1
|
Alonso‐Eiras J, Anton IM. Multifaceted role of the actin-binding protein WIP: Promotor and inhibitor of tumor progression and dissemination. Cytoskeleton (Hoboken) 2025; 82:186-196. [PMID: 39329352 PMCID: PMC11904860 DOI: 10.1002/cm.21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Cancer cells depend on actin cytoskeleton reorganization to achieve hallmark malignant functions including abnormal activation, proliferation, migration and invasiveness. (Neural)-Wiskott-Aldrich Syndrome protein ((N-)WASP) binds actin and forms a complex with the WASP-interacting protein (WIP), which plays a critical role in regulating the actin cytoskeleton, through (N)-WASP-dependent and independent functions. Mutations in the WIP gene (WIPF1) lead to severe early onset immunodeficiency in humans and severe autoimmunity and shortened lifespan in mice. This review covers the available evidence about the physiological role of WIP in different tissues and its contribution to human disease, focusing on cancer. In solid tumors overexpression of WIP has mostly been associated with tumor initiation, progression and dissemination through matrix degradation by invadopodia, while a suppressive function has been shown for WIP in certain hematological cancers. Interestingly, a minority of studies suggest a protective role for WIP in specific tumor contexts. These data support the need for further research to fully understand the mechanisms underlying WIP's diverse functions in health and disease and raise important questions for future work.
Collapse
Affiliation(s)
- Jorge Alonso‐Eiras
- Ciencias de la Salud, Escuela de Másteres OficialesUniversidad Rey Juan CarlosMadridSpain
| | - Ines M. Anton
- Departamento de Biología Molecular y CelularCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| |
Collapse
|
2
|
Olasard P, Suksri P, Taneerat C, Rungrassamee W, Sathapondecha P. In silico identification and functional study of long non-coding RNA involved in acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus infection in white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109768. [PMID: 39013534 DOI: 10.1016/j.fsi.2024.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by toxin-producing Vibrio parahaemolyticus (VpAHPND) has severely affected shrimp production. Long non-coding RNA (lncRNA), a regulatory non-coding RNA, which can play important function in shrimp disease responses. This study aimed to identify and investigate the role of lncRNA involved in VpAHPND infection in Pacific white shrimp, Litopenaeus vannamei. From a total of 368,736 de novo assembled transcripts, 67,559 were identified as putative lncRNAs, and only 72 putative lncRNAs showed differential expression between VpAHPND-infected and normal shrimp. The six candidate lncRNAs were validated for their expression profiles during VpAHPND infection and tissue distribution using RT-qPCR. The role of lnc2088 in response to VpAHPND infection was investigated through RNA interference. The result indicated that the suppression of lnc2088 expression led to an increase in shrimp mortality after VpAHPND infection. To explore the set of genes involved in lnc2088 knockdown, RNA sequencing was performed. A total of 275 differentially expressed transcripts were identified in the hepatopancreas of lnc2088 knockdown shrimp. The expression profiles of five candidate metabolic and immune-related genes were validated in lnc2088 knockdown and VpAHPND-infected shrimp. The result showed that the expression of ChiNAG was significantly increased, while that of NCBP1, WIPF2, and NFKB1 was significantly downregulated in ds2088-injected shrimp. Additionally, the expression of NFKB1, NCBP1 and WIPF2 was significantly increased, whereas that of ChiNAG and CUL5 were significantly decreased after infection with VpAHPND. Our work identified putative lncRNA profiles in L. vannamei in response to VpAHPND infection and investigated the role of lncRNA in shrimp immunity.
Collapse
Affiliation(s)
- Praewrung Olasard
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Phassorn Suksri
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chanikan Taneerat
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wanilada Rungrassamee
- Biosensing and Bioprospectiing Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
3
|
Sasahara Y, Wada T, Morio T. Impairment of cytokine production following immunological synapse formation in patients with Wiskott-Aldrich syndrome and leukocyte adhesion deficiency type 1. Clin Immunol 2022; 242:109098. [PMID: 35973636 DOI: 10.1016/j.clim.2022.109098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
T cells following immunological synapse (IS) formation with antigen-presenting cells produce multiple cytokines through T cell receptor, integrin, and costimulatory signaling. Here, we investigated the cytokine profiles following IS formation in response to staphylococcal superantigen exposure in three adolescent patients with classical Wiskott-Aldrich syndrome (WAS) and in one patient with leukocyte adhesion deficiency (LAD) type 1. All WAS patients showed lower Th1 and Th2-skewed cytokine production; similar results were observed in the flow cytometric analysis of IFNγ- and IL-4-producing T cells. The patient with LAD type 1 with somatic mosaicism in 2% of CD8+ T cells showed lower Th1 and Th2 cytokine production than healthy controls. The patients with WAS were susceptible to infections and atopic manifestations, and the patients with LAD type 1 showed cold abscess on their skin, our findings using patient samples provide clinical insights into the mechanisms underlying immunodeficiency related to the symptoms of each disease.
Collapse
Affiliation(s)
- Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Sokolik CG, Qassem N, Chill JH. The Disordered Cellular Multi-Tasker WIP and Its Protein-Protein Interactions: A Structural View. Biomolecules 2020; 10:biom10071084. [PMID: 32708183 PMCID: PMC7407642 DOI: 10.3390/biom10071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/21/2023] Open
Abstract
WASp-interacting protein (WIP), a regulator of actin cytoskeleton assembly and remodeling, is a cellular multi-tasker and a key member of a network of protein-protein interactions, with significant impact on health and disease. Here, we attempt to complement the well-established understanding of WIP function from cell biology studies, summarized in several reviews, with a structural description of WIP interactions, highlighting works that present a molecular view of WIP's protein-protein interactions. This provides a deeper understanding of the mechanisms by which WIP mediates its biological functions. The fully disordered WIP also serves as an intriguing example of how intrinsically disordered proteins (IDPs) exert their function. WIP consists of consecutive small functional domains and motifs that interact with a host of cellular partners, with a striking preponderance of proline-rich motif capable of interactions with several well-recognized binding partners; indeed, over 30% of the WIP primary structure are proline residues. We focus on the binding motifs and binding interfaces of three important WIP segments, the actin-binding N-terminal domain, the central domain that binds SH3 domains of various interaction partners, and the WASp-binding C-terminal domain. Beyond the obvious importance of a more fundamental understanding of the biology of this central cellular player, this approach carries an immediate and highly beneficial effect on drug-design efforts targeting WIP and its binding partners. These factors make the value of such structural studies, challenging as they are, readily apparent.
Collapse
|
5
|
Weeber F, Becher A, Seibold T, Seufferlein T, Eiseler T. Concerted regulation of actin polymerization during constitutive secretion by cortactin and PKD2. J Cell Sci 2019; 132:jcs.232355. [PMID: 31727638 DOI: 10.1242/jcs.232355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
Constitutive secretion from the trans-Golgi-network (TGN) is facilitated by a concerted regulation of vesicle biogenesis and fission processes. The protein kinase D family (PKD) has been previously described to enhance vesicle fission by modifying the lipid environment. PKD also phosphorylates the actin regulatory protein cortactin at S298 to impair synergistic actin polymerization. We here report additional functions for PKD2 (also known as PRKD2) and cortactin in the regulation of actin polymerization during the fission of transport carriers from the TGN. Phosphorylation of cortactin at S298 impairs the interaction between WIP (also known as WIPF1) and cortactin. WIP stabilizes the autoinhibited conformation of N-WASP (also known as WASL). This leads to an inhibition of synergistic Arp2/3-complex-dependent actin polymerization at the TGN. PKD2 activity at the TGN is controlled by active CDC42-GTP which directly activates N-WASP, inhibits PKD2 and shifts the balance to non-S298-phosphorylated cortactin, which can in turn sequester WIP from N-WASP. Consequently, synergistic actin polymerization at the TGN and constitutive secretion are enhanced.
Collapse
Affiliation(s)
- Florian Weeber
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Alexander Becher
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Tanja Seibold
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| |
Collapse
|
6
|
Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol 2019; 133:149-162. [DOI: 10.1016/j.critrevonc.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
|
7
|
Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med 2018; 25:130-140. [PMID: 30510251 DOI: 10.1038/s41591-018-0262-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/25/2018] [Indexed: 01/10/2023]
Abstract
In T lymphocytes, the Wiskott-Aldrich Syndrome protein (WASP) and WASP-interacting-protein (WIP) regulate T cell antigen receptor (TCR) signaling, but their role in lymphoma is largely unknown. Here we show that the expression of WASP and WIP is frequently low or absent in anaplastic large cell lymphoma (ALCL) compared to other T cell lymphomas. In anaplastic lymphoma kinase-positive (ALK+) ALCL, WASP and WIP expression is regulated by ALK oncogenic activity via its downstream mediators STAT3 and C/EBP-β. ALK+ lymphomas were accelerated in WASP- and WIP-deficient mice. In the absence of WASP, active GTP-bound CDC42 was increased and the genetic deletion of one CDC42 allele was sufficient to impair lymphoma growth. WASP-deficient lymphoma showed increased mitogen-activated protein kinase (MAPK) pathway activation that could be exploited as a therapeutic vulnerability. Our findings demonstrate that WASP and WIP are tumor suppressors in T cell lymphoma and suggest that MAP-kinase kinase (MEK) inhibitors combined with ALK inhibitors could achieve a more potent therapeutic effect in ALK+ ALCL.
Collapse
|
8
|
Gaud G, Roncagalli R, Chaoui K, Bernard I, Familiades J, Colacios C, Kassem S, Monsarrat B, Burlet-Schiltz O, de Peredo AG, Malissen B, Saoudi A. The costimulatory molecule CD226 signals through VAV1 to amplify TCR signals and promote IL-17 production by CD4 + T cells. Sci Signal 2018; 11:11/538/eaar3083. [PMID: 29991650 DOI: 10.1126/scisignal.aar3083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation of T cells requires the guanine nucleotide exchange factor VAV1. Using mice in which a tag for affinity purification was attached to endogenous VAV1 molecules, we analyzed by quantitative mass spectrometry the signaling complex that assembles around activated VAV1. Fifty VAV1-binding partners were identified, most of which had not been previously reported to participate in VAV1 signaling. Among these was CD226, a costimulatory molecule of immune cells. Engagement of CD226 induced the tyrosine phosphorylation of VAV1 and synergized with T cell receptor (TCR) signals to specifically enhance the production of interleukin-17 (IL-17) by primary human CD4+ T cells. Moreover, co-engagement of the TCR and a risk variant of CD226 that is associated with autoimmunity (rs763361) further enhanced VAV1 activation and IL-17 production. Thus, our study reveals that a VAV1-based, synergistic cross-talk exists between the TCR and CD226 during both physiological and pathological T cell responses and provides a rational basis for targeting CD226 for the management of autoimmune diseases.
Collapse
Affiliation(s)
- Guillaume Gaud
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Inserm, CNRS, 13288 Marseille, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Isabelle Bernard
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Julien Familiades
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Céline Colacios
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Sahar Kassem
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Bernard Monsarrat
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Inserm, CNRS, 13288 Marseille, France.,Centre d'Immunophénomique, Aix-Marseille Université, Inserm, CNRS, 13288 Marseille, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France.
| |
Collapse
|
9
|
WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma. Cancers (Basel) 2018; 10:cancers10060191. [PMID: 29890731 PMCID: PMC6024887 DOI: 10.3390/cancers10060191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Wild-type p53 (wtp53) is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53) is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein), correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC)-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44), prominin-1 (CD133), yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.
Collapse
|
10
|
Kabanova A, Zurli V, Baldari CT. Signals Controlling Lytic Granule Polarization at the Cytotoxic Immune Synapse. Front Immunol 2018. [PMID: 29515593 PMCID: PMC5826174 DOI: 10.3389/fimmu.2018.00307] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cytotoxic immunity relies on specialized effector T cells, the cytotoxic T cells, which are endowed with specialized cytolytic machinery that permits them to induce death of their targets. Upon recognition of a target cell, cytotoxic T cells form a lytic immune synapse and by docking the microtubule-organizing center at the synaptic membrane get prepared to deliver a lethal hit of enzymes contained in lytic granules. New insights suggest that the directionality of lytic granule trafficking along the microtubules represents a fine means to tune the functional outcome of the encounter between a T cell and its target. Thus, mechanisms regulating the directionality of granule transport may have a major impact in settings characterized by evasion from the cytotoxic response, such as chronic infection and cancer. Here, we review our current knowledge on the signaling pathways implicated in the polarized trafficking at the immune synapse of cytotoxic T cells, complementing it with information on the regulation of this process in natural killer cells. Furthermore, we highlight some of the parameters which we consider critical in studying the polarized trafficking of lytic granules, including the use of freshly isolated cytotoxic T cells, and discuss some of the major open questions.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Vanessa Zurli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
11
|
Deng S, Azevedo M, Baylies M. Acting on identity: Myoblast fusion and the formation of the syncytial muscle fiber. Semin Cell Dev Biol 2017; 72:45-55. [PMID: 29101004 DOI: 10.1016/j.semcdb.2017.10.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
Abstract
The study of Drosophila muscle development dates back to the middle of the last century. Since that time, Drosophila has proved to be an ideal system for studying muscle development, differentiation, function, and disease. As in humans, Drosophila muscle forms via a series of conserved steps, starting with muscle specification, myoblast fusion, attachment to tendon cells, interactions with motorneurons, and sarcomere and myofibril formation. The genes and mechanisms required for these processes share striking similarities to those found in humans. The highly tractable genetic system and imaging approaches available in Drosophila allow for an efficient interrogation of muscle biology and for application of what we learn to other systems. In this article, we review our current understanding of muscle development in Drosophila, with a focus on myoblast fusion, the process responsible for the generation of syncytial muscle cells. We also compare and contrast those genes required for fusion in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Su Deng
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, United States
| | - Mafalda Azevedo
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, United States; Graduate Program in Basic and Applied Biology (GABBA), Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Mary Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, United States.
| |
Collapse
|
12
|
Al-Mousa H, Hawwari A, Al-Ghonaium A, Al-Saud B, Al-Dhekri H, Al-Muhsen S, Elshorbagi S, Dasouki M, El-Baik L, Alseraihy A, Ayas M, Arnaout R. Hematopoietic stem cell transplantation corrects WIP deficiency. J Allergy Clin Immunol 2016; 139:1039-1040.e4. [PMID: 27742395 DOI: 10.1016/j.jaci.2016.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Hamoud Al-Mousa
- Pediatric Allergy and Clinical Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Abbas Hawwari
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdulaziz Al-Ghonaium
- Pediatric Allergy and Clinical Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bandar Al-Saud
- Pediatric Allergy and Clinical Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hasan Al-Dhekri
- Pediatric Allergy and Clinical Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saleh Al-Muhsen
- Pediatric Allergy and Clinical Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; King Khaled University Hospital, Pediatric Allergy and Clinical Immunology, Riyadh, Saudi Arabia
| | - Sahar Elshorbagi
- Pediatric Allergy and Clinical Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lina El-Baik
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Alseraihy
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mouhab Ayas
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rand Arnaout
- Pediatric Allergy and Clinical Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Janssen E, Tohme M, Hedayat M, Leick M, Kumari S, Ramesh N, Massaad MJ, Ullas S, Azcutia V, Goodnow CC, Randall KL, Qiao Q, Wu H, Al-Herz W, Cox D, Hartwig J, Irvine DJ, Luscinskas FW, Geha RS. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J Clin Invest 2016; 126:3837-3851. [PMID: 27599296 DOI: 10.1172/jci85774] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/28/2016] [Indexed: 11/17/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is associated with mutations in the WAS protein (WASp), which plays a critical role in the initiation of T cell receptor-driven (TCR-driven) actin polymerization. The clinical phenotype of WAS includes susceptibility to infection, allergy, autoimmunity, and malignancy and overlaps with the symptoms of dedicator of cytokinesis 8 (DOCK8) deficiency, suggesting that the 2 syndromes share common pathogenic mechanisms. Here, we demonstrated that the WASp-interacting protein (WIP) bridges DOCK8 to WASp and actin in T cells. We determined that the guanine nucleotide exchange factor activity of DOCK8 is essential for the integrity of the subcortical actin cytoskeleton as well as for TCR-driven WASp activation, F-actin assembly, immune synapse formation, actin foci formation, mechanotransduction, T cell transendothelial migration, and homing to lymph nodes, all of which also depend on WASp. These results indicate that DOCK8 and WASp are in the same signaling pathway that links TCRs to the actin cytoskeleton in TCR-driven actin assembly. Further, they provide an explanation for similarities in the clinical phenotypes of WAS and DOCK8 deficiency.
Collapse
|
14
|
Liu X, Asokan SB, Bear JE, Haugh JM. Quantitative analysis of B-lymphocyte migration directed by CXCL13. Integr Biol (Camb) 2016; 8:894-903. [PMID: 27477203 DOI: 10.1039/c6ib00128a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
B-lymphocyte migration, directed by chemokine gradients, is essential for homing to sites of antigen presentation. B cells move rapidly, exhibiting amoeboid morphology like other leukocytes, yet quantitative studies addressing B-cell migration are currently lacking relative to neutrophils, macrophages, and T cells. Here, we used total internal reflection fluorescence (TIRF) microscopy to characterize the changes in shape (morphodynamics) of primary, murine B cells as they migrated on surfaces with adsorbed chemokine, CXCL13, and the adhesive ligand, ICAM-1. B cells exhibited frequent, spontaneous dilation and shrinking events at the sides of the leading membrane edge, a phenomenon that was predictive of turning versus directional persistence. To characterize directed B-cell migration, a microfluidic device was implemented to generate gradients of adsorbed CXCL13 gradients. Haptotaxis assays revealed a modest yet consistently positive bias of the cell's persistent random walk behavior towards CXCL13 gradients. Quantification of tactic fidelity showed that bias is optimized by steeper gradients without excessive midpoint density of adsorbed chemokine. Under these conditions, B-cell migration is more persistent when the direction of migration is better aligned with the gradient.
Collapse
Affiliation(s)
- Xiaji Liu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, 911 Partners Way, Raleigh, NC 27695-7905, USA.
| | | | | | | |
Collapse
|
15
|
Sasahara Y. WASP-WIP complex in the molecular pathogenesis of Wiskott-Aldrich syndrome. Pediatr Int 2016; 58:4-7. [PMID: 26331277 DOI: 10.1111/ped.12819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/18/2015] [Accepted: 08/27/2015] [Indexed: 11/27/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease characterized by recurrent infection, thrombocytopenia, and eczema. The gene responsible for X-linked WAS encodes the Wiskott-Aldrich syndrome protein (WASP), which is expressed in hematopoietic cells and which regulates T-cell activation and cytoskeletal reorganization in T-cell receptor (TCR) signaling. Here, I review my recent research on WASP and the WASP-interacting protein (WIP) complex in T cells. I and my colleagues first established a diagnostic screening method using flow cytometry and genetic analysis, and elucidated the molecular pathogenesis in WAS patients with unique clinical manifestations. We investigated the mechanisms by which WASP is recruited to lipid rafts following TCR stimulation and to immunological synapses between antigen-presenting cells and T cells. Subsequently, we elucidated the molecular mechanisms by which WASP is degraded by calpain and ubiquitinated by Cbl-family proteins, which terminate WASP activation. More importantly, we found that WIP plays a critical role in WASP stability in T cells. These results provide new insights into the molecular pathogenesis of X-linked WAS and have facilitated the identification of WIP deficiency as an autosomal recessive form of WAS.
Collapse
Affiliation(s)
- Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
16
|
Borinskaya S, Velle KB, Campellone KG, Talman A, Alvarez D, Agaisse H, Wu YI, Loew LM, Mayer BJ. Integration of linear and dendritic actin nucleation in Nck-induced actin comets. Mol Biol Cell 2015; 27:247-59. [PMID: 26609071 PMCID: PMC4713129 DOI: 10.1091/mbc.e14-11-1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/17/2015] [Indexed: 11/22/2022] Open
Abstract
The role of the Nck adaptor protein in balancing linear versus branched actin nucleation in comet tails is evaluated. Nck recruits both linear and branched nucleation-promoting factors, both of which are necessary for the formation of actin comets. The findings highlight a novel role for Nck in pathogen-like actin motility. The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails—dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens.
Collapse
Affiliation(s)
- Sofya Borinskaya
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Katrina B Velle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Kenneth G Campellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Arthur Talman
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06519
| | - Diego Alvarez
- Biotechnology Research Institute, University of San Martin, 1650 San Martin, Argentina
| | - Hervé Agaisse
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06519
| | - Yi I Wu
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030 Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Bruce J Mayer
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030 Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
17
|
Yokoyama T, Yoshizaki A, Simon KL, Kirby MR, Anderson SM, Candotti F. Age-Dependent Defects of Regulatory B Cells in Wiskott-Aldrich Syndrome Gene Knockout Mice. PLoS One 2015; 10:e0139729. [PMID: 26448644 PMCID: PMC4598155 DOI: 10.1371/journal.pone.0139729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022] Open
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg) obtained from Was gene knockout (WKO) mice and found that their numbers were significantly lower in these mice compared to wild type (WT) controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS.
Collapse
Affiliation(s)
- Tadafumi Yokoyama
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ayumi Yoshizaki
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Karen L. Simon
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martha R. Kirby
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stacie M. Anderson
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Kuokkanen E, Šuštar V, Mattila PK. Molecular control of B cell activation and immunological synapse formation. Traffic 2015; 16:311-26. [PMID: 25639463 DOI: 10.1111/tra.12257] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 02/01/2023]
Abstract
B cells form an essential part of the adaptive immune system by producing specific antibodies that can neutralize toxins and target infected or malignant cells for destruction. During B cell activation, a fundamental role is played by a specialized intercellular structure called the immunological synapse (IS). The IS serves as a platform for B cell recognition of foreign, often pathogenic, antigens on the surface of antigen-presenting cells (APC). This recognition is elicited by highly specific B cell receptors (BCR) that subsequently trigger carefully orchestrated intracellular signaling cascades that lead to cell activation. Furthermore, antigen internalization, essential for full B cell activation and differentiation into antibody producing effector cells or memory cells, occurs in the IS. Recent developments especially in various imaging-based methods have considerably advanced our understanding of the molecular control of B cell activation. Interestingly, the cellular cytoskeleton is emerging as a key player at several stages of B cell activation, including the initiation of receptor signaling. Here, we discuss the functions and molecular mechanisms of the IS and highlight the multifaceted role of the actin cytoskeleton in several aspects of B cell activation.
Collapse
Affiliation(s)
- Elina Kuokkanen
- Unit of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | |
Collapse
|
19
|
Cotta-de-Almeida V, Dupré L, Guipouy D, Vasconcelos Z. Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskott-Aldrich Syndrome. Front Immunol 2015; 6:47. [PMID: 25709608 PMCID: PMC4321635 DOI: 10.3389/fimmu.2015.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, research dedicated to the molecular and cellular mechanisms underlying primary immunodeficiencies (PID) has helped to understand the etiology of many of these diseases and to develop novel therapeutic approaches. Beyond these aspects, PID are also studied because they offer invaluable natural genetic tools to dissect the human immune system. In this review, we highlight the research that has focused over the last 20 years on T lymphocytes from Wiskott–Aldrich syndrome (WAS) patients. WAS T lymphocytes are defective for the WAS protein (WASP), a regulator of actin cytoskeleton remodeling. Therefore, study of WAS T lymphocytes has helped to grasp that many steps of T lymphocyte activation and function depend on the crosstalk between membrane receptors and the actin cytoskeleton. These steps include motility, immunological synapse assembly, and signaling, as well as the implementation of helper, regulatory, or cytotoxic effector functions. The recent concept that WASP also works as a regulator of transcription within the nucleus is an illustration of the complexity of signal integration in T lymphocytes. Finally, this review will discuss how further study of WAS may contribute to solve novel challenges of T lymphocyte biology.
Collapse
Affiliation(s)
| | - Loïc Dupré
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | - Delphine Guipouy
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | | |
Collapse
|
20
|
Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse. Cell Mol Life Sci 2014; 72:537-556. [PMID: 25355055 DOI: 10.1007/s00018-014-1760-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 02/05/2023]
Abstract
Transient,specialized cell-cell interactions play a central role in leukocyte function by enabling specific intercellular communication in the context of a highly dynamic systems level response. The dramatic structural changes required for the formation of these contacts are driven by rapid and precise cytoskeletal remodeling events. In recent years, the immunological synapse that forms between a T lymphocyte and its antigen-presenting target cell has emerged as an important model system for understanding immune cell interactions. In this review, we discuss how regulators of the cortical actin cytoskeleton control synaptic architecture and in this way specify T cell function.
Collapse
|
21
|
Fried S, Reicher B, Pauker MH, Eliyahu S, Matalon O, Noy E, Chill J, Barda-Saad M. Triple-color FRET analysis reveals conformational changes in the WIP-WASp actin-regulating complex. Sci Signal 2014; 7:ra60. [PMID: 24962707 DOI: 10.1126/scisignal.2005198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASp) is a key regulator of the actin cytoskeletal machinery. Binding of WASp-interacting protein (WIP) to WASp modulates WASp activity and protects it from degradation. Formation of the WIP-WASp complex is crucial for the adaptive immune response. We found that WIP and WASp interacted in cells through two distinct molecular interfaces. One interaction occurred between the WASp-homology-1 (WH1) domain of WASp and the carboxyl-terminal domain of WIP that depended on the phosphorylation status of WIP, which is phosphorylated by protein kinase C θ (PKCθ) in response to T cell receptor activation. The other interaction occurred between the verprolin homology, central hydrophobic region, and acidic region (VCA) domain of WASp and the amino-terminal domain of WIP. This latter interaction required actin, because it was inhibited by latrunculin A, which sequesters actin monomers. With triple-color fluorescence resonance energy transfer (3FRET) technology, we demonstrated that the WASp activation mechanism involved dissociation of the first interaction, while leaving the second interaction intact. This conformation exposed the ubiquitylation site on WASp, leading to degradation of WASp. Together, these data suggest that the activation and degradation of WASp are delicately balanced and depend on the phosphorylation state of WIP. Our molecular analysis of the WIP-WASp interaction provides insight into the regulation of actin-dependent processes.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maor H Pauker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shani Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Jordan Chill
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
22
|
Haba NY, Gross R, Novacek J, Shaked H, Zidek L, Barda-Saad M, Chill JH. NMR determines transient structure and dynamics in the disordered C-terminal domain of WASp interacting protein. Biophys J 2014; 105:481-93. [PMID: 23870269 DOI: 10.1016/j.bpj.2013.05.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/30/2013] [Accepted: 05/20/2013] [Indexed: 01/07/2023] Open
Abstract
WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp interaction has been shown to be critical for actin polymerization and implicated in the onset of WAS and X-linked thrombocytopenia. WIP is predicted to be an intrinsically disordered protein, a class of polypeptides that are of great interest because they violate the traditional structure-function paradigm. In this first (to our knowledge) study of WIP in its unbound state, we used NMR to investigate the biophysical behavior of WIP(C), a C-terminal domain fragment of WIP that includes residues 407-503 and contains the WASp-binding site. In light of the poor spectral dispersion exhibited by WIP(C) and the high occurrence (25%) of proline residues, we employed 5D-NMR(13)C-detected NMR experiments with nonuniform sampling to accomplish full resonance assignment. Secondary chemical-shift analysis, (15)N relaxation rates, and protection from solvent exchange all concurred in detecting transient structure located in motifs that span the WASp-binding site. Residues 446-456 exhibited a propensity for helical conformation, and an extended conformation followed by a short, capped helix was observed for residues 468-478. The (13)C-detected approach allows chemical-shift assignment in the WIP(C) polyproline stretches and thus sheds light on their conformation and dynamics. The effects of temperature on chemical shifts referenced to a denatured sample of the polypeptide demonstrate that heating reduces the structural character of WIP(C). Thus, we conclude that the disordered WIP(C) fragment is comprised of regions with latent structure connected by flexible loops, an architecture with implications for binding affinity and function.
Collapse
Affiliation(s)
- Noam Y Haba
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Oda A, Eto K. WASPs and WAVEs: from molecular function to physiology in hematopoietic cells. Semin Cell Dev Biol 2013; 24:308-13. [PMID: 23499790 DOI: 10.1016/j.semcdb.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton is critically involved in a variety of cell functions. The Arp2/3 complex mediates branching of filamentous actin. The members of the Wiskott-Aldrich syndrome protein (WASP) family are major regulators of the complex. As such, the family proteins are also involved in numerous aspects of cell biology. In this short review, we first define the expanding WASP family. Next, we compare the domain structure of the members, and explain the known or proposed functions of each domain or region. Finally, we demonstrate the well-characterized roles of the proteins in specific cellular functions.
Collapse
Affiliation(s)
- Atsushi Oda
- Department of Internal Medicine, Noguchi Hospital, Ashibetsu 075-0002, Japan.
| | | |
Collapse
|
24
|
Pankewycz O, Ambrus J, Shen L, Xuan J, Li H, Wu J, Guo LW, Feng L, Laftavi MR. Inhibiting Wipf2 downregulation by transgenic expression of its 3′ mRNA-untranslated region improves cytotoxicity and vaccination response. Eur J Immunol 2012; 42:2409-18. [PMID: 22674044 DOI: 10.1002/eji.201141533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oleh Pankewycz
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Julian Ambrus
- Department of Medicine; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Long Shen
- Department of Medicine; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Jingxiu Xuan
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Hong Li
- Joint Research Center of West China Second University; Hospital of Sichuan University; Chengdu; China
| | - Jing Wu
- Department of Medicine; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Li-Wu Guo
- Division of Genetic Toxicology; National Center for Toxicological Research-Food and Drug Administration; Jefferson; AR; USA
| | - Lin Feng
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| | - Mark R. Laftavi
- Department of Surgery; School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo; NY; USA
| |
Collapse
|
25
|
Ito T, Smrz D, Jung MY, Bandara G, Desai A, Smrzová S, Kuehn HS, Beaven MA, Metcalfe DD, Gilfillan AM. Stem cell factor programs the mast cell activation phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5428-37. [PMID: 22529299 PMCID: PMC3358494 DOI: 10.4049/jimmunol.1103366] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells, activated by Ag via FcεRI, release an array of proinflammatory mediators that contribute to allergic disorders, such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation, and survival, and under acute conditions, it enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal Ag-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcεRI-mediated degranulation and cytokine production. The hyporesponsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization with evidence implicating a downregulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.
Collapse
Affiliation(s)
- Tomonobu Ito
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Daniel Smrz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Mi-Yeon Jung
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Sárka Smrzová
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Hye Sun Kuehn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| |
Collapse
|
26
|
Piragyte I, Jun CD. Actin engine in immunological synapse. Immune Netw 2012; 12:71-83. [PMID: 22916042 PMCID: PMC3422712 DOI: 10.4110/in.2012.12.3.71] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/11/2012] [Accepted: 05/19/2012] [Indexed: 01/09/2023] Open
Abstract
T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse.
Collapse
Affiliation(s)
- Indre Piragyte
- Immune Synapse Research Center and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | |
Collapse
|
27
|
Dráber P, Sulimenko V, Dráberová E. Cytoskeleton in mast cell signaling. Front Immunol 2012; 3:130. [PMID: 22654883 PMCID: PMC3360219 DOI: 10.3389/fimmu.2012.00130] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/05/2012] [Indexed: 11/13/2022] Open
Abstract
Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca(2+). Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling.
Collapse
Affiliation(s)
- Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| |
Collapse
|
28
|
Srinivasan M, Dunker AK. Proline rich motifs as drug targets in immune mediated disorders. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:634769. [PMID: 22666276 PMCID: PMC3362030 DOI: 10.1155/2012/634769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/15/2012] [Indexed: 12/26/2022]
Abstract
The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs) are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis 1121 West Michigan Street, DS290, Indianapolis, IN 46268, USA
| | - A. Keith Dunker
- Department of Biochemistry and Molecular Biology and School of Informatics, Indiana University School of Medicine, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
29
|
Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E, Hernandez RJ, Benedicenti F, Radrizzani M, Salomoni M, Ranzani M, Bartholomae CC, Vicenzi E, Finocchi A, Bredius R, Bosticardo M, Schmidt M, von Kalle C, Montini E, Biffi A, Roncarolo MG, Naldini L, Villa A, Aiuti A. Preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome. Mol Ther 2012; 21:175-84. [PMID: 22371846 PMCID: PMC3538318 DOI: 10.1038/mt.2012.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gene therapy with ex vivo-transduced hematopoietic stem/progenitor cells may represent a valid therapeutic option for monogenic immunohematological disorders such as Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency associated with thrombocytopenia. We evaluated the preclinical safety and efficacy of human CD34+ cells transduced with lentiviral vectors (LV) encoding WAS protein (WASp). We first set up and validated a transduction protocol for CD34+ cells derived from bone marrow (BM) or mobilized peripheral blood (MPB) using a clinical grade, highly purified LV. Robust transduction of progenitor cells was obtained in normal donors and WAS patients' cells, without evidence of toxicity. To study biodistribution of human cells and exclude vector release in vivo, LV-transduced CD34+ cells were transplanted in immunodeficient mice, showing a normal engraftment and differentiation ability towards transduced lymphoid and myeloid cells in hematopoietic tissues. Vector mobilization to host cells and transmission to germline cells of the LV were excluded by different molecular assays. Analysis of vector integrations showed polyclonal integration patterns in vitro and in human engrafted cells in vivo. In summary, this work establishes the preclinical safety and efficacy of human CD34+ cells gene therapy for the treatment of WAS.
Collapse
|
30
|
Wsp1 is downstream of Cin1 and regulates vesicle transport and actin cytoskeleton as an effector of Cdc42 and Rac1 in Cryptococcus neoformans. EUKARYOTIC CELL 2012; 11:471-81. [PMID: 22327008 DOI: 10.1128/ec.00011-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human Wiskott-Aldrich syndrome protein (WASP) is a scaffold linking upstream signals to the actin cytoskeleton. In response to intersectin ITSN1 and Rho GTPase Cdc42, WASP activates the Arp2/3 complex to promote actin polymerization. The human pathogen Cryptococcus neoformans contains the ITSN1 homolog Cin1 and the WASP homolog Wsp1, which share more homology with human proteins than those of other fungi. Here we demonstrate that Cin1, Cdc42/Rac1, and Wsp1 function in an effector pathway similar to that of mammalian models. In the cin1 mutant, expression of the autoactivated Wsp1-B-GBD allele partially suppressed the mutant defect in endocytosis, and expression of the constitutively active CDC42(Q61L) allele restored normal actin cytoskeleton structures. Similar phenotypic suppression can be obtained by the expression of a Cdc42-green fluorescent protein (GFP)-Wsp1 fusion protein. In addition, Rac1, which was found to exhibit a role in early endocytosis, activates Wsp1 to regulate vacuole fusion. Rac1 interacted with Wsp1 and depended on Wsp1 for its vacuolar membrane localization. Expression of the Wsp1-B-GBD allele restored vacuolar membrane fusion in the rac1 mutant. Collectively, our studies suggest novel ways in which this pathogenic fungus has adapted conserved signaling pathways to control vesicle transport and actin organization, likely benefiting survival within infected hosts.
Collapse
|
31
|
Kollmar M, Lbik D, Enge S. Evolution of the eukaryotic ARP2/3 activators of the WASP family: WASP, WAVE, WASH, and WHAMM, and the proposed new family members WAWH and WAML. BMC Res Notes 2012; 5:88. [PMID: 22316129 PMCID: PMC3298513 DOI: 10.1186/1756-0500-5-88] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/08/2012] [Indexed: 12/14/2022] Open
Abstract
Background WASP family proteins stimulate the actin-nucleating activity of the ARP2/3 complex. They include members of the well-known WASP and WAVE/Scar proteins, and the recently identified WASH and WHAMM proteins. WASP family proteins contain family specific N-terminal domains followed by proline-rich regions and C-terminal VCA domains that harbour the ARP2/3-activating regions. Results To reveal the evolution of ARP2/3 activation by WASP family proteins we performed a "holistic" analysis by manually assembling and annotating all homologs in most of the eukaryotic genomes available. We have identified two new families: the WAML proteins (WASP and MIM like), which combine the membrane-deforming and actin bundling functions of the IMD domains with the ARP2/3-activating VCA regions, and the WAWH protein (WASP without WH1 domain) that have been identified in amoebae, Apusozoa, and the anole lizard. Surprisingly, with one exception we did not identify any alternative splice forms for WASP family proteins, which is in strong contrast to other actin-binding proteins like Ena/VASP, MIM, or NHS proteins that share domains with WASP proteins. Conclusions Our analysis showed that the last common ancestor of the eukaryotes must have contained a homolog of WASP, WAVE, and WASH. Specific families have subsequently been lost in many taxa like the WASPs in plants, algae, Stramenopiles, and Euglenozoa, and the WASH proteins in fungi. The WHAMM proteins are metazoa specific and have most probably been invented by the Eumetazoa. The diversity of WASP family proteins has strongly been increased by many species- and taxon-specific gene duplications and multimerisations. All data is freely accessible via http://www.cymobase.org.
Collapse
Affiliation(s)
- Martin Kollmar
- Abteilung NMR basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
32
|
Critical roles of the WASP N-terminal domain and Btk in LPS-induced inflammatory response in macrophages. PLoS One 2012; 7:e30351. [PMID: 22253930 PMCID: PMC3257260 DOI: 10.1371/journal.pone.0030351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/14/2011] [Indexed: 02/06/2023] Open
Abstract
While Wiskott-Aldrich syndrome protein (WASP) plays critical roles in TCR signaling as an adaptor molecule, how it transduces innate immune signals remains to be elucidated. To investigate the roles of WASP in innate immune cells, we established bone marrow-derived macrophage (BMDM) cell lines from WASP15 transgenic (Tg) mice overexpressing the WASP N-terminal region (exons 1–5). Upon LPS stimulation, WASP15 Tg BMDM cell lines produce lower levels of inflammatory cytokines, such as TNF-α, IL-6, and IL-12p40 than the wild-type BMDM cell line. In addition, the production of nitric oxide by WASP15 Tg BMDM cells in response to LPS and IFN-γ was significantly impaired. Furthermore, we uncovered that the WASP N-terminal domain associates with the Src homology (SH) 3 domain of Bruton's tyrosine kinase (Btk). Overexpression of the WASP N-terminal domain diminishes the extent of tyrosine phosphorylation of endogenous WASP in WASP15 Tg BMDM cells, possibly by interfering with the specific binding between endogenous WASP and Btk during LPS signaling. These observations strongly suggest that the interaction between WASP N-terminal domain and Btk plays important roles in the LPS signaling cascade in innate immunity.
Collapse
|
33
|
Stranahan AM, Martin B, Chadwick W, Park SS, Wang L, Becker KG, WoodIII WH, Zhang Y, Maudsley S. Metabolic context regulates distinct hypothalamic transcriptional responses to antiaging interventions. Int J Endocrinol 2012; 2012:732975. [PMID: 22934110 PMCID: PMC3427989 DOI: 10.1155/2012/732975] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/09/2012] [Indexed: 01/19/2023] Open
Abstract
The hypothalamus is an essential relay in the neural circuitry underlying energy metabolism that needs to continually adapt to changes in the energetic environment. The neuroendocrine control of food intake and energy expenditure is associated with, and likely dependent upon, hypothalamic plasticity. Severe disturbances in energy metabolism, such as those that occur in obesity, are therefore likely to be associated with disruption of hypothalamic transcriptomic plasticity. In this paper, we investigated the effects of two well-characterized antiaging interventions, caloric restriction and voluntary wheel running, in two distinct physiological paradigms, that is, diabetic (db/db) and nondiabetic wild-type (C57/Bl/6) animals to investigate the contextual sensitivity of hypothalamic transcriptomic responses. We found that, both quantitatively and qualitatively, caloric restriction and physical exercise were associated with distinct transcriptional signatures that differed significantly between diabetic and non-diabetic mice. This suggests that challenges to metabolic homeostasis regulate distinct hypothalamic gene sets in diabetic and non-diabetic animals. A greater understanding of how genetic background contributes to hypothalamic response mechanisms could pave the way for the development of more nuanced therapeutics for the treatment of metabolic disorders that occur in diverse physiological backgrounds.
Collapse
Affiliation(s)
- Alexis M. Stranahan
- Physiology Department, Georgia Health Sciences University, Augusta, GA 30912, USA
- *Alexis M. Stranahan:
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Liyun Wang
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - William H. WoodIII
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| |
Collapse
|
34
|
Lambe T, Crawford G, Johnson AL, Crockford TL, Bouriez-Jones T, Smyth AM, Pham THM, Zhang Q, Freeman AF, Cyster JG, Su HC, Cornall RJ. DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory. Eur J Immunol 2011; 41:3423-35. [PMID: 21969276 DOI: 10.1002/eji.201141759] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/01/2011] [Accepted: 09/23/2011] [Indexed: 01/22/2023]
Abstract
Deficiency in the guanine nucleotide exchange factor dedicator of cytokinesis 8 (DOCK8) causes a human immunodeficiency syndrome associated with recurrent sinopulmonary and viral infections. We have recently identified a DOCK8-deficient mouse strain, carrying an ethylnitrosourea-induced splice-site mutation that shows a failure to mature a humoral immune response due to the loss of germinal centre B cells. In this study, we turned to T-cell immunity to investigate further the human immunodeficiency syndrome and its association with decreased peripheral CD4(+) and CD8(+) T cells. Characterisation of the DOCK8-deficient mouse revealed T-cell lymphopenia, with increased T-cell turnover and decreased survival. Egress of mature CD4(+) thymocytes was reduced with increased migration of these cells to the chemokine CXCL12. However, despite the two-fold reduction in peripheral naïve T cells, the DOCK8-deficient mice generated a normal primary CD8(+) immune response and were able to survive acute influenza virus infection. The limiting effect of DOCK8 was in the normal survival of CD8(+) memory T cells after infection. These findings help to explain why DOCK8-deficient patients are susceptible to recurrent infections and provide new insights into how T-cell memory is sustained.
Collapse
Affiliation(s)
- Teresa Lambe
- Nuffield Department of Medicine, Henry Wellcome Building of Molecular Physiology, Oxford University, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stephan R, Gohl C, Fleige A, Klämbt C, Bogdan S. Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in Drosophila. Mol Biol Cell 2011; 22:4079-92. [PMID: 21900504 PMCID: PMC3204070 DOI: 10.1091/mbc.e11-02-0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A tight spatial-temporal coordination of F-actin dynamics is crucial for a large variety of cellular processes that shape cells. The Abelson interactor (Abi) has a conserved role in Arp2/3-dependent actin polymerization, regulating Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE). In this paper, we report that Abi exerts nonautonomous control of photoreceptor axon targeting in the Drosophila visual system through WAVE. In abi mutants, WAVE is unstable but restored by reexpression of Abi, confirming that Abi controls the integrity of the WAVE complex in vivo. Remarkably, expression of a membrane-tethered WAVE protein rescues the axonal projection defects of abi mutants in the absence of the other subunits of the WAVE complex, whereas cytoplasmic WAVE only slightly affects the abi mutant phenotype. Thus complex formation not only stabilizes WAVE, but also provides further membrane-recruiting signals, resulting in an activation of WAVE.
Collapse
Affiliation(s)
- Raiko Stephan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
36
|
Becker-Herman S, Meyer-Bahlburg A, Schwartz MA, Jackson SW, Hudkins KL, Liu C, Sather BD, Khim S, Liggitt D, Song W, Silverman GJ, Alpers CE, Rawlings DJ. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. ACTA ACUST UNITED AC 2011; 208:2033-42. [PMID: 21875954 PMCID: PMC3182055 DOI: 10.1084/jem.20110200] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In a manner dependent on CD4 T cell help and Toll-like receptor signals, B cells lacking WASp induce autoantibody production and autoimmune disease in mice. Patients with the immunodeficiency Wiskott-Aldrich syndrome (WAS) frequently develop systemic autoimmunity. Here, we demonstrate that mutation of the WAS gene results in B cells that are hyperresponsive to B cell receptor and Toll-like receptor (TLR) signals in vitro, thereby promoting a B cell–intrinsic break in tolerance. Whereas this defect leads to autoantibody production in WAS protein–deficient (WASp−/−) mice without overt disease, chimeric mice in which only the B cell lineage lacks WASp exhibit severe autoimmunity characterized by spontaneous germinal center formation, class-switched autoantibodies, renal histopathology, and early mortality. Both T cell help and B cell–intrinsic TLR engagement play important roles in promoting disease in this model, as depletion with anti-CD4 antibodies or generation of chimeric mice with B cells deficient in both WASp and MyD88 prevented development of autoimmune disease. These data highlight the potentially harmful role for cell-intrinsic loss of B cell tolerance in the setting of normal T cell function, and may explain why WAS patients with mixed chimerism after stem cell transplantation often develop severe humoral autoimmunity.
Collapse
Affiliation(s)
- Shirly Becker-Herman
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev Cell 2011; 20:623-38. [PMID: 21571220 DOI: 10.1016/j.devcel.2011.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 03/11/2011] [Accepted: 04/19/2011] [Indexed: 11/20/2022]
Abstract
Dynamic rearrangements of the actin cytoskeleton play a key role in numerous cellular processes. In Drosophila, fusion between a muscle founder cell and a fusion competent myoblast (FCM) is mediated by an invasive, F-actin-enriched podosome-like structure (PLS). Here, we show that the dynamics of the PLS is controlled by Blown fuse (Blow), a cytoplasmic protein required for myoblast fusion but whose molecular function has been elusive. We demonstrate that Blow is an FCM-specific protein that colocalizes with WASP, WIP/Solitary, and the actin focus within the PLS. Biochemically, Blow modulates the stability of the WASP-WIP complex by competing with WASP for WIP binding, leading to a rapid exchange of WASP, WIP and G-actin within the PLS, which, in turn, actively invades the adjacent founder cell to promote fusion pore formation. These studies identify a regulatory protein that modulates the actin cytoskeletal dynamics by controlling the stability of the WASP-WIP complex.
Collapse
|
38
|
King SJ, Worth DC, Scales TME, Monypenny J, Jones GE, Parsons M. β1 integrins regulate fibroblast chemotaxis through control of N-WASP stability. EMBO J 2011; 30:1705-18. [PMID: 21427700 PMCID: PMC3101992 DOI: 10.1038/emboj.2011.82] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/24/2011] [Indexed: 12/15/2022] Open
Abstract
Chemotactic migration of fibroblasts towards growth factors, such as during development and wound healing, requires precise spatial coordination of receptor signalling. However, the mechanisms regulating this remain poorly understood. Here, we demonstrate that β1 integrins are required both for fibroblast chemotaxis towards platelet-derived growth factor (PDGF) and growth factor-induced dorsal ruffling. Mechanistically, we show that β1 integrin stabilises and spatially regulates the actin nucleating endocytic protein neuronal Wiskott–Aldrich syndrome protein (N-WASP) to facilitate PDGF receptor traffic and directed motility. Furthermore, we show that in intact cells, PDGF binding leads to rapid activation of β1 integrin within newly assembled actin-rich membrane ruffles. Active β1 in turn controls assembly of N-WASP complexes with both Cdc42 and WASP-interacting protein (WIP), the latter of which acts to stabilise the N-WASP. Both of these protein complexes are required for PDGF internalisation and fibroblast chemotaxis downstream of β1 integrins. This represents a novel mechanism by which integrins cooperate with growth factor receptors to promote localised signalling and directed cell motility.
Collapse
Affiliation(s)
- Samantha J King
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| | | | | | | | | | | |
Collapse
|
39
|
Wsp1, a GBD/CRIB domain-containing WASP homolog, is required for growth, morphogenesis, and virulence of Cryptococcus neoformans. EUKARYOTIC CELL 2011; 10:521-9. [PMID: 21357479 DOI: 10.1128/ec.00274-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human endocytic protein ITSN1 regulates actin reorganization by activating Rho family GTPases, such as Cdc42. The process is enhanced by ITSN binding of WASP, an effector of Cdc42 and a potent activator of actin polymerization. In the human pathogen Cryptococcus neoformans, endocytic protein Cin1 also interacts with Cdc42 and Wsp1, an uncharacterized WASP homolog, but the significance of these interactions remains unknown. Wsp1 contains several conserved domains, including a WASP homology 1 domain (WH1), a GTPase binding/Cdc42 and Rac interactive binding domain (GBD/CRIB), and a C-terminal domain composed of verprolin-like, central, and acidic motifs (VCA). Thus, Wsp1 exhibits domain compositions more similar to human WASP proteins than Saccharomyces cerevisiae Las17/Bee1, a WASP homolog lacking the GDB/CRIB domain. Wsp1 is not an essential protein; however, the wsp1 mutant exhibited defects in growth, cytokinesis, chitin distribution, and endocytosis and exocytosis. The wsp1 mutant was also unable to undergo genetic cross, produce the polysaccharide capsule, or secrete the enzyme urease. An in vitro phagocytosis assay showed a higher phagocytic index for the wsp1 mutant, whose ability to cause lethal infection in a murine model of cryptococcosis was also attenuated. Our studies reveal divergent evolution of WASP proteins in the fungal phylum and suggest that the conserved function of WASP proteins in the actin cytoskeleton may also impact fungal virulence.
Collapse
|
40
|
Panelli S, Strozzi F, Capoferri R, Barbieri I, Martinelli N, Capucci L, Lombardi G, Williams JL. Analysis of gene expression in white blood cells of cattle orally challenged with bovine amyloidotic spongiform encephalopathy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:96-102. [PMID: 21218338 DOI: 10.1080/15287394.2011.529059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bovine amyloidotic spongiform encephalopathy (BASE) is one of the recently discovered atypical forms of BSE, which is transmissible to primates, and may be the bovine equivalent of sporadic Creutzfeldt-Jacob disease (CJD) in humans. Although it is transmissible, it is unknown whether BASE is acquired through infection or arises spontaneously. In the present study, the gene expression of white blood cells (WBCs) from 5 cattle at 1 yr after oral BASE challenge was compared with negative controls using a custom microarray containing 43,768 unique gene probes. In total, 56 genes were found to be differentially expressed between BASE and control animals with a log fold change of 2 or greater. Of these, 39 were upregulated in BASE animals, while 17 were downregulated. The majority of these genes are related to immune function. In particular, BASE animals appeared to have significantly modified expression of genes linked to T- and B-cell development and activation, and to inflammatory responses. The potential impacts of these gene expression changes are described.
Collapse
Affiliation(s)
- Simona Panelli
- IDRA-LAB, Parco Tecnologico Padano, via Einstein, Lodi, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The proteins of the Wiskott-Aldrich syndrome protein (WASP) family are activators of the ubiquitous actin nucleation factor, the Arp2/3 complex. WASP family proteins contain a C-terminal VCA domain that binds and activates the Arp2/3 complex in response to numerous inputs, including Rho family GTPases, phosphoinositide lipids, SH3 domain-containing proteins, kinases, and phosphatases. In the archetypal members of the family, WASP and N-WASP, these signals are integrated through two levels of regulation, an allosteric autoinhibitory interaction, in which the VCA is sequestered from the Arp2/3 complex, and dimerization/oligomerization, in which multi-VCA complexes are better activators of the Arp2/3 complex than monomers. Here, we review the structural, biochemical, and biophysical details of these mechanisms and illustrate how they work together to control WASP activity in response to multiple inputs. These regulatory principles, derived from studies of WASP and N-WASP, are likely to apply broadly across the family.
Collapse
Affiliation(s)
- Shae B Padrick
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
42
|
Zhang Y, Kubiseski TJ. Caenorhabditis elegans wsp-1 regulation of synaptic function at the neuromuscular junction. J Biol Chem 2010; 285:23040-6. [PMID: 20501656 DOI: 10.1074/jbc.m109.096164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Rho GTPase members and their effector proteins, such as the Wiskott-Aldrich syndrome protein (WASP), play critical roles in regulating actin dynamics that affect cell motility, endocytosis, cell division, and transport. It is well established that Caenorhabditis elegans wsp-1 plays an essential role in embryonic development. We were interested in the role of the C. elegans protein WSP-1 in the adult nematode. In this report, we show that a deletion mutant of wsp-1 exhibits a strong sensitivity to the neuromuscular inhibitor aldicarb. Transgenic rescue experiments demonstrated that neuronal expression of WSP-1 rescued this phenotype and that it required a functional WSP-1 Cdc42/Rac interactive binding domain. WSP-1-GFP fusion protein was found localized presynaptically, immediately adjacent to the synaptic protein RAB-3. Strong genetic interactions with wsp-1 and other genes involved in different stages of synaptic transmission were observed as the wsp-1(gm324) mutation suppresses the aldicarb resistance seen in unc-13(e51), unc-11(e47), and snt-1 (md290) mutants. These results provide genetic and pharmacological evidence that WSP-1 plays an essential role to stabilize the actin cytoskeleton at the neuronal active zone of the neuromuscular junction to restrain synaptic vesicle release.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
43
|
WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc Natl Acad Sci U S A 2010; 107:10442-7. [PMID: 20498093 DOI: 10.1073/pnas.0913293107] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We recently showed that the Wiskott-Aldrich syndrome protein (WASP) family member, WASH, localizes to endosomal subdomains and regulates endocytic vesicle scission in an Arp2/3-dependent manner. Mechanisms regulating WASH activity are unknown. Here we show that WASH functions in cells within a 500 kDa core complex containing Strumpellin, FAM21, KIAA1033 (SWIP), and CCDC53. Although recombinant WASH is constitutively active toward the Arp2/3 complex, the reconstituted core assembly is inhibited, suggesting that it functions in cells to regulate actin dynamics through WASH. FAM21 interacts directly with CAPZ and inhibits its actin-capping activity. Four of the five core components show distant (approximately 15% amino acid sequence identify) but significant structural homology to components of a complex that negatively regulates the WASP family member, WAVE. Moreover, biochemical and electron microscopic analyses show that the WASH and WAVE complexes are structurally similar. Thus, these two distantly related WASP family members are controlled by analogous structurally related mechanisms. Strumpellin is mutated in the human disease hereditary spastic paraplegia, and its link to WASH suggests that misregulation of actin dynamics on endosomes may play a role in this disorder.
Collapse
|
44
|
Wickramarachchi DC, Theofilopoulos AN, Kono DH. Immune pathology associated with altered actin cytoskeleton regulation. Autoimmunity 2010; 43:64-75. [PMID: 20001423 DOI: 10.3109/08916930903374634] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The actin cytoskeleton plays a crucial role in a variety of important cellular processes required for normal immune function, including locomotion, intercellular interactions, endocytosis, cytokinesis, signal transduction, and maintenance of cell morphology. Recent studies have uncovered not only many of the components and mechanisms that regulate the cortical actin cytoskeleton but have also revealed significant immunopathological consequences associated with genetic alteration of actin cytoskeletal regulatory genes. These advances have provided new insights into the role of cortical actin cytoskeletal regulation in a number of immune cell functions and have identified cytoskeletal regulatory proteins critical for normal immune system activity and susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Dilki C Wickramarachchi
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
45
|
Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 2010; 90:259-89. [PMID: 20086078 DOI: 10.1152/physrev.00036.2009] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.
Collapse
Affiliation(s)
- Juha Saarikangas
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
46
|
Abstract
A review of the cytoskeleton-organizing WASP and WAVE family proteins. All eukaryotic cells need to reorganize their actin cytoskeleton to change shape, divide, move, and take up nutrients for survival. The Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are fundamental actin-cytoskeleton reorganizers found throughout the eukaryotes. The conserved function across species is to receive upstream signals from Rho-family small GTPases and send them to activate the Arp2/3 complex, leading to rapid actin polymerization, which is critical for cellular processes such as endocytosis and cell motility. Molecular and cell biological studies have identified a wide array of regulatory molecules that bind to the WASP and WAVE proteins and give them diversified roles in distinct cellular locations. Genetic studies using model organisms have also improved our understanding of how the WASP- and WAVE-family proteins act to shape complex tissue architectures. Current efforts are focusing on integrating these pieces of molecular information to draw a unified picture of how the actin cytoskeleton in a single cell works dynamically to build multicellular organization.
Collapse
Affiliation(s)
- Shusaku Kurisu
- Division of Lipid Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | |
Collapse
|
47
|
Abstract
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disease with a characteristic clinical phenotype that includes thrombocytopenia with small platelets, eczema, recurrent infections due to immunodeficiency, and an increased incidence of autoimmune manifestations and malignancies. The identification of the molecular defect in the WAS gene has broadened the clinical spectrum of disease to include chronic or intermittent X-linked thrombocytopenia (XLT), a relatively mild form of WAS, and X-linked neutropenia (XLN) due to an arrest of myelopoiesis. The pathophysiological mechanisms relate to defective actin polymerization in hematopoietic cells as a result of deficient or dysregulated activity of the WAS protein (WASp). The severity of disease is variable and somewhat predictable from genotype. Treatment strategies therefore range from conservative through to early definitive intervention by using allogeneic hematopoietic stem cell transplantation and potentially somatic gene therapy. All aspects of the condition from clinical presentation to molecular pathology and basic cellular mechanisms have been reviewed recently.
Collapse
|