pathology via coordinated regulation of molecular effector pathways. Unraveling miR disease-related activities will facilitate future therapeutic interventions. miR-155 recently has been identified with critical immune regulatory functions. Although detected in articular tissues, the functional role of miR-155 in inflammatory arthritis has not been defined. We report here that miR-155 is up-regulated in synovial membrane and synovial fluid (SF) macrophages from patients with rheumatoid arthritis (RA). The increased expression of miR-155 in SF CD14(+) cells was associated with lower expression of the miR-155 target, Src homology 2-containing inositol phosphatase-1 (SHIP-1), an inhibitor of inflammation. Similarly, SHIP-1 expression was decreased in CD68(+) cells in the synovial lining layer in RA patients as compared with osteoarthritis patients. Overexpression of miR-155 in PB CD14(+) cells led to down-regulation of SHIP-1 and an increase in the production of proinflammatory cytokines. Conversely, inhibition of miR-155 in RA synovial CD14(+) cells reduced TNF-α production. Finally, miR-155-deficient mice are resistant to collagen-induced arthritis, with profound suppression of antigen-specific Th17 cell and autoantibody responses and markedly reduced articular inflammation. Our data therefore identify a role of miR-155 in clinical and experimental arthritis and suggest that miR-155 may be an intriguing therapeutic target.
Collapse
|
33
|
Liu C, Miller H, Hui KL, Grooman B, Bolland S, Upadhyaya A, Song W. A balance of Bruton's tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. THE JOURNAL OF IMMUNOLOGY 2011; 187:230-9. [PMID: 21622861 DOI: 10.4049/jimmunol.1100157] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of the BCR, which initiates B cell activation, is triggered by Ag-induced self-aggregation and clustering of receptors at the cell surface. Although Ag-induced actin reorganization is known to be involved in BCR clustering in response to membrane-associated Ag, the underlying mechanism that links actin reorganization to BCR activation remains unknown. In this study, we show that both the stimulatory Bruton's tyrosine kinase (Btk) and the inhibitory SHIP-1 are required for efficient BCR self-aggregation. In Btk-deficient B cells, the magnitude of BCR aggregation into clusters and B cell spreading in response to an Ag-tethered lipid bilayer is drastically reduced, compared with BCR aggregation observed in wild-type B cells. In SHIP-1(-/-) B cells, although surface BCRs aggregate into microclusters, the centripetal movement and growth of BCR clusters are inhibited, and B cell spreading is increased. The persistent BCR microclusters in SHIP-1(-/-) B cells exhibit higher levels of signaling than merged BCR clusters. In contrast to the inhibition of actin remodeling in Btk-deficient B cells, actin polymerization, F-actin accumulation, and Wiskott-Aldrich symptom protein phosphorylation are enhanced in SHIP-1(-/-) B cells in a Btk-dependent manner. Thus, a balance between positive and negative signaling regulates the spatiotemporal organization of the BCR at the cell surface by controlling actin remodeling, which potentially regulates the signal transduction of the BCR. This study suggests a novel feedback loop between BCR signaling and the actin cytoskeleton.
Collapse
Affiliation(s)
- Chaohong Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
A byproduct of the largely stochastic generation of a diverse B-cell specificity repertoire is production of cells that recognize autoantigens. Indeed, recent studies indicate that more than half of the primary repertoire consists of autoreactive B cells that must be silenced to prevent autoimmunity. While this silencing can occur by multiple mechanisms, it appears that most autoreactive B cells are silenced by anergy, wherein they populate peripheral lymphoid organs and continue to express unoccupied antigen receptors yet are unresponsive to antigen stimulation. Here we review molecular mechanisms that appear operative in maintaining the antigen unresponsiveness of anergic B cells. In addition, we present new data indicating that the failure of anergic B cells to mobilize calcium in response to antigen stimulation is not mediated by inactivation of stromal interacting molecule 1, a critical intermediary in intracellular store depletion-induced calcium influx.
Collapse
Affiliation(s)
- Yuval Yarkoni
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO, USA
| | | | | |
Collapse
|
35
|
Hamilton MJ, Ho VW, Kuroda E, Ruschmann J, Antignano F, Lam V, Krystal G. Role of SHIP in cancer. Exp Hematol 2010; 39:2-13. [PMID: 21056081 DOI: 10.1016/j.exphem.2010.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 09/30/2010] [Accepted: 11/02/2010] [Indexed: 12/19/2022]
Abstract
The SH2-containing inositol-5'-phosphatase, SHIP (or SHIP1), is a hematopoietic-restricted phosphatidylinositide phosphatase that translocates to the plasma membrane after extracellular stimulation and hydrolyzes the phosphatidylinositol-3-kinase-generated second messenger PI-3,4,5-P(3) to PI-3,4-P(2). As a result, SHIP dampens down PI-3,4,5-P(3)-mediated signaling and represses the proliferation, differentiation, survival, activation, and migration of hematopoietic cells. There are multiple lines of evidence suggesting that SHIP may act as a tumor suppressor during leukemogenesis and lymphomagenesis. Because of its ability to skew macrophage progenitors toward M1 macrophages and naïve T cells toward T helper 1 and T helper 17 cells, SHIP may play a critical role in activating the immune system to eradicate solid tumors. In this review, we will discuss the role of SHIP in hematopoietic cells and its therapeutic potential in terms of suppressing leukemias and lymphomas and manipulating the immune system to combat cancer.
Collapse
Affiliation(s)
- Melisa J Hamilton
- The Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
There are numerous studies that suggest multiple links between the cellular phosphoinositide system and cancer. As key roles in cancer have been established for PI3K and PTEN - enzymes that regulate the levels of phosphatidylinositol-3,4,5-trisphosphate - compounds targeting this pathway are entering the clinic at a rapid pace. Several other phosphoinositide-modifying enzymes, including phosphoinositide kinases, phosphatases and phospholipase C enzymes, have been implicated in the generation and progression of tumours. Studies of these enzymes are providing new insights into the mechanisms and the extent of their involvement in cancer, highlighting new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Tom D Bunney
- The Institute of Cancer Research, Section for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
37
|
Parry RV, Harris SJ, Ward SG. Fine tuning T lymphocytes: A role for the lipid phosphatase SHIP-1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:592-7. [DOI: 10.1016/j.bbapap.2009.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 11/30/2022]
|
38
|
Abstract
MicroRNA-155 (miR-155) has emerged as a critical regulator of immune cell development, function, and disease. However, the mechanistic basis for its impact on the hematopoietic system remains largely unresolved. Because miRNAs function by repressing specific mRNAs through direct 3'UTR interactions, we have searched for targets of miR-155 implicated in the regulation of hematopoiesis. In the present study, we identify Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP1) as a direct target of miR-155, and, using gain and loss of function approaches, show that miR-155 represses SHIP1 through direct 3'UTR interactions that have been highly conserved throughout evolution. Repression of endogenous SHIP1 by miR-155 occurred following sustained over-expression of miR-155 in hematopoietic cells both in vitro and in vivo, and resulted in increased activation of the kinase Akt during the cellular response to LPS. Furthermore, SHIP1 was also repressed by physiologically regulated miR-155, which was observed in LPS-treated WT versus miR-155(-/-) primary macrophages. In mice, specific knockdown of SHIP1 in the hematopoietic system following retroviral delivery of a miR-155-formatted siRNA against SHIP1 resulted in a myeloproliferative disorder, with striking similarities to that observed in miR-155-expressing mice. Our study unveils a molecular link between miR-155 and SHIP1 and provides evidence that repression of SHIP1 is an important component of miR-155 biology.
Collapse
|