1
|
Luo L, Ji J, Dong J, He M, Jiang W, Liu Y, Wang W. Infiltration and subtype analysis of CD3 + CD20 + T cells in lung cancer. BMC Cancer 2025; 25:179. [PMID: 39885465 PMCID: PMC11783900 DOI: 10.1186/s12885-025-13581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND CD3 + CD20 + T cells (TB cells) are a subset of lymphocytes in the human body that are associated with inflammation. They originate from T cells interacting with B cells, and their levels are abnormally elevated in individuals with immune disorders, as well as in some cancer patients. The interplay between tumor immunity and inflammation is intricate, yet the specific involvement of TB cells in local tumor immunity remains uncertain, with limited research on their subtypes. METHODS Lung cancer surgical samples were stained using multi-color immunofluorescence to study the subtypes and distribution patterns of TB cells. RESULTS TB cells were confirmed to exist in a scattered pattern within tertiary lymphoid structures (TLS) in lung cancer tissues, with higher abundance in mature TLS. In subtype analysis, the CD4-CD8- double-negative TB cell subtype was predominant, comprising over 90% in samples with abundant TLS infiltration and over 60% in samples with poor infiltration. This was followed by the CD4 + CD8- and CD4-CD8 + single-positive TB cell subtypes, while the CD4 + CD8 + double-positive TB cell subtype was nearly absent. During the maturation of TLS, the proportion of B cells gradually increased, while the proportion of CD4-CD8- T cell subtype decreased. CONCLUSIONS TB cells extensively infiltrate the TLS regions in tumor tissues, with the double-negative subtype being predominant, potentially playing a crucial regulatory role in the local tumor immune microenvironment. This finding could facilitate the advancement of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Liping Luo
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Ji
- Pathology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Dong
- Department of Pulmonology, Meishan Cancer Hospital, Meishan, China
| | - Maotao He
- Pathology Department, Meishan Cancer Hospital, Meishan, China
| | - Wenjun Jiang
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
- Radiotherapy Center, Radiation Oncology Key Laboratory of Sichuan Province, Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Yang Liu
- Pathology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Weidong Wang
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China.
- Radiotherapy Center, Radiation Oncology Key Laboratory of Sichuan Province, Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Snelgrove SL, Susanto O, Yeung L, Hall P, Norman MU, Corbett AJ, Kitching AR, Hickey MJ. T-cell receptor αβ + double-negative T cells in the kidney are predominantly extravascular and increase in abundance in response to ischemia-reperfusion injury. Immunol Cell Biol 2023; 101:49-64. [PMID: 36222375 PMCID: PMC10953373 DOI: 10.1111/imcb.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023]
Abstract
T-cell receptor+ CD4- CD8- double-negative (DN) T cells are a population of T cells present in low abundance in blood and lymphoid organs, but enriched in various organs including the kidney. Despite burgeoning interest in these cells, studies examining their abundance in the kidney have reported conflicting results. Here we developed a flow cytometry strategy to clearly segregate DN T cells from other immune cells in the mouse kidney and used it to characterize their phenotype and response in renal ischemia-reperfusion injury (IRI). These experiments revealed that in the healthy kidney, most DN T cells are located within the renal parenchyma and exhibit an effector memory phenotype. In response to IRI, the number of renal DN T cells is unaltered after 24 h, but significantly increased by 72 h. This increase is not related to alterations in proliferation or apoptosis. By contrast, adoptive transfer studies indicate that circulating DN T cells undergo preferential recruitment to the postischemic kidney. Furthermore, DN T cells show the capacity to upregulate CD8, both in vivo following adoptive transfer and in response to ex vivo activation. Together, these findings provide novel insights regarding the phenotype of DN T cells in the kidney, including their predominant extravascular location, and show that increases in their abundance in the kidney following IRI occur in part as a result of increased recruitment from the circulation. Furthermore, the observation that DN T cells can upregulate CD8 in vivo has important implications for detection and characterization of DN T cells in future studies.
Collapse
Affiliation(s)
- Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Olivia Susanto
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Louisa Yeung
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - M Ursula Norman
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
- Departments of Nephrology and Paediatric NephrologyMonash Medical CentreClaytonVICAustralia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| |
Collapse
|
3
|
Newman-Rivera AM, Kurzhagen JT, Rabb H. TCRαβ+ CD4-/CD8- "double negative" T cells in health and disease-implications for the kidney. Kidney Int 2022; 102:25-37. [PMID: 35413379 PMCID: PMC9233047 DOI: 10.1016/j.kint.2022.02.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Double negative (DN) T cells, one of the least studied T lymphocyte subgroups, express T cell receptor αβ but lack CD4 and CD8 coreceptors. DN T cells are found in multiple organs including kidney, lung, heart, gastrointestinal tract, liver, genital tract, and central nervous system. DN T cells suppress inflammatory responses in different disease models including experimental acute kidney injury, and significant evidence supports an important role in the pathogenesis of systemic lupus erythematosus. However, little is known about these cells in other kidney diseases. Therefore, it is important to better understand different functions of DN T cells and their signaling pathways as promising therapeutic targets, particularly with the increasing application of T cell-directed therapy in humans. In this review, we aim to summarize studies performed on DN T cells in normal and diseased organs in the setting of different disease models with a focus on kidney.
Collapse
Affiliation(s)
| | | | - Hamid Rabb
- Nephrology Division, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Wu Z, Zheng Y, Sheng J, Han Y, Yang Y, Pan H, Yao J. CD3 +CD4 -CD8 - (Double-Negative) T Cells in Inflammation, Immune Disorders and Cancer. Front Immunol 2022; 13:816005. [PMID: 35222392 PMCID: PMC8866817 DOI: 10.3389/fimmu.2022.816005] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
The crucial role of CD4+ and CD8+ T cells in shaping and controlling immune responses during immune disease and cancer development has been well established and used to achieve marked clinical benefits. CD3+CD4-CD8- double-negative (DN) T cells, although constituting a rare subset of peripheral T cells, are gaining interest for their roles in inflammation, immune disease and cancer. Herein, we comprehensively review the origin, distribution and functions of this unique T cell subgroup. First, we focused on characterizing multifunctional DN T cells in various immune responses. DN regulatory T cells have the capacity to prevent graft-versus-host disease and have therapeutic value for autoimmune disease. T helper-like DN T cells protect against or promote inflammation and virus infection depending on the specific settings and promote certain autoimmune disease. Notably, we clarified the role of DN tumor-infiltrating lymphocytes and outlined the potential for malignant proliferation of DN T cells. Finally, we reviewed the recent advances in the applications of DN T cell-based therapy for cancer. In conclusion, a better understanding of the heterogeneity and functions of DN T cells may help to develop DN T cells as a potential therapeutic tool for inflammation, immune disorders and cancer.
Collapse
Affiliation(s)
- Zhiheng Wu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jin Sheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yicheng Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Yang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Gibbens J, Spencer SK, Solis L, Bowles T, Kyle PB, Szczepanski JL, Dumas JP, Robinson R, Wallace K. Fas ligand neutralization attenuates hypertension, endothelin-1, and placental inflammation in an animal model of HELLP syndrome. Am J Physiol Regul Integr Comp Physiol 2020; 319:R195-R202. [PMID: 32640833 DOI: 10.1152/ajpregu.00272.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralization of FasL is linked to suppression of hypertension, placental inflammation, and endothelin system activation in an animal model of hemolysis, elevated liver enzymes, low platelets (HELLP) syndrome. During HELLP syndrome the placenta has been reported to serve as the primary source of Fas ligand (FasL), which has an impact on inflammation and hypertension during pregnancy and is dysregulated in women with severe preeclampsia and HELLP syndrome. We hypothesize that neutralization of FasL during pregnancy in an animal model of HELLP syndrome decreases inflammation and placental apoptosis, improves endothelial damage, and improves hypertension. On gestational day (GD) 12, rats were chronically infused with placental antiangiogenic factors sFlt-1 and sEng to induce HELLP syndrome. To neutralize FasL, MFL4 or FasL antibody was infused into a subset of HELLP or normal pregnant rats on GD13. IgG infusion into another group of NP and HELLP rats on GD13 was used as a control for FasL antibody, and all rats were euthanized on GD19 after blood pressure measurement. Plasma and placentas were collected to assess inflammation, apoptosis, and the degree of placental debris activation of endothelial cells. Administration of MFL4 to HELLP rats significantly decreased blood pressure compared with untreated HELLP rats and HELLP rats infused with IgG and improved the biochemistry of HELLP syndrome. Both circulating and placental FasL were significantly attenuated in response to MFL4 infusion, as were levels of placental and circulating TNFα when compared with untreated HELLP rats and HELLP rats infused with IgG. Endothelial cells exposed to placental debris and media from HP + MFL4 rats secreted significantly less endothelin-1 compared with stimulated endothelial cells from HELLP placentas. Neutralization of FasL is associated with decreased MAP and improvement in placental inflammation and endothelial damage in an animal model of HELLP syndrome.
Collapse
Affiliation(s)
- Jacob Gibbens
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shauna-Kay Spencer
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lucia Solis
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Teylor Bowles
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Patrick B Kyle
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jamie L Szczepanski
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - John Polk Dumas
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Reanna Robinson
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kedra Wallace
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
6
|
Nemenoff RA, Kleczko EK, Hopp K. Renal double negative T cells: unconventional cells in search of a function. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S342. [PMID: 32016060 PMCID: PMC6976428 DOI: 10.21037/atm.2019.09.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research and Translation, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Emily K Kleczko
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research and Translation, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Brandt D, Hedrich CM. TCRαβ +CD3 +CD4 -CD8 - (double negative) T cells in autoimmunity. Autoimmun Rev 2018; 17:422-430. [PMID: 29428806 DOI: 10.1016/j.autrev.2018.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022]
Abstract
TCRαβ+CD3+CD4-CD8- "double negative" (DN) T cells comprise a small subset of mature peripheral T cells. The origin and function of DN T cells are somewhat unclear and discussed controversially. While DN T cells resemble a rare and heterogeneous T cell subpopulation in healthy individuals, numbers of TCRαβ+ DN T cells are expanded in several inflammatory conditions, where they also exhibit distinct effector phenotypes and infiltrate inflamed tissues. Thus, DN T cells may be involved in systemic inflammation and tissue damage in autoimmune/inflammatory conditions, including SLE, Sjögren's syndrome, and psoriasis. Here, the current understanding of the origin and phenotype of DN T cells, and their role in the instruction of immune responses, autoimmunity and inflammation will be discussed in health and disease.
Collapse
Affiliation(s)
- D Brandt
- Division of Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - C M Hedrich
- Division of Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| |
Collapse
|
8
|
Double negative (DN) αβ T cells: misperception and overdue recognition. Immunol Cell Biol 2014; 93:305-10. [PMID: 25420721 DOI: 10.1038/icb.2014.99] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/24/2022]
Abstract
CD4(-)CD8(-)double negative (DN) αβ T cells are legitimate components of the normal immune system. However, they are poorly understood and largely ignored by immunologists because of their historical association with the lymphoproliferation that occurs in mice (lpr and gld) and humans (autoimmune lymphoproliferative syndromes patients) with impaired Fas-mediated apoptosis where they are considered abnormal T cells. We believe that the traditional view that DN T cells that cause lymphoproliferation (hereafter referred to as lpr DN T cells) are CD4 and CD8 T cells that lost their coreceptor, conceived more than two decades ago, is flawed and that conflating lpr DN T cells with DN T cells found in normal immune system (hereafter referred to as nDN T cells) is unnecessarily dampening interest of this potentially important cell type. To begin rectifying these misperceptions, we will revisit the traditional view of lpr DN T cells and show that it does not hold true in light of recent immunological advances. In lieu of it, we offer a new model proposing that Fas-mediated apoptosis actively removes normally existing DN T cells from the periphery and that impaired Fas-mediated apoptosis leads to accumulation of these cells rather than de novo generation of DN T cells from activated CD4 or CD8 T cells. By doing so, we hope to provoke a new discussion that may lead to a consensus about the origin of lpr DN T cells and regulation of their homeostasis by the Fas pathway and reignite wider interest in nDN T cells.
Collapse
|
9
|
Martina MN, Noel S, Bandapalle S, Hamad ARA, Rabb H. T lymphocytes and acute kidney injury: update. Nephron Clin Pract 2014; 127:51-5. [PMID: 25343821 DOI: 10.1159/000363719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The immune system is among the key pathogenic factors in acute kidney injury (AKI). Various immune cells, including dendritic cells, natural killer T cells, T and B lymphocytes, neutrophils and macrophages are involved. Conventional CD4+ lymphocytes are well established to participate in early injury, and CD4+CD25+FoxP3 regulatory T cells are protective and can accelerate repair. A newly identified kidney T cell receptor + CD4-CD8- (double-negative) T cell has complex functions, including potentially anti-inflammatory roles in AKI. In this mini review, we summarize the data on the role of lymphocytes in AKI and set the stage for further mechanistic studies as well as interventions to improve outcomes.
Collapse
Affiliation(s)
- M N Martina
- Department of Pathology, Johns Hopkins University, Baltimore, Md., USA
| | | | | | | | | |
Collapse
|
10
|
Hamad ARAR, Arcara K, Uddin S, Donner T. The potential of Fas ligand (apoptosis-inducing molecule) as an unconventional therapeutic target in type 1 diabetes. Front Immunol 2012; 3:196. [PMID: 22807927 PMCID: PMC3395106 DOI: 10.3389/fimmu.2012.00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/21/2012] [Indexed: 01/10/2023] Open
Abstract
The development of type 1 diabetes (T1D) is driven by autoreactive T cells that attack and destroy the insulin-producing β-cells in pancreatic islets, forcing patients to take multiple daily insulin injections. Insulin therapy, however, is not a cure and diabetic patients often develop serious long-term microvascular and cardiovascular complications. Therefore, intensive efforts are being directed toward developing safe immunotherapy for the disease that does not impair host defense and preserves β-cells, leading to better glycemic control than exogenous insulin therapy. Engineering therapies that differentially cripple or tolerate autoreactive diabetogenic T cells while sparing protective T cells necessary for maintaining a competent immune system has proven challenging. Instead, recent efforts have focused on modulating or resetting the immune system through global but transient deletion of T cells or B cells using anti-CD3 or anti-CD20 mAb, respectively. However, phase III clinical trials have shown promising but modest efficacy so far with these approaches. Therefore, there is a need to identify novel biological targets that do not fit the classic properties of being involved in adaptive immune cell activation. In this prospective, we provide preclinical evidence that targeting Fas ligand (FasL) may provide a unique opportunity to prevent or cure T1D and perhaps other organ-specific autoimmune diseases without causing immune suppression. Unlike conventional targets that are involved in T and B lymphocyte activation (such as CD3 and CD20, respectively), FasL is an apoptosis-inducing surface molecule that triggers cell death by binding to Fas (also known as CD95 Apo-1). Therefore, targeting FasL is not expected to cause immune suppression, the Achilles Heel of conventional approaches. We will discuss the hypothesis that targeting FasL has unique benefits that are not offered by current immunomodulatory approaches.
Collapse
Affiliation(s)
- Abdel Rahim A R Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore,MD, USA
| | | | | | | |
Collapse
|
11
|
Amyloid precursor protein expression modulates intestine immune phenotype. J Neuroimmune Pharmacol 2011; 7:215-30. [PMID: 22124967 DOI: 10.1007/s11481-011-9327-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/14/2011] [Indexed: 12/16/2022]
Abstract
Amyloid precursor protein (APP) is widely expressed across many tissue and cell types. Proteolytic processing of the protein gives rise to a plethora of protein fragments with varied biological activities. Although a large amount of data has been generated describing the metabolism of the protein in neurons, its role in regulating the phenotype of other cells remains unclear. Based upon prior work demonstrating that APP regulates the activation phenotype of monocytic lineage cells, we hypothesized that APP can regulate macrophage activation phenotype in tissues other than brain. Ileums of the small intestines from C57BL6/J wild type and APP(-/-) mice were compared as a representative tissue normally associated with abundant macrophage infiltration. APP(-/-) intestines demonstrated diminished CD68 immunoreactivity compared to wild type mice. This correlated with significantly less cyclooxygenase-2 (cox-2), CD68, CD40, CD11c, and βIII-tubulin protein levels. Peritoneal macrophages from APP(-/-) mice demonstrated decreased in vitro migratory ability compared to wild type cells and diminished basal KC cytokine secretion. Whereas, APP(-/-) intestinal macrophages had an increase in basal KC cytokine secretion compared to wild type cells. Conversely, there was a significant decrease in multiple cytokine levels in APP(-/-) compared to wild type ileums. Finally, APP(-/-) mice demonstrated impaired absorption and increased motility compared to wild type mice. These data demonstrate the APP expression regulates immune cell secretions and phenotype and intestinal function. This data set describes a novel function for this protein or its metabolites that may be relevant not only for Alzheimer's disease but a range of immune-related disorders.
Collapse
|
12
|
Xiao Z, Mohamood AS, Uddin S, Gutfreund R, Nakata C, Marshall A, Kimura H, Caturegli P, Womer KL, Huang Y, Jie C, Chakravarti S, Schneck JP, Yagita H, Hamad ARA. Inhibition of Fas ligand in NOD mice unmasks a protective role for IL-10 against insulitis development. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:725-32. [PMID: 21718680 DOI: 10.1016/j.ajpath.2011.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/10/2011] [Accepted: 04/05/2011] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the destruction of pancreatic insulin-producing β cells by autoreactive T cells early in life. Despite daily insulin injections, patients typically develop cardiovascular and other complications; and intensive efforts are being directed toward identifying therapeutic targets to prevent the disease without directly impinging on the host defense. Fas ligand (FasL) is one potential target. Fas-FasL interactions primarily regulate T-cell homeostasis, not activation. Nevertheless, spontaneous gene mutation of Fas (called lpr mutation) or FasL (called the gld mutation) prevents autoimmune diabetes in nonobese diabetic (NOD) mice, the widely used model for T1D. Furthermore, although homozygous gld mutations cause age-dependent lymphoproliferation, limiting the gld mutation to one allele (NOD-gld/+) or treating NOD-wild-type mice with FasL-neutralizing monoclonal antibody completely prevents the disease development without causing lymphoproliferation or immune suppression. Herein, we show that the heterozygous gld mutation inhibits the accumulation of diabetogenic T cells in the pancreas, without interfering with their proliferation and expansion in the draining pancreatic lymph nodes. Pancreata from NOD-gld/+ mice contained B cells that expressed CD5 and produced IL-10, which was critical for maintenance of the disease resistance because its neutralization with an IL-10 receptor-blocking monoclonal antibody allowed accumulation of CD4 T cells in the pancreas and led to insulitis development. The results provide novel insights into the pathogenesis of T1D that could have important therapeutic implications.
Collapse
Affiliation(s)
- Zuoxiang Xiao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
IMPORTANCE OF THE FIELD Fas receptor is a mediator of the external apoptotic pathway in many cells and tissues. It is proposed that Fas receptor mediates osteoresorptive effects of estrogen deficiency and local/systemic inflammation. AREAS COVERED IN THIS REVIEW This review covers the past two decades of research on the expression and function of the Fas-Fas ligand system on bone cells, involvement in the pathogenesis of osteoresorption and potential therapeutic modulation. WHAT THE READER WILL GAIN We review the structure, biological function and intracellular signaling pathways of the Fas-Fas ligand system emphasizing the role of the non-apoptotic signaling pathways in bone cells, particularly osteoblast differentiation. We also present data on the in vitro expression and function of the Fas-Fas ligand system on osteoblast/osteoclast lineage cells, animal and human studies confirming its involvement in osteoresorptive disorders and potential therapeutic approaches to modulate its function. TAKE HOME MESSAGE Tissue specific therapeutic approaches need to be established to modify the Fas-Fas ligand system in osteoresorptive disorders as systemic targeting has many side effects. The most promising approach would be to target Fas signaling molecules coupled with osteoblast/osteoclast differentiation pathways, but a precise definition of these targets is still needed.
Collapse
Affiliation(s)
- Natasa Kovacic
- University of Zagreb School of Medicine, Department of Anatomy, Zagreb, HR-10000, Croatia.
| | | | | | | | | |
Collapse
|
14
|
Meijering BD, van der Wouden EA, Pelgröm V, Henning RH, Sharma K, Deelman LE. TGF-β Inhibits Ang II-Induced MAPK p44/42 Signaling in Vascular Smooth Muscle Cells by Ang II Type 1 Receptor Downregulation. J Vasc Res 2009; 46:459-68. [DOI: 10.1159/000200961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/14/2008] [Indexed: 11/19/2022] Open
|