1
|
Dube CT, Gilbert HTJ, Rabbitte N, Baird P, Patel S, Herrera JA, Baricevic-Jones I, Unwin RD, Chan D, Gnanalingham K, Hoyland JA, Richardson SM. Proteomic profiling of human plasma and intervertebral disc tissue reveals matrisomal, but not plasma, biomarkers of disc degeneration. Arthritis Res Ther 2025; 27:28. [PMID: 39930483 PMCID: PMC11809052 DOI: 10.1186/s13075-025-03489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration is a common cause of low back pain, and the most symptomatic patients with neural compression need surgical intervention to relieve symptoms. Current techniques used to diagnose IVD degeneration, such as magnetic resonance imaging (MRI), do not detect changes in the tissue extracellular matrix (ECM) as degeneration progresses. Improved techniques, such as a combination of tissue and blood biomarkers, are needed to monitor the progression of IVD degeneration for more effective treatment plans. METHODS To identify tissue and blood biomarkers associated with degeneration progression, we histologically graded 35 adult human degenerate IVD tissues and matched plasma from the individuals into two groups: mild degenerate and severe degenerate. Mass spectrometry was utilised to characterise proteomic differences in tissue and plasma between the two groups. Top differentially distributed proteins were further validated using immunohistochemistry and qRT-PCR. Additionally, correlational analyses were conducted to define similarities and differences between tissue and plasma protein changes in individuals with mild and severe IVD degeneration. RESULTS Our data revealed that the abundance of 31 proteins was significantly increased in severe degenerated IVD tissues compared to mild. Functional analyses showed that more than 40% of these proteins were matrisome-related, indicating differences in ECM protein composition between severe and mild degenerate IVD tissues. We confirmed adipocyte enhancer-binding protein 1 (AEBP1) as one of the most significantly enriched core matrisome genes and proteins as degeneration progressed. Compared to others, AEBP1 protein levels best distinguished between mild and severe degenerated IVD tissues with an area under the curve score of 0.768 (95% CI: 0.60-0.93). However, we found that protein changes from associated plasma exhibited a weak relationship with histological grading and AEBP1 tissue levels. Given that systemic plasma changes are complex, a larger sample cohort may be required to identify patterns in blood relating to IVD degeneration progression. CONCLUSIONS In this study, we have identified AEBP1 as a tissue marker for monitoring the severity of disc degeneration in humans. Further work to link alterations in tissue AEBP1 levels to changes in blood-related proteins will be beneficial for detailed monitoring of IVD degeneration thereby enabling more personalised treatment approaches.
Collapse
Affiliation(s)
- Christabel Thembela Dube
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Hamish T J Gilbert
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Guy Hilton Research Centre, School of Life Sciences, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Niamh Rabbitte
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Pauline Baird
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sonal Patel
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jeremy A Herrera
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ivona Baricevic-Jones
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Richard D Unwin
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Danny Chan
- School of Biomedical Sciences, Faculty of Medicine Building, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kanna Gnanalingham
- Department of Neurosurgery, Manchester Academy of Health Science Centre, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
2
|
Ebersberger A, Schaible HG. Do cytokines play a role in the transition from acute to chronic musculoskeletal pain? Pharmacol Res 2025; 212:107585. [PMID: 39778638 DOI: 10.1016/j.phrs.2025.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Musculoskeletal pain has a high prevalence of transition to chronic pain and/or persistence as chronic pain for years or even a lifetime. Possible mechanisms for the development of such pain states are often reflected in inflammatory or neuropathic processes involving, among others, cytokines and other molecules. Since biologics such as blockers of TNF or IL-6 can attenuate inflammation and pain in a subset of patients with rheumatoid arthritis, the question arises to what extent cytokines are involved in the generation of pain in human musculoskeletal diseases. In numerous experimental non-human studies, cytokines have been shown to alter neuronal sensitivity in the peripheral and central nociceptive systems. In this review, we addressed the involvement of cytokines in postoperative pain, complex regional pain syndrome, rheumatoid arthritis, osteoarthritis, temporomandibular joint disease, low back pain and fibromyalgia using PubMed searches including meta-analyses of data. There is evidence that certain pro- and anti-inflammatory cytokines are regulated in all of these diseases, often in both acute and chronic disease states. However, within these data, we found a great deal of heterogeneity in the association between cytokine levels and pain. Neutralization of cytokines showed antinociceptive effects in subgroups of patients with chronic pain (e.g., in a proportion of patients with rheumatoid arthritis), but failed to reduce chronic pain in other diseases (e.g., osteoarthritis). More systematic studies are needed to unravel the pathogenic role of cytokines in human musculoskeletal pain, taking into account the disease process and the mechanisms of pain initiation and maintenance.
Collapse
Affiliation(s)
- Andrea Ebersberger
- University Hospital of Jena, Institute of Physiology 1, Jena D-07740, Germany.
| | - Hans-Georg Schaible
- University Hospital of Jena, Institute of Physiology 1, Jena D-07740, Germany.
| |
Collapse
|
3
|
Lim HJ, Han KM, Kim SH, Ryu SK, You JR, Yoon JH, Kwon E, Kim JE, Kang BC. Antigenicity evaluation of lac color and exploratory study for identifying potential biomarkers of anaphylaxis. Lab Anim Res 2024; 40:40. [PMID: 39587638 PMCID: PMC11590302 DOI: 10.1186/s42826-024-00229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Lac color, a natural red dye derived from the larvae of laccifer lacca kerr, is one of the most commonly used substances in food. To date, no studies have reported on the antigenicity of lac color and the other biomarkers that can determine anaphylactic reactions. To address this, we evaluated the antigenicity of lac color through active systemic anaphylaxis (ASA) in addition to identifying potential biomarkers performing exploratory studies. For ASA test, Guinea pigs (n = 5) were sensitized with 0(negative control), 4 mg/kg of lac color, 4 mg/kg of lac color + FCA, and 5 mg/kg of ovalbumin + FCA (positive control) 3 times a week for three weeks. Fourteen days after the last sensitization, animals were challenged intravenously weekly for two weeks. Hematological and histopathological analyses were performed and compared to control groups. RESULTS In the ASA test, all lac color groups showed mild symptoms such as nose rubbing, urination, and evacuation, which are insufficient indicators of anaphylaxis. Exploratory studies identified several biomarkers: decreased platelet count, and increased basophil count; distention in the lung, and redness on the inner wall of trachea; mononuclear inflammatory cell infiltration (MICI) in the ear, and heart hemorrhage. When these biomarkers were applied to the ASA test of lac color, in comparison to the negative control group, the positive control group (ovalbumin + FCA) showed a significant over 60-fold reduction in platelet count and nearly threefold higher basophil count compared to other groups. Furthermore, only positive control group exhibited full lung distention and severe redness on the inner wall of the trachea. Mononuclear inflammatory cell infiltration (MICI) in the ear was about three times higher, and heart hemorrhage was only present in the positive control group compared to others. None of the lac color groups were different from the negative control group (p > 0.05), whereas the positive control group was significantly different (p < 0.05). CONCLUSIONS Our study concludes that lac color, at the tested concentrations, does not induce antigenicity in the guinea pig model, providing valuable safety data. Furthermore, the biomarkers identified in this study offer a supportive approach to evaluating the immunogenicity of substances in future research.
Collapse
Affiliation(s)
- Hyun-Jin Lim
- Laboratory Animal Medicine, Graduate School of Translational Medicine, College of Medicine, Seoul National University, 103, Daehak-ro Jongno-gu, Seoul, Republic of Korea
| | - Kang Min Han
- Laboratory Animal Medicine, Graduate School of Translational Medicine, College of Medicine, Seoul National University, 103, Daehak-ro Jongno-gu, Seoul, Republic of Korea
- Department of Pathology, CHA Ilsan Medical Center, Goyang-si, Republic of Korea
| | - Seung-Hyun Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo-Kyung Ryu
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Ran You
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Hee Yoon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Eun Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Byeong-Cheol Kang
- Laboratory Animal Medicine, Graduate School of Translational Medicine, College of Medicine, Seoul National University, 103, Daehak-ro Jongno-gu, Seoul, Republic of Korea.
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
4
|
De Simone M, Choucha A, Ciaglia E, Conti V, Pecoraro G, Santurro A, Puca AA, Cascella M, Iaconetta G. Discogenic Low Back Pain: Anatomic and Pathophysiologic Characterization, Clinical Evaluation, Biomarkers, AI, and Treatment Options. J Clin Med 2024; 13:5915. [PMID: 39407975 PMCID: PMC11477864 DOI: 10.3390/jcm13195915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Discogenic low back pain (LBP) is a significant clinical condition arising from degeneration of the intervertebral disc, a common yet complex cause of chronic pain, defined by fissuring in the annulus fibrosus resulting in vascularization of growing granulation tissue and growth of nociceptive nerve fibers along the laceration area. This paper delves into the anatomical and pathophysiological underpinnings of discogenic LBP, emphasizing the role of intervertebral disc degeneration in the onset of pain. The pathogenesis is multifactorial, involving processes like mitochondrial dysfunction, accumulation of advanced glycation end products, and pyroptosis, all contributing to disc degeneration and subsequent pain. Despite its prevalence, diagnosing discogenic LBP is challenging due to the overlapping symptoms with other forms of LBP and the absence of definitive diagnostic criteria. Current diagnostic approaches include clinical evaluations, imaging techniques, and the exploration of potential biomarkers. Treatment strategies range from conservative management, such as physical therapy and pharmacological interventions, to more invasive procedures such as spinal injections and surgery. Emerging therapies targeting molecular pathways involved in disc degeneration are under investigation and hold potential for future clinical application. This paper highlights the necessity of a multidisciplinary approach combining clinical, imaging, and molecular data to enhance the accuracy of diagnosis and the effectiveness of treatment for discogenic LBP, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Matteo De Simone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
- BrainLab S.R.L., Mercato San Severino, 84085 Salerno, Italy;
- Neurosurgery Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | - Anis Choucha
- Department of Neurosurgery, Aix Marseille University, APHM, UH Timone, 13005 Marseille, France;
- Laboratory of Biomechanics and Application, UMRT24, Gustave Eiffel University, Aix Marseille University, 13005 Marseille, France
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
- Clinical Pharmacology Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | | | - Alessandro Santurro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
- BrainLab S.R.L., Mercato San Severino, 84085 Salerno, Italy;
- Legal Medicine Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
| | - Marco Cascella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
| | - Giorgio Iaconetta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
- Neurosurgery Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
5
|
Sima S, Chen X, Diwan AD. The association between inflammatory biomarkers and low back disorder: a systematic review and meta-analysis. Biomarkers 2024; 29:171-184. [PMID: 38578280 DOI: 10.1080/1354750x.2024.2339285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Low back disorder (LBD) is a major cause of disability worldwide. Inflammation results in proliferation of cytokines or consequent degradation products (collectively known as inflammatory biomarkers) that activate pain pathways which can result in non-specific LBD. This systematic review and meta-analysis aim to evaluate the relationship between inflammatory biomarkers and clinical outcomes in patients with LBD. METHODS The PRISMA guideline was followed for the systematic reivew. Three online databases were searched. Four RCTs and sixteen observational studies with 1142 LBD patients were analysed. The primary outcomes were back and leg pain scores, back-specific disability scores and expression of inflammatory biomarkers. Standardized mean difference (SMD) and their 95% confidence intervals (CI) were evaluated. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to summarize the strength of evidence. RESULTS Four RCTs and sixteen observational studies were included in the analysis of 1142 patients with LBD. There was a statistically significant reduction in back pain score and IL-1 beta and increase in the expression of CTX-1 and IL-10 levels post treatment. There was a significant relationship between increase in the expression of MCP- and reduction in the expression of hsCRP with increase in back pain. Significant relationship was also observed between increase in the expression of MCP-1 and reduction in the expression of IL-6 with increase in leg pain. Increase in the expression of IL-8 and reduction in the expression of hsCRP was also associated with increased disability score. CONCLUSION Inflammatory biomarkers play a significant role in the pathogenesis of LBD. CTX-1, IL-10 and IL-1 beta may be responsible for the decrease in back pain scores post treatment. There is a relationship between MCP-1, IL-6, IL-8 and hsCRP with clinical and functional assessments for LBD. Further studies will improve understanding of the pathogenesis of LBD and aid in targeted management strategies.
Collapse
Affiliation(s)
- Stone Sima
- Spine Labs, St George and Sutherland Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Xiaolong Chen
- Spine Labs, St George and Sutherland Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Department of Orthopaedic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ashish D Diwan
- Spine Labs, St George and Sutherland Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Spine Service, Department of Orthopaedic Surgery, St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| |
Collapse
|
6
|
Jiang Z, Yao X, Lan W, Tang F, Ma W, Yao X, Chen C, Cai X. Associations of the circulating levels of cytokines with risk of systemic sclerosis: a bidirectional Mendelian randomized study. Front Immunol 2024; 15:1330560. [PMID: 38482004 PMCID: PMC10933062 DOI: 10.3389/fimmu.2024.1330560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Objective Systemic sclerosis(SSc) remains unclear, studies suggest that inflammation may be linked to its pathogenesis. Hence, we conducted a bidirectional Mendelian randomization (MR) analysis to evaluate the association between cytokine and growth factor cycling levels and the risk of SSc onset. Methods In our study, the instrumental variables(IVs) for circulating cytokines were sourced from the genome-wide association study (GWAS) dataset of 8293 Finnish individuals. The SSc data comprised 302 cases and 213145 controls, and was included in the GWAS dataset. We employed four methods for the MR analysis: MR Egger, Inverse variance weighted (IVW), Weighted medium, and Weighted Mode, with IVW being the primary analytical method. Sensitivity analyses were performed using heterogeneity testing, horizontal pleiotropy testing, and the Leave One Out (LOO) method. We also conducted a reverse MR analysis to determine any reverse causal relationship between SSc and circulating cytokines. Results After Bonferroni correction, MR analysis revealed that the Interleukin-5 (IL-5) cycle level was associated with a reduced risk of SSc [odds ratio (OR)=0.48,95% confidence interval (CI): 0.27-0.84, P=0.01]. It also indicated that the Stem cell growth factor beta (SCGF-β) cycling level might elevate the risk of SSc (OR = 1.36, 95% CI: 1.01-1.83, P = 0.04). However, the reverse MR analysis did not establish a causal relationship between SSc and circulating cytokine levels. Additionally, sensitivity analysis outcomes affirm the reliability of our results. Conclusion Our MR study suggests potential causal relationships between IL-5, SCGF-β, and the risk of SSc. Further research is essential to determine how IL-5 and SCGF-β influence the development of SSc.
Collapse
Affiliation(s)
- Zong Jiang
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoling Yao
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weiya Lan
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fang Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wukai Ma
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xueming Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Changming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin Cai
- Department of Rheumatology and Immunology, The First People’s Hospital Of Guiyang, Guiyang, China
| |
Collapse
|
7
|
Ratajczak M, Waszak M, Śliwicka E, Wendt M, Skrypnik D, Zieliński J, Krutki P. In search of biomarkers for low back pain: can traction therapy effectiveness be prognosed by surface electromyography or blood parameters? Front Physiol 2023; 14:1290409. [PMID: 38143914 PMCID: PMC10739392 DOI: 10.3389/fphys.2023.1290409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Background: Lumbar traction therapy is a common method to reduce low back pain (LBP) but is not always effective. The search for biomarkers that would prognose the effectiveness of LBP management is one priority for improving patients' quality of life. Objectives: 1) To determine the phenotype of patients benefiting most from lumbar traction therapy. 2) To correlate systemic and electromyographic biomarkers with pain and pain-related disability. Methods: Data on muscle bioelectrical activity (surface electromyography [SEMG]) in the flexion-extension task, the concentrations of twelve systemic biochemical factors, LBP intensity (Visual Analog Scale), the Oswestry Disability Index, and the Roland-Morris Disability Questionnaire (RMDQ) were collected before and 72 h after 20 sessions of lumbar traction therapy. Patients were divided into responders and nonresponders based on the criterion of a 50% reduction in maximal pain. Results: The responders had lower maximal muscle bioactivity in the extension phase on the left side (p < 0.01) and higher flexion-extension ratios on both sides of the body in the SEMG (left: p < 0.05; right: p < 0.01), and higher adipsin, interleukin-2, interleukin-4, and interleukin-10 concentrations (p < 0.05) than nonresponders. Patients with higher interleukin-4 concentrations before therapy achieved greater reductions in maximal pain in the sitting position, bioelectrical muscle activity in flexion, and flexion-relaxation ratio on the left side of the body. Changes in adipsin and interleukin-4 concentrations correlated with changes in LBP intensity (r = 0.68; r = -0.77). Changes in stem cell growth factor and interleukin-17A correlated with changes in RMDQ (R = 0.53) and bioelectrical muscle activity in extension (left: R = -0.67; right: R = -0.76), respectively. Conclusion: Responders to traction therapy had SEMG indices of less favorable muscle activity in the flexion-extension task and elevated indices of inflammation before the study. For the first time, interleukin-4 was indicated as a potential biomarker for prognosing post-therapy changes in pain intensity and muscle activity.
Collapse
Affiliation(s)
- Marzena Ratajczak
- Department of Medical Biology, Poznan University of Physical Education, Poznan, Poland
| | - Małgorzata Waszak
- Department of Medical Biology, Poznan University of Physical Education, Poznan, Poland
| | - Ewa Śliwicka
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poznan, Poland
| | - Michał Wendt
- Department of Medical Biology, Poznan University of Physical Education, Poznan, Poland
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Zieliński
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| | - Piotr Krutki
- Department of Medical Biology, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
8
|
Ratajczak M, Wendt M, Śliwicka E, Skrypnik D, Zieliński J, Kusy K, Krutki P, Waszak M. Subjective assessment and biochemical evaluation of traction therapy in women with chronic low back pain: does body mass index matter? A clinical study. BMC Musculoskelet Disord 2023; 24:196. [PMID: 36927409 PMCID: PMC10018835 DOI: 10.1186/s12891-023-06300-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Apart from the positive effect of lumbar traction on structural changes within the spine in patients with low back pain, it is likely that therapeutic effects are correlated with pain biomarkers in the blood. Among them, systemic metabolic factors related to obesity may play an important role. This is the first study designed to examine the effectiveness of traction therapy in two experimental groups with considerably different BMI and to assess relationships between blood biomarkers and low back pain intensity. METHODS In the prospective clinical trial, women suffering from chronic low back pain were allocated into the normal-weight or obesity groups. Patients in both groups underwent twenty sessions of lumbar traction therapy (30 min a day, continuous mode with a force level of 25-30% of body weight). Before and after therapy subjective assessments of pain (VAS and PPT) were performed, and serum concentrations of aggrecan chondroitin sulfate 846 epitope (CS-846), neuropeptide Y, leptin, adipsin and growth and differentiation factor 15 (GDF-15) were determined. The data were statistically evaluated for 28 women. RESULTS After therapy, the maximal low back pain decreased in both groups, GDF-15 concentration was reduced in the normal-weight group and increased in the obesity group, and CS-846 concentration decreased in the obesity group. The sensation of PPT in the lumbar spine and mean concentrations of neuropeptide Y, leptin and adipsin did not change in both groups. However, the relationships of GDF-15, leptin, and adipsin concentrations with the perception of pain were revealed. CONCLUSION Distinct differences between the normal-weight and obesity groups pointed on the role of excessive adipose tissue in aggravating the inflammatory processes and in the development of low back pain. Adipsin, CS-846 and GDF-15 aspire to be the low back pain biomarkers in women with obesity, but there is a need for further research to answer whether they might be considered reliable biomarkers for the prognosis and monitoring of chronic low back treatment. TRIAL REGISTRATION NCT04507074, registered prospectively on July 6, 2020.
Collapse
Affiliation(s)
- Marzena Ratajczak
- Department of Biology and Anatomy, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznan, Poland.
| | - Michał Wendt
- Department of Biology and Anatomy, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznan, Poland
| | - Ewa Śliwicka
- Department of Physiology and Biochemistry, Poznan University of Physical Education, 61-871, Poznan, Poland
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | - Jacek Zieliński
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871, Poznan, Poland
| | - Krzysztof Kusy
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871, Poznan, Poland
| | - Piotr Krutki
- Department of Biology and Anatomy, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznan, Poland
| | - Małgorzata Waszak
- Department of Biology and Anatomy, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznan, Poland
| |
Collapse
|
9
|
Dong YL, Tang N, Zhao H, Liang JQ. Nucleus Pulposus Cells from Calcified Discs Promote the Degradation of the Extracellular Matrix through Upregulation of the GATA3 Expression. Curr Med Sci 2023; 43:146-155. [PMID: 36821040 DOI: 10.1007/s11596-022-2686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 02/24/2023]
Abstract
OBJECTIVE Disc calcification is strongly associated with disc degeneration; however, the underlying mechanisms driving its pathogenesis are poorly understood. This study aimed to provide a gene expression profile of nucleus pulposus cells (NPCs) from calcified discs, and clarify the potential mechanism in disc degeneration. METHODS Primary NPCs were isolated from calcified and control discs (CAL-NPC and CON-NPC), respectively. The proliferation and extracellular matrix (ECM) metabolism capacities of the cells were evaluated using MTT and Western blotting, respectively. RNA sequencing was used to identify differentially expressed genes (DEGs) in the CAL-NPCs. The biological functions of the DEGs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The transcription factor database and Cytoscape software were used to construct the transcription factor-DEGs regulatory network. The role of the verified transcription factor in NPC proliferation and ECM metabolism was also investigated. RESULTS The CAL-NPCs exhibited a lower proliferation rate and higher ECM degradation capacity than the CON-NPCs. In total, 375 DEGs were identified in the CAL-NPCs. The GO and KEGG analyses showed that the DEGs were primarily involved in the regulation of ribonuclease activity and NF-kappa B and p53 signaling pathways. GATA-binding protein 3 (GATA3) with the highest verified levels was selected for further studies. Overexpression of GATA3 in the CON-NPCs significantly inhibited their proliferation and promoted their ECM degradation function, while the knockdown of GATA3 in the CAL-NPCs resulted in the opposite phenotypes. CONCLUSION This study provided a comprehensive gene expression profile of the NPCs from the calcified discs and supported that GATA3 could be a potential target for reversing calcification-associated disc degeneration.
Collapse
Affiliation(s)
- Yu-Lei Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ning Tang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hong Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jin-Qian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Zhang K, Gao L, Wang HX, Ye L, Shi YY, Yang WY, Li YN, Li Y. Interleukin-18 Inhibition Protects Against Intervertebral Disc Degeneration via the Inactivation of Caspase-3/9 Dependent Apoptotic Pathways. Immunol Invest 2022; 51:1895-1907. [PMID: 35921125 DOI: 10.1080/08820139.2022.2077113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The present study was designed to identify and understand the potential effectiveness of therapeutic target in intervertebral disc degeneration (IVDD) and its regulation mechanism. METHODS The role and mechanism of interleukin-18 (IL-18) in the disease were investigated. The IVDD degenerative nucleus pulposus (NP) tissues from the human and mouse models were used.A total of three groups of Male BALB/c mice were randomly made i.e control, IVDD, and IVDD+Ad-shIL-18 groups. After Ad-shIL-18 transfection, the expression of ECM synthesis related protein Aggrecan (ACAN) and Collagen II, apoptotic effector Caspases (Caspase-3, 8, 9, 12 and Cleaved-Caspase 3, 8, 9, 12), pro-apoptotic gene Bax and anti-apoptotic factors Bcl-2 in NP cells of the human were evaluated. RESULTS The results of our study revealed that the mRNA and protein expression levels of IL-18 were notably increased in the NP tissues of IVDD patients and mice models. In the IVDD mice model, Ad-sh-IL-18 treatment reversed the IVDD progression. The levels of Aggrecan and Collagen II, contributing to ECM degradation in NP cells, were also significantly increased. Additionally, Ad-sh-IL-18 could inhibit the NP cell's apoptosis via regulating the caspase-3/9 pathway. CONCLUSION The IL-18 knockdown via the caspase-3/9 pathway, might reduce the NP cell's death as well as the imbalance between catabolism and anabolism of ECM in IVDD.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Lei Gao
- Department of Bone Oncology, Second Hospital of Zhangjiakou, Zhangjiakou, Hebei, China
| | - Hai-Xu Wang
- Department of Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Ye
- Department of Infection Control, HanDan Central Hospital, Handan, Hebei, China
| | - Yan-Yan Shi
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Wu-Yan Yang
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Ya-Nan Li
- Department of Neurology, HanDan Central Hospital, Handan, Hebei, China
| | - Yan Li
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| |
Collapse
|
11
|
Tian Z, Shofer FS, Sandroni AZ, Zhao L, Scanzello CR, Zhang Y. Expression of Human Interleukin 8 in Mice Alters Their Natural Behaviors. J Inflamm Res 2022; 15:2413-2424. [PMID: 35444450 PMCID: PMC9013918 DOI: 10.2147/jir.s355669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To examine the effects of human interleukin (IL) 8 expression on mouse behavior. Methods A mouse line expressing human IL8 in the intervertebral discs (IVD) and cartilaginous tissues (hIL8+ ) was generated. Mouse spontaneous behaviors, including locomotion, climbing, rearing, grooming, eating, drinking, and immobility were recorded with a fully automatic, non-invasive platform. Results Distance traveled by the hIL8+ mice declined with age compared with control littermates, and male hIL8+ mice traveled a shorter distance than male controls and females of either genotype (p <0.05). The hIL8+ mice also spent less time in locomotion than control mice (p <0.01), and male hIL8+ mice spent the least amount of time and had lowest count in locomotion compared with the other 3 groups at 12 weeks of age or greater (p <0.05). The hIL8+ mice spent less time climbing than controls, and male mice spent less time climbing than female mice of the same genotype (p <0.01). The hIL8+ mice spent more time eating and less time drinking than controls, and all mice spent less time eating and more time drinking with increasing age. Finally, hIL8+ mice spent more time immobile than controls, and male hIL8+ mice spent more time immobile than any other group (p <0.05). Conclusion The hIL8+ mice, especially hIL8+ males, showed reduced ambulation and climbing. Mice showed age-related decrease in eating and increase in drinking and grooming time that was also influenced by expression of hIL8. These changes in natural behaviors in control mice are consistent with functional decline with age. Effects of hIL8 superimposed on the natural aging process could involve systemic (e.g., on the brain) and local (e.g., in the spine and joint tissues) mechanisms. Future exploration of these mechanisms might be productive.
Collapse
Affiliation(s)
- Zuozhen Tian
- Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Frances S Shofer
- Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA,Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alec Z Sandroni
- Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Carla R Scanzello
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Section of Rheumatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Yejia Zhang
- Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA,Section of Rehabilitation Medicine, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA,Correspondence: Yejia Zhang, Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA, Email ;
| |
Collapse
|
12
|
Resveratrol Inhibition of the WNT/β-Catenin Pathway following Discogenic Low Back Pain. Int J Mol Sci 2022; 23:ijms23084092. [PMID: 35456908 PMCID: PMC9024678 DOI: 10.3390/ijms23084092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Low back pain (LBP) management is an important clinical issue. Inadequate LBP control has consequences on the mental and physical health of patients. Thus, acquiring new information on LBP mechanism would increase the available therapeutic tools. Resveratrol is a natural compound with many beneficial effects. In this study, we investigated the role of resveratrol on behavioral changes, inflammation and oxidative stress induced by LBP. Ten microliters of Complete Freund’s adjuvant (CFA) was injected in the lumbar intervertebral disk of Sprague Dawley rats to induce degeneration, and resveratrol was administered daily. Behavioral analyses were performed on day zero, three, five and seven, and the animals were sacrificed to evaluate the molecular pathways involved. Resveratrol administration alleviated hyperalgesia, motor disfunction and allodynia. Resveratrol administration significantly reduced the loss of notochordal cells and degenerative changes in the intervertebral disk. From the molecular point of view, resveratrol reduced the 5th/6th lumbar (L5–6) spinal activation of the WNT pathway, reducing the expression of WNT3a and cysteine-rich domain frizzled (FZ)8 and the accumulation of cytosolic and nuclear β-catenin. Moreover, resveratrol reduced the levels of TNF-α and IL-18 that are target genes strictly downstream of the WNT/β-catenin pathway. It also showed important anti-inflammatory activities by reducing the activation of the NFkB pathway, the expression of iNOS and COX-2, and the levels of PGE2 in the lumbar spinal cord. Moreover, resveratrol reduced the oxidative stress associated with inflammation and pain, as shown by the observed reduced lipid peroxidation and increased GSH, SOD, and CAT activities. Therefore, resveratrol administration controlled the WNT/β-catenin pathway and the related inflammatory and oxidative alterations, thus alleviating the behavioral changes induced by LBP.
Collapse
|
13
|
Tarabeih N, Kalinkovich A, Shalata A, Cherny SS, Livshits G. Deciphering the Causal Relationships Between Low Back Pain Complications, Metabolic Factors, and Comorbidities. J Pain Res 2022; 15:215-227. [PMID: 35125889 PMCID: PMC8809521 DOI: 10.2147/jpr.s349251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Nader Tarabeih
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Maale HaCarmel Mental Health Center, Affiliated to Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa, Israel
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Stacey S Cherny
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
- Correspondence: Gregory Livshits, Department of Morphological Studies, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel, Tel +972-3-6409494, Fax +972-3-6408287, Email
| |
Collapse
|
14
|
Yan Q, Xiao Q, Ge J, Wu C, Wang Y, Yu H, Yang H, Zou J. Bioinformatics-Based Research on Key Genes and Pathways of Intervertebral Disc Degeneration. Cartilage 2021; 13:582S-591S. [PMID: 33233925 PMCID: PMC8804785 DOI: 10.1177/1947603520973247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To find out the pathways and key genes and to reveal disc degeneration pathogenesis based on bioinformatic analyses. DESIGN The GSE70362 dataset was downloaded from the GEO (Gene Expression Omnibus) database. Differentially expressed genes (DEGs) between the patients having disc degeneration and healthy controls were screened by Limma package in R language. Critical genes were identified by adopting gene ontologies (GOs), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. RESULTS We identified 112 DEGs, including 60 genes which were upregulated and 52 that were downregulated. Analyses, such as GO and KEGG demonstrated that the DEGs got enriched in 4 biological processes and 2 signaling pathways, mainly related to disc degeneration. The PPI network analyses identified 5 key proteins, CCND1 (cyclin D1), GATA3, TNFSF11, LEF1, and DKK1 (Dickkopf related protein 1). CONCLUSION In this study, the DEGs and pathways determined promoted us understand the disc degeneration mechanisms. Also, the study may contribute novel biomarkers for the diagnosis and prevention of disc degeneration, and seek new treatment methods to repair and even regenerate degenerative intervertebral disc.
Collapse
Affiliation(s)
- Qi Yan
- Department of Orthopaedic Surgery, The
First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Quan Xiao
- Department of Orthopaedic Surgery, The
First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, The
Affiliated Lianshui People’s Hospital of Kangda College of Nan Jing Medical
Universty, Lianshui, Jiangsu, China
| | - Jun Ge
- Department of Orthopaedic Surgery, The
First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The
First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yingjie Wang
- Department of Orthopaedic Surgery, The
First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Yu
- Department of Orthopaedic Surgery, The
First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The
First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The
First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
The Wnt/ β-Catenin Pathway Regulated Cytokines for Pathological Neuropathic Pain in Chronic Compression of Dorsal Root Ganglion Model. Neural Plast 2021; 2021:6680192. [PMID: 33959159 PMCID: PMC8075704 DOI: 10.1155/2021/6680192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023] Open
Abstract
Neuropathic pain is one of the important challenges in the clinic. Although a lot of research has been done on neuropathic pain (NP), the molecular mechanism is still elusive. We aimed to investigate whether the Wnt/β-catenin pathway was involved in NP caused by sustaining dorsal root ganglion (DRG) compression with the chronic compression of dorsal root ganglion model (CCD). Our RNA sequencing results showed that several genes related to the Wnt pathway have changed in DRG and spinal cord dorsal horn (SCDH) after CCD surgery. Therefore, we detected the activation of the Wnt/β-catenin pathway in DRG and SCDH and found active β-catenin significantly upregulated in DRG and SCDH 1 day after CCD surgery and peaked on days 7-14. Immunofluorescence results also confirmed nuclear translocalization of active β-catenin in DRG and SCDH. Additionally, rats had obvious mechanical induced pain after CCD surgery and the pain was significantly alleviated after the application of the Wnt/β-catenin pathway inhibitor XAV939. Furthermore, we found that the levels of proinflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18) were significantly elevated in CCD rat serum, while the levels of them were correspondingly decreased after the Wnt/β-catenin pathway being inhibited. The results of Spearman correlation coefficient analysis showed that the levels of TNF-α and IL-18 were negatively correlated with the mechanical withdrawal thresholds (MWT) after CCD surgery. Collectively, our findings suggest that the Wnt/β-catenin pathway plays a critical role in the pathogenesis of NP and may be an effective target for the treatment of NP.
Collapse
|
16
|
Lee NN, Kramer JS, Stoker AM, Bozynski CC, Cook CR, Stannard JT, Choma TJ, Cook JL. Canine models of spine disorders. JOR Spine 2020; 3:e1109. [PMID: 33392448 PMCID: PMC7770205 DOI: 10.1002/jsp2.1109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Neck and low back pain are common among the adult human population and impose large social and economic burdens on health care and quality of life. Spine-related disorders are also significant health concerns for canine companions with etiopathogeneses, clinical presentations, and diagnostic and therapeutic options that are very similar to their human counterparts. Historically, induced and spontaneous pathology in laboratory rodents, dogs, sheep, goats, pigs, and nonhuman primates have been used for study of human spine disorders. While each of these can serve as useful preclinical models, they all have inherent limitations. Spontaneously occurring spine disorders in dogs provide highly translatable data that overcome many of the limitations of other models and have the added benefit of contributing to veterinary healthcare as well. For this scoping review, peer-reviewed manuscripts were selected from PubMed and Google Scholar searches using keywords: "intervertebral disc," "intervertebral disc degeneration," "biomarkers," "histopathology," "canine," and "mechanism." Additional keywords such as "injury," "induced model," and "nucleus degeneration" were used to further narrow inclusion. The objectives of this review were to (a) outline similarities in key features of spine disorders between dogs and humans; (b) describe relevant canine models; and (c) highlight the applicability of these models for advancing translational research and clinical application for mechanisms of disease, diagnosis, prognosis, prevention, and treatment, with a focus on intervertebral disc degeneration. Best current evidence suggests that dogs share important anatomical, physiological, histological, and molecular components of spinal disorders in humans, such that induced and spontaneous canine models can be very effective for translational research. Taken together, the peer-reviewed literature supports numerous advantages for use of canine models for study of disorders of the spine when the potential limitations and challenges are addressed.
Collapse
Affiliation(s)
- Naomi N. Lee
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
- Comparative Medicine ProgramUniversity of MissouriColumbiaMissouriUSA
| | - Jacob S. Kramer
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Aaron M. Stoker
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Chantelle C. Bozynski
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Cristi R. Cook
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - James T. Stannard
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Theodore J. Choma
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - James L. Cook
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
17
|
Tonomura H, Nagae M, Takatori R, Ishibashi H, Itsuji T, Takahashi K. The Potential Role of Hepatocyte Growth Factor in Degenerative Disorders of the Synovial Joint and Spine. Int J Mol Sci 2020; 21:ijms21228717. [PMID: 33218127 PMCID: PMC7698933 DOI: 10.3390/ijms21228717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
This paper aims to provide a comprehensive review of the changing role of hepatocyte growth factor (HGF) signaling in the healthy and diseased synovial joint and spine. HGF is a multifunctional growth factor that, like its specific receptor c-Met, is widely expressed in several bone and joint tissues. HGF has profound effects on cell survival and proliferation, matrix metabolism, inflammatory response, and neurotrophic action. HGF plays an important role in normal bone and cartilage turnover. Changes in HGF/c-Met have also been linked to pathophysiological changes in degenerative joint diseases, such as osteoarthritis (OA) and intervertebral disc degeneration (IDD). A therapeutic role of HGF has been proposed in the regeneration of osteoarticular tissues. HGF also influences bone remodeling and peripheral nerve activity. Studies aimed at elucidating the changing role of HGF/c-Met signaling in OA and IDD at different pathophysiological stages, and their specific molecular mechanisms are needed. Such studies will contribute to safe and effective HGF/c-Met signaling-based treatments for OA and IDD.
Collapse
|
18
|
Circulating Levels of Visceral Adipose Tissue-Derived Serine Protease Inhibitor (Vaspin) Appear as a Marker of Musculoskeletal Pain Disability. Diagnostics (Basel) 2020; 10:diagnostics10100797. [PMID: 33049941 PMCID: PMC7599595 DOI: 10.3390/diagnostics10100797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Musculoskeletal pain (MSP), specifically low back pain (LBP), is often associated with several adipose tissue-derived cytokines (adipokines) and body composition, but their correlations with the LBP-related disability/severity phenotypes remain poorly understood. In this cross-sectional study, two self-reported validated questionnaires were used to collect back pain and disability data in an ethnically homogeneous family-based population sample (N = 1078). Plasma levels of relatively new adipokines, vaspin and adipsin, were detected by ELISA. Body composition parameters, including fat, skeletal muscle mass, extracellular water (ECW), and others were assessed through bioelectrical impedance analysis (BIA) technology. Statistical analysis was conducted, accounting for the familial composition of the sample. The multiple regression analyses with four LBP-related phenotypes as dependent variables consistently showed, for the first time, the significant associations with vaspin levels, regardless of other covariates. The odds ratios (OR)/SD ranged between 1.24 (95%CI = 1.03-1.50) and 1.33 (95%CI = 1.07-1.64), depending on the LBP phenotype. Among the tested body composition covariates, only ECW levels displayed consistent and highly significant associations with all tested LBP phenotypes (OR from 1.43, 95%CI = 1.14-1.79 to 1.68, 95%CI = 1.26-2.24). The results clearly suggest that circulating concentrations of vaspin and ECW levels could serve as biomarkers of MSP/LBP severity and complications.
Collapse
|
19
|
Severity of intervertebral disc herniation regulates cytokine and chemokine levels in patients with chronic radicular back pain. Osteoarthritis Cartilage 2020; 28:1341-1350. [PMID: 32653386 PMCID: PMC7529955 DOI: 10.1016/j.joca.2020.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/29/2020] [Accepted: 06/29/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The contributions of intervertebral disc disease and subject-specific covariates to systemic inflammation in low back pain are unknown. We examined the effects of symptomatic disc herniation (DH) and MRI herniation severity on serum cytokine levels in clinical subjects. DESIGN Cytokine levels from lumbar DH subjects (N = 78) were compared to control subjects (N = 57) accounting for effects of DH, age, body mass index (BMI) and gender. Effect of DH severity on cytokine levels was analyzed on subsets of subjects with acute or chronic pain. Serum cytokines were also analyzed in a subset of patients between pre- and 3 months post-surgery. RESULTS Cytokine levels were elevated in the serum of patients with symptomatic DH, and the covariates age, BMI and gender significantly contributed to levels of some cytokines. Severity of herniation was a significant contributor to pain intensity (VAS), serum levels of HMGB1, PDGFbb, and IL-9. The relationship between DH severity and cytokine levels was confirmed in subjects with chronic, but not acute symptoms. Serum levels of macrophage migration inhibitory factor (MIF) decreased, whereas levels of CCL3, CCL11, CXCL1, and CXCL10 were significantly elevated post surgery. CONCLUSIONS This study is the first to show that DH severity is coordinately associated with changes in serum levels of inflammatory cytokines in chronic pain subjects. HMGB1, PDGFbb and IL-9 are novel mediators of increasing DH severity, indicative of cellular damage, neuro-inflammation and angiogenesis. Resolution of inflammation was observed with decrease in MIF post surgery. However, elevated chemokine levels indicate ongoing remodeling and wound healing at 3-month time point.
Collapse
|
20
|
Qiu S, Shi C, Anbazhagan AN, Das V, Arora V, Kc R, Li X, O-Sullivan I, van Wijnen A, Chintharlapalli S, Gott-Velis G, Richard R, Mwale F, Shibuya M, Min S, Im HJ. Absence of VEGFR-1/Flt-1 signaling pathway in mice results in insensitivity to discogenic low back pain in an established disc injury mouse model. J Cell Physiol 2020; 235:5305-5317. [PMID: 31875985 PMCID: PMC9782756 DOI: 10.1002/jcp.29416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
Although degenerative disc disease (DDD) and related low back pain (LBP) are growing public health problems, the underlying disease mechanisms remain unclear. An increase in the vascular endothelial growth factor (VEGF) levels in DDD has been reported. This study aimed to examine the role of VEGF receptors (VEGFRs) in DDD, using a mouse model of DDD. Progressive DDD was induced by anterior stabbing of lumbar intervertebral discs in wild type (WT) and VEGFR-1 tyrosine-kinase deficient mice (vegfr-1TK-/- ). Pain assessments were performed weekly for 12 weeks. Histological and immunohistochemical assessments were made for discs, dorsal root ganglions, and spinal cord. Both vegfr-1TK-/- and WT mice presented with similar pathological changes in discs with an increased expression of inflammatory cytokines and matrix-degrading enzymes. Despite the similar pathological patterns, vegfr-1TK-/- mice showed insensitivity to pain compared with WT mice. This insensitivity to discogenic pain was related to lower levels of pain factors in the discs and peripheral sensory neurons and lower spinal glial activation in the vegfr-1TK- /- mice than in the WT mice. Exogenous stimulation of bovine disc cells with VEGF increased inflammatory and cartilage degrading enzyme. Silencing vegfr-1 by small-interfering-RNA decreased VEGF-induced expression of pain markers, while silencing vegfr-2 decreased VEGF-induced expression of inflammatory and metabolic markers without changing pain markers. This suggests the involvement of VEGFR-1 signaling specifically in pain transmission. Collectively, our results indicate that the VEGF signaling is involved in DDD. Particularly, VEGFR-1 is critical for discogenic LBP transmission independent of the degree of disc pathology.
Collapse
Affiliation(s)
- Sujun Qiu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, the Second Military Medical University of China, Shanghai, China
| | | | - Vaskar Das
- Departments of Anesthesiology, Rush University Medical Center, Chicago, IL, United States
| | - Vipin Arora
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ranjan Kc
- Division of Orthopedic Surgery, the Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | - Xin Li
- Department of Bioengineering, University of Illinois at Chicago, IL, United States
| | - InSug O-Sullivan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andre van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, NM, United States
| | | | - Gina Gott-Velis
- Department of Bioengineering, University of Illinois at Chicago, IL, United States
- Departments of Anesthesiology, the University of Illinois at Chicago (UIC), IL, United States
| | - Ripper Richard
- Departments of Anesthesiology, the University of Illinois at Chicago (UIC), IL, United States
| | - Fackson Mwale
- Orthopaedics Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Shaoxiong Min
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hee-Jeong Im
- Department of Bioengineering, University of Illinois at Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL, United States
| |
Collapse
|
21
|
Brent JM, Tian Z, Yao L, Huang J, Markova DZ, Shofer FS, Brice AK, Qin L, Scanzello CR, Vitale F, Chen D, Zhang Y. Functional Deficits in Mice Expressing Human Interleukin 8. Comp Med 2020; 70:205-215. [PMID: 32312361 DOI: 10.30802/aalas-cm-19-000049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We showed previously that inflammatory mediators, including IL8, in intervertebral disc tissues from patients with discogenic back pain may play a key role in back pain. To investigate the molecular mechanism of IL8 signaling in back pain, we generated a mouse model that conditionally expresses human (h) IL8. We hypothesized that hIL8 levels affect mouse activity and function. Briefly, hIL8 cDNA was inserted into the pCALL2 plasmid, linearized, and injected into mouse embryos. Resulting pCALL2-hIL8 mice were then bred with GDF5-Cre mice to express the transgene in cartilage and intervertebral disc (IVD) tissues. Functional capacities including nest-making and other natural behaviors were measured. Both male and female mice expressing hIL8 showed lower nesting scores than did littermates that did not express hIL8 (n = 14 to 16 per group). At 28 wk of age, mice expressing hIL8 (n = 35) spent more time immobile and eating during each night than littermate controls (n = 33). Furthermore, hIL8-expressing mice traveled shorter distances and at a lower average speed than littermate controls. Thus, in an initial effort to investigate the relationship between this chemokine and mouse behavior, we have documented changes in normal activities in mice conditionally expressing hIL8.
Collapse
Affiliation(s)
- Julie Michelle Brent
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania;,
| | - Zuozhen Tian
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania; Department of Orthopaedics-Sports Medicine and Joint Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Dessislava Z Markova
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Frances S Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Angela K Brice
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania
| | - Carla R Scanzello
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania; Department of Rheumatology, Perelman School of Medicine, University of Pennsylvania; Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Flavia Vitale
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania; Department of Neurology, Perelman School of Medicine, University of Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Yejia Zhang
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania; Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Modulation of the In Vivo Inflammatory Response by Pro- Versus Anti-Inflammatory Intervertebral Disc Treatments. Int J Mol Sci 2020; 21:ijms21051730. [PMID: 32138314 PMCID: PMC7084831 DOI: 10.3390/ijms21051730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is central in intervertebral disc (IVD) degeneration/regeneration mechanisms, and its balance is crucial to maintain tissue homeostasis. This work investigates the modulation of local and systemic inflammatory response associated with IVD degeneration/herniation by administration of PRO- versus ANTI-inflammatory treatments. Chitosan/poly-γ-glutamic acid nanocomplexes, known as pro-inflammatory (PRO), and soluble diclofenac, a non-steroidal anti-inflammatory drug (ANTI), were intradiscally administered in a rat IVD injury model, 24 h after lesion. Two weeks after administration, a reduction of disc height accompanied by hernia formation was observed. In the PRO-inflammatory treated group, IL-1β, IL-6 and COX-2 IVD gene expression were upregulated, and loss of nucleus pulposus (NP) structure and composition was observed. Systemically, lower T-cell frequency was observed in the lymph nodes (LN) and spleen (SP) of the PRO group, together with an increase in CD4+ T cells subset in the blood (BL) and LN. In contrast, the ANTI-group had higher proteoglycans/collagen ratio and collagen type 2 content in the NP, while an increase in the frequency of myeloid cells, M1 macrophages and activated macrophages (MHCII+) was observed at the systemic level. Overall, this study illustrates the dynamics of local and systemic inflammatory and immune cell responses associated with intradiscal therapies, which will contribute to designing more successful immunomodulatory treatments for IVD degeneration.
Collapse
|
23
|
Wang M, Guo J, Zhang L, Kuek V, Xu J, Zou J. Molecular structure, expression, and functional role of Clec11a in skeletal biology and cancers. J Cell Physiol 2020; 235:6357-6365. [PMID: 32003015 DOI: 10.1002/jcp.29600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
C-type lectin domain family 11 member A (Clec11a), also known as stem cell growth factor (SCGF), C-type lectin superfamily member 3 (CLECSF3), or osteolectin was initially identified as a growth factor for hematopoietic progenitor cells. The human Clec11a gene encodes a polypeptide of 323 amino acids with characteristics of a secreted glycoprotein encompassing two integrin-binding motifs, RGD (Arg-Gly-Asp) and LDT (Leu-Asp-Thr), a putative leucine zipper domain, and a functional C-type lectin domain. It regulates hematopoietic differentiation and homeostasis and exhibits a protective effect against severe malarial anemia and lipotoxicity. Furthermore, Clec11a promotes the differentiation of mesenchymal progenitors into mature osteoblasts in vitro and plays an important role in the maintenance of adult skeleton age-related bone loss and fracture repair. Receptor ligand binding results in activation of downstream signaling cascades including glycogen synthase kinase 3 (GSK3), β-catenin, and Wnt, resulting in the expression of osteoblast-related gene transcripts including Alp, Runx2, Lef1, and Axin2. In addition, Clec11a is also associated with the development of several cancers, including leukemia, multiple myeloma, and gastrointestinal tract tumors. To date, however, the mechanisms governing transcription regulation of the Clec11a gene are not known and remain to be uncovered. Understanding the function and mechanism of action of Clec11a will pave the way for the development of Clec11a as a novel therapeutic target for conditions such as cancer, anemia, and skeletal diseases.
Collapse
Affiliation(s)
- Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Vincent Kuek
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
24
|
The Effect of Zoledronic Acid on Serum Biomarkers among Patients with Chronic Low Back Pain and Modic Changes in Lumbar Magnetic Resonance Imaging. Diagnostics (Basel) 2019; 9:diagnostics9040212. [PMID: 31817123 PMCID: PMC6963270 DOI: 10.3390/diagnostics9040212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of the current study was to compare changes in serum biomarkers, including inflammatory mediators, signaling molecules, growth factors and markers of bone turnover after a single intravenous infusion of 5 mg zoledronic acid (ZA, a long-acting bisphosphonate; n = 20) or placebo (n = 20) among patients with Modic changes (MC) and chronic low back pain in a randomized controlled design. The MCs were classified into M1, predominating M1, predominating M2, and M2. We measured the serum concentrations of 39 biomarkers at baseline, and one month and one year after treatment. After Benjamini–Hochberg (B–H) correction, we observed significant differences in three biomarkers over one year: Interferon-γ-inducible protein (IP-10) had risen in the ZA group (p = 0.005), whereas alkaline phosphatase (AFOS) and intact procollagen I N-terminal propeptide (iPINP) had significantly decreased in the ZA group, but had not changed in the placebo group (p < 0.001 for both). Change in iPINP correlated with change in the volume of all MC and M1 lesions. ZA downregulated bone turnover markers as expected and, surprisingly, increased the chemokine IP-10 relative to placebo treatment. This adds to our knowledge of the effects of ZA on MC and the biomarkers that signal this process.
Collapse
|
25
|
Park EH, Moon SW, Suh HR, Hochman S, Lee MG, Kim YI, Jang IT, Han HC. Disc degeneration induces a mechano-sensitization of disc afferent nerve fibers that associates with low back pain. Osteoarthritis Cartilage 2019; 27:1608-1617. [PMID: 31326554 DOI: 10.1016/j.joca.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We aimed to investigate mechano-sensitivity at the afferent nerve fibers projecting to degenerated intervertebral disc (IVD) and nociceptive behaviour in a rat model of low back pain (LBP). DESIGN Animal model with LBP was established by lumbar 4/5 IVD puncture and nucleus pulposus aspiration. In vivo single nerve recordings (n = 121) were introduced to measure discharge frequency at the afferent nerve fiber innervating the IVD during mechanical stimulations (von Frey filament or intradiscal pressure). Nerve growth factor (NGF) expression levels in the IVD (n = 20) were assessed by Western blot. LBP-related behaviour (n = 22) was assessed by measuring changes in rearing, mechanical paw-withdrawal threshold, and dynamic weight bearing in a freely walking rat. Inhibitory effect of morphine on the neuronal excitability (n = 19) and painful behaviour (n = 28) was also assessed. RESULTS Compared to those with sham or naïve IVD, animal group with degenerated IVD displayed the sensitized neuronal responses and painful behaviour, with hyperexcitability of the afferent nerve fibers in any range of mechanical stimulations (von Frey filament stimulation; 1, 2, and 26 g; intradiscal pressure, 1,500-3,000 mm Hg), strong upregulation of NGF (200-250 % increase), and LBP-like behaviour such as failure of rearing, front limbs-dependent walking pattern, and hypersensitivity in hind-paws. However, the neuronal hyperexcitability and pain behaviour were attenuated after local (30 μM) or systemic (3 mg kg-1) morphine administration. CONCLUSIONS Our study suggests that enhanced mechano-sensitivity at the afferent nerve fiber innervating degenerated IVD is deeply correlated with LBP development, which supports the hypothesis that hyperexcited responses at the nerve fibers represent a decisive source of LBP.
Collapse
Affiliation(s)
- E H Park
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| | - S W Moon
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| | - H R Suh
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| | - S Hochman
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| | - M-G Lee
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| | - Y I Kim
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| | - I T Jang
- Nanoori Hospital, Seoul, South Korea
| | - H C Han
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea.
| |
Collapse
|
26
|
Changes in inflammatory plasma proteins from patients with chronic pain associated with treatment in an interdisciplinary multimodal rehabilitation program – an explorative multivariate pilot study. Scand J Pain 2019; 20:125-138. [DOI: 10.1515/sjpain-2019-0088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/10/2019] [Indexed: 01/04/2023]
Abstract
Abstract
It has been suggested that alterations in inflammation molecules maintain chronic pain although little is known about how these factors influence homeostatic and inflammatory events in common chronic pain conditions. Nonpharmacological interventions might be associated with alterations in inflammation markers in blood. This study of patients with chronic pain investigates whether an interdisciplinary multimodal rehabilitation program (IMMRP) was associated with significant alterations in the plasma pattern of 68 cytokines/chemokines 1 year after rehabilitation and whether such changes were associated with clinical changes. Blood samples and self-reports of pain, psychological distress, and physical activity of 25 complex chronic pain patients were collected pre-IMMRP and at 12-month follow-up. Analyses of inflammatory proteins (cytokines/chemokines/growth factors) were performed directly in plasma using the multiplex immunoassay technology Meso Scale Discovery. This explorative pilot study found that 12 substances, mainly pro-inflammatory, decreased after IMMRP. In two other relatively small IMMRP studies, four of these proinflammatory markers were also associated with decreases. The pattern of cytokines/chemokines pre-IMMRP was associated with changes in psychological distress but not with pain or physical activity. The present study cannot impute cause and effect. These results together with the results of the two previous IMMRP studies suggest that there is a need for larger and more strictly controlled studies of IMMRP with respect to inflammatory markers in blood. Such studies need to consider responders/non-responders, additional therapies, involved pain mechanisms and diagnoses. This and the two other studies open up for developing biologically measurable outcomes from plasma. Such biomarkers will be an important tool for further development of IMMRP and possibly other treatments for patients w ith chronic pain.
Collapse
|
27
|
Teodorczyk-Injeyan JA, Triano JJ, Injeyan HS. Nonspecific Low Back Pain: Inflammatory Profiles of Patients With Acute and Chronic Pain. Clin J Pain 2019; 35:818-825. [PMID: 31283548 PMCID: PMC6735949 DOI: 10.1097/ajp.0000000000000745] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pathogenesis of low back pain (LBP) remains unclear. However, recent studies suggest that the inflammatory response may be inherent in spinal pain. The purpose of this study was to discern inflammatory profiles in patients with nonspecific acute and chronic LBP in relation to those in asymptomatic individuals. MATERIALS AND METHODS Peripheral blood samples were obtained from asymptomatic controls and patients with nonspecific acute and chronic LBP reporting a minimum pain score of 3 on a 10-point Visual Analogue Scale (VAS). The levels of in vitro production of proinflammatory (tumor necrosis factor α [TNFα], interleukin [IL] 1β, IL-6, IL-2, interferon γ) and anti-inflammatory (IL-1 receptor antagonist, soluble receptors of TNF2, and IL-10) mediators were determined by specific immunoassays. RESULTS The mean VAS scores were comparable between the acute and chronic LBP patient groups. Compared with asymptomatic group, the production of TNFα, IL-1β, IL-6 and their ratios to IL-10 levels were significantly elevated in both patient groups (P=0.0001 to 0.003). In acute LBP group, the ratio of IL-2:IL-10 was also significantly increased (P=0.02). In contrast, the production of interferon γ was significantly reduced compared with the other study groups (P=0.005 to 0.01), nevertheless, it was positively correlated (P=0.006) with pain scores. In chronic LBP patients, the production of TNFα, IL-1 receptor antagonist, and soluble receptors of TNF2 was significantly increased (P=0.001 to 0.03) in comparison with the control and acute LBP groups, and TNFα and IL-1β levels were positively correlated (P<0.001) with VAS scores. CONCLUSIONS The inflammatory profiles of patients with acute and chronic LBP are distinct. Nonetheless, in both patient groups, an imbalance between proinflammatory and anti-inflammatory mediator levels favors the production of proinflammatory components.
Collapse
Affiliation(s)
| | | | - H. Stephen Injeyan
- Research and Clinical Education Programs, Canadian Memorial Chiropractic College, Toronto, ON, Canada
| |
Collapse
|
28
|
Tarabeih N, Shalata A, Trofimov S, Kalinkovich A, Livshits G. Growth and differentiation factor 15 is a biomarker for low back pain-associated disability. Cytokine 2019; 117:8-14. [DOI: 10.1016/j.cyto.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/29/2022]
|
29
|
Central inhibition of granulocyte-macrophage colony-stimulating factor is analgesic in experimental neuropathic pain. Pain 2019; 159:550-559. [PMID: 29351125 PMCID: PMC5828377 DOI: 10.1097/j.pain.0000000000001130] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is Available in the Text. GM-CSF is a proinflammatory cytokine that plays a role in central pain pathways through the modulation of spinal glial cells. With less than 50% of patients responding to the current standard of care and poor efficacy and selectivity of current treatments, neuropathic pain continues to be an area of considerable unmet medical need. Biological therapeutics such as monoclonal antibodies (mAbs) provide better intrinsic selectivity; however, delivery to the central nervous system (CNS) remains a challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is well described in inflammation-induced pain, and early-phase clinical trials evaluating its antagonism have exemplified its importance as a peripheral pain target. Here, we investigate the role of this cytokine in a murine model of traumatic nerve injury and show that deletion of the GM-CSF receptor or treatment with an antagonizing mAb alleviates pain. We also demonstrate enhanced analgesic efficacy using an engineered construct that has greater capacity to penetrate the CNS. Despite observing GM-CSF receptor expression in microglia and astrocytes, the gliosis response in the dorsal horn was not altered in nerve injured knockout mice compared with wild-type littermate controls as evaluated by ionized calcium binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein, respectively. Functional analysis of glial cells revealed that pretreatment with GM-CSF potentiated lipopolysaccharide-induced release of proinflammatory cytokines. In summary, our data indicate that GM-CSF is a proinflammatory cytokine that contributes to nociceptive signalling through driving spinal glial cell secretion of proinflammatory mediators. In addition, we report a successful approach to accessing CNS pain targets, providing promise for central compartment delivery of analgesics.
Collapse
|
30
|
Pratama DGK, Suyasa IK, Astawa P, Lestari AAW. High IL-6 level as a marker of lumbar osteoarthritis in patients older than 55 years with low back pain. Orthop Res Rev 2019; 11:17-21. [PMID: 31040723 PMCID: PMC6460815 DOI: 10.2147/orr.s188678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Low back pain (LBP) is a common clinical condition encountered by most physicians, but the cause and risk factors are still unclear. Cytokines such as IL-6 play an important role in cartilage degeneration, but the role of IL-6 in osteoarthritis (OA) is still debatable. Herein, we aimed to determine the association between high IL-6 levels and lumbar OA in patients older than 55 years with LBP. Method This was a case–control study. Patients included 10 men and 14 women over 55 years of age with lumbar OA. The control group comprised 10 men and 14 women over 55 years of age without lumbar OA. IL-6 analysis was performed for all study subjects. Result The mean age of patients in the case group for both men and women were 67.7±10.4 and 74.4±10.5 years, while that of the control group for both men and women were 67.7±6.3 and 64.9±6.1 years, respectively. Body mass index was not statistically significantly different between the two groups (men and women). Chi-squared analysis showed no statistically significant differences between nutritional status and lumbar OA. Conclusion The probability of lumbar OA in LBP patients with high IL-6 levels (>6.60 pg/ mL) is five times greater than in those with low IL-6 levels (P=0.009). Women with high IL-6 levels have a 6.9-times greater probability of developing lumbar OA than men (P=0.03).
Collapse
Affiliation(s)
- Dewa Gede Kurnia Pratama
- Department of Orthopaedic and Traumatology, Medical Faculty of Udayana University, Denpasar, Bali 80144, Indonesia
| | - I Ketut Suyasa
- Department of Orthopaedic and Traumatology, Medical Faculty of Udayana University, Denpasar, Bali 80144, Indonesia
| | - Putu Astawa
- Department of Orthopaedic and Traumatology, Medical Faculty of Udayana University, Denpasar, Bali 80144, Indonesia
| | | |
Collapse
|
31
|
Capossela S, Pavlicek D, Bertolo A, Landmann G, Stoyanov JV. Unexpectedly decreased plasma cytokines in patients with chronic back pain. J Pain Res 2018; 11:1191-1198. [PMID: 29950891 PMCID: PMC6016579 DOI: 10.2147/jpr.s153872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction Chronic back pain is one of the most important socioeconomic problems that affects the global population. Elevated levels of inflammatory mediators, such as cytokines, have been correlated with pain, but their role in chronic back pain remains unclear. The effectiveness of anti-inflammatory drugs seems to be limited for chronic back pain. The authors wanted to investigate the levels of inflammatory mediators in long-term medically treated patients with persistent chronic back pain. Methods Cytokine plasma levels of patients with chronic back pain (n=23), compared to pain-free healthy controls (n=30), were investigated by immunoassay. Patients with chronic back pain were exposed to long-term conservative medical therapy with physiotherapy and anti-inflammatories, also combined with antidepressants and/or muscle-relaxants. Results The patients with chronic back pain expressed lower levels of the chemokines MCP1, CCL5, and CXCL6 compared to pain-free healthy controls. Significantly lower concentrations of the anti-inflammatory cytokines, interleukin (IL)-4 and granulocyte-colony stimulating factor were also found. Interestingly, levels of proinflammatory cytokines (IL-2, IL-6, IL-1β, tumor necrosis factor alpha), IL-10, granulocyte-macrophage colony-stimulating factor, and stromal cell-derived factor 1 alpha showed no significant differences between both groups. Conclusion This decrease of inflammatory mediators in medically treated patients with chronic back pain is of unclear origin and might be either a long-term side effect of medical therapy or related to chronic pain. Further longitudinal research is necessary to elucidate the underlying cause of these findings.
Collapse
Affiliation(s)
| | | | | | - Gunther Landmann
- Centre for Pain Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | | |
Collapse
|
32
|
Khan AN, Jacobsen HE, Khan J, Filippi CG, Levine M, Lehman RA, Riew KD, Lenke LG, Chahine NO. Inflammatory biomarkers of low back pain and disc degeneration: a review. Ann N Y Acad Sci 2018; 1410:68-84. [PMID: 29265416 DOI: 10.1111/nyas.13551] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
Biomarkers are biological characteristics that can be used to indicate health or disease. This paper reviews studies on biomarkers of low back pain (LBP) in human subjects. LBP is the leading cause of disability, caused by various spine-related disorders, including intervertebral disc degeneration, disc herniation, spinal stenosis, and facet arthritis. The focus of these studies is inflammatory mediators, because inflammation contributes to the pathogenesis of disc degeneration and associated pain mechanisms. Increasingly, studies suggest that the presence of inflammatory mediators can be measured systemically in the blood. These biomarkers may serve as novel tools for directing patient care. Currently, patient response to treatment is unpredictable with a significant rate of recurrence, and, while surgical treatments may provide anatomical correction and pain relief, they are invasive and costly. The review covers studies performed on populations with specific diagnoses and undefined origins of LBP. Since the natural history of LBP is progressive, the temporal nature of studies is categorized by duration of symptomology/disease. Related studies on changes in biomarkers with treatment are also reviewed. Ultimately, diagnostic biomarkers of LBP and spinal degeneration have the potential to shepherd an era of individualized spine medicine for personalized therapeutics in the treatment of LBP.
Collapse
Affiliation(s)
- Aysha N Khan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| | - Hayley E Jacobsen
- Department of Orthopedic Surgery, Columbia University, New York, New York
| | - Jansher Khan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| | | | | | - Ronald A Lehman
- Department of Orthopedic Surgery, Columbia University, New York, New York.,New York-Presbyterian-Spine Hospital, New York, New York
| | - K Daniel Riew
- Department of Orthopedic Surgery, Columbia University, New York, New York.,New York-Presbyterian-Spine Hospital, New York, New York
| | - Lawrence G Lenke
- Department of Orthopedic Surgery, Columbia University, New York, New York.,New York-Presbyterian-Spine Hospital, New York, New York
| | - Nadeen O Chahine
- Department of Orthopedic Surgery, Columbia University, New York, New York.,Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
33
|
Amaro A, Guerra AB, Defino MP, Vieira LA, Peluso C, Bianco B, Rodrigues LMR. Vascular endothelial growth factor gene variations as a risk predictor in disc degeneration. EINSTEIN-SAO PAULO 2017; 15:403-408. [PMID: 29364361 PMCID: PMC5875151 DOI: 10.1590/s1679-45082017ao4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/22/2017] [Indexed: 11/27/2022] Open
Abstract
Objective To evaluate the frequency of polymorphisms in the vascular endothelial growth factor (VEGF) gene, as well as to identify a potential risk haplotype among the polymorphic regions in this gene in patients with disc degeneration and in the Control Group. Methods This study analyzed a total of 217 individuals distributed into the Disc Degeneration and Control Groups. Peripheral blood was collected from all patients to detect VEGF gene polymorphisms identified by qPCR (rs699947, rs1570360, rs2010963, rs833061 and rs3025039). All patients presenting disc degeneration had the confirmation by nuclear magnetic resonance test and were rated according to disc degeneration level. Results All polymorphisms were in Hardy- Weinberg equilibrium (p>0.05) in the studied population. The genotypic frequency for Disc Degeneration and Control Group were rs699947 p = 0.475, rs1570360 p = 0.862, rs2010963 p = 0.823, rs833061 p=0.596 and rs3025039 p=0.230. In haplotype analysis, the compositions CAGGC (p=0.094) and CCGGC (p=0.054) stood out. Conclusion The correlation between VEGF gene polymorphism as a risk predictor for disc degeneration was negative in the studied population. However, the VEGF gene has a large polymorphic region, and it is activated by various catabolic and metabolic factors in the disc degeneration process, which has not been fully elucidated.
Collapse
|
34
|
Wiet MG, Piscioneri A, Khan SN, Ballinger MN, Hoyland JA, Purmessur D. Mast Cell-Intervertebral disc cell interactions regulate inflammation, catabolism and angiogenesis in Discogenic Back Pain. Sci Rep 2017; 7:12492. [PMID: 28970490 PMCID: PMC5624870 DOI: 10.1038/s41598-017-12666-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 01/07/2023] Open
Abstract
Low back pain (LBP) is a widespread debilitating disorder of significant socio-economic importance and intervertebral disc (IVD) degeneration has been implicated in its pathogenesis. Despite its high prevalence the underlying causes of LBP and IVD degeneration are not well understood. Recent work in musculoskeletal degenerative diseases such as osteoarthritis have revealed a critical role for immune cells, specifically mast cells in their pathophysiology, eluding to a potential role for these cells in the pathogenesis of IVD degeneration. This study sought to characterize the presence and role of mast cells within the IVD, specifically, mast cell-IVD cell interactions using immunohistochemistry and 3D in-vitro cell culture methods. Mast cells were upregulated in painful human IVD tissue and induced an inflammatory, catabolic and pro-angiogenic phenotype in bovine nucleus pulposus and cartilage endplate cells at the gene level. Healthy bovine annulus fibrosus cells, however, demonstrated a protective role against key inflammatory (IL-1β and TNFα) and pro-angiogenic (VEGFA) genes expressed by mast cells, and mitigated neo-angiogenesis formation in vitro. In conclusion, mast cells can infiltrate and elicit a degenerate phenotype in IVD cells, enhancing key disease processes that characterize the degenerate IVD, making them a potential therapeutic target for LBP.
Collapse
Affiliation(s)
- Matthew G Wiet
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, 201 Davis Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, Ohio, 43210, USA
| | - Andrew Piscioneri
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, 201 Davis Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, Ohio, 43210, USA
| | - Safdar N Khan
- Department of Orthopedics, The Ohio State University Wexner Medical Center, 1070 OSU CarePoint East, 543 Taylor Avenue, Columbus, Ohio, 43203, USA
| | - Megan N Ballinger
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, 201 Davis Heart and Lung Research Institute, 473 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, United Kingdom
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, 201 Davis Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, Ohio, 43210, USA.
- Department of Orthopedics, The Ohio State University Wexner Medical Center, 1070 OSU CarePoint East, 543 Taylor Avenue, Columbus, Ohio, 43203, USA.
| |
Collapse
|
35
|
Goode AP, Nelson AE, Kraus VB, Renner JB, Jordan JM. Biomarkers reflect differences in osteoarthritis phenotypes of the lumbar spine: the Johnston County Osteoarthritis Project. Osteoarthritis Cartilage 2017; 25:1672-1679. [PMID: 28711584 PMCID: PMC5605465 DOI: 10.1016/j.joca.2017.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 06/02/2017] [Accepted: 07/05/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine differences in biomarker levels between radiographic phenotypes of facet joint osteoarthritis (FOA) only, spine OA only ((disc space narrowing (DSN) and vertebral osteophytes (OST)) or the combination of FOA and spine OA. DESIGN A cross-sectional analysis of data from 555 participants in the Johnston County Osteoarthritis Project was performed. Lumbar spine levels were graded by severity (OST and DSN) and presence (FOA) of degeneration. Biomarkers included hyaluronan (HA) and type II collagen (CTX-II). Adjusted risk ratios (aRRR) were estimated using multinomial regression, with adjustment for age, race, sex, body mass index (BMI), and radiographic OA (knee, hip, hand). Interactions were tested between sex, race and low back symptoms. RESULTS FOA only was present in 22.4%, 14.5% had spine OA only, and 34.6% had the combination of FOA and spine OA. Compared to the reference group of neither FOA or spine OA, a one unit higher ln HA level was associated with 31% higher relative risk ratio (RRR = 1.31 (95% 1.03, 1.67)) of having FOA only, while, a one unit higher lnuCTX-II level was associated with 84% higher relative risk ratio (RRR = 1.84 (95% CI 1.19, 2.84)) of having spine OA only. No significant interactions were identified. CONCLUSION Interestingly, OA affecting the synovial facet joint was associated with a marker of inflammation (HA). Spine OA, affecting intervertebral discs that contain collagen type II, was associated with a marker reflecting collagen type II degradation (CTX-II). These findings suggest that biomarkers may reflect the different pathophysiologic processes of lumbar spine OA phenotypes.
Collapse
Affiliation(s)
- Adam P. Goode
- Associate Professor, Department of Orthopedic Surgery, Duke Clinical Research Institute, Duke University School of Medicine
| | - Amanda E. Nelson
- Assistant Professor, Thurston Arthritis Research Center, University of North Carolina, Chapel Hill
| | - Virginia B. Kraus
- Professor, Duke Molecular Physiology Institute and Division of Rheumatology, Duke University School of Medicine, Durham, NC
| | - Jordan B. Renner
- Professor, Thurston Arthritis Research Center, Department of Radiology, University of North Carolina, Chapel Hill
| | - Joanne M. Jordan
- Professor, Thurston Arthritis Research Center, University of North Carolina, Chapel Hill
| |
Collapse
|
36
|
Kazezian Z, Sakai D, Pandit A. Hyaluronic Acid Microgels Modulate Inflammation and Key Matrix Molecules toward a Regenerative Signature in the Injured Annulus Fibrosus. ACTA ACUST UNITED AC 2017; 1:e1700077. [PMID: 32646195 DOI: 10.1002/adbi.201700077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/30/2017] [Indexed: 01/08/2023]
Abstract
Low back pain results from disc degeneration, which is a chronic inflammatory disease characterized by an imbalance between anabolic and catabolic factors. Today, regenerative medicine is focused on identifying inflammatory markers to target disc disease. Hyaluronan is used as a scaffold for cell delivery in disc degeneration; however, to date high molecular weight hyaluronan (HMW HA) is evaluated for its anti-inflammatory and matrix modulatory properties in an in vivo disc injury model. Ex vivo bovine organ culture studies demonstrate the anti-inflammatory and matrix modulatory effects of HMW HA on the IFNα2β signaling pathway that provides the motivation for evaluating its efficacy in regenerating the annulus fibrosus in an in vivo disc injury model. It is demonstrated that the HMW HA microgel acts as an anti-inflammatory molecule in the annulus fibrosus, by downregulating the expression of the pro-inflammatory interferon gamma (IFNα) and pro-apoptotic insulin-like growth factor-binding protein 3 (IGFBP3) and the apoptosis marker caspase 3. Mass spectrometry studies demonstrate that the HMW HA microgel modulates the matrix modulatory effect by upregulating hyaluronic acid link protein (HAPLN1) and aggrecan, which are further confirmed by immunostaining. The microgel's regenerative capacity is illustrated by the increase in the disc height index.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Shibuya, Tokyo, 151-0063, Japan
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
37
|
Lippi G, Dagostino C, Buonocore R, Aloe R, Bonaguri C, Fanelli G, Allegri M. The serum concentrations of leptin and MCP-1 independently predict low back pain duration. Clin Chem Lab Med 2017; 55:1368-1374. [PMID: 28076310 DOI: 10.1515/cclm-2016-0942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Low back pain (LBP) is a very frequent condition, affecting most people at some point throughout their life. This cross-sectional study was aimed to investigate a selected panel of cytokines and inflammatory biomarkers in patients with or without LBP. METHODS The study population consisted of 104 patients diagnosed with LBP (52 non-persistent and 52 persistent) and 52 healthy subjects with no LBP. Blood samples were collected for assessment of adiponectin, leptin, monocyte chemoattractant protein-1 (MCP-1) and C reactive protein (CRP). The duration of LBP was categorized as "no pain", "non-persistent LBP" and "persistent LBP". RESULTS Higher values of CRP and lower concentrations of both leptin and MCP-1 were found in LBP patients compared to controls, whereas adiponectin did not differ among groups. MCP-1 was also lower in patients with non-persistent than in those with persistent LBP. Age, leptin (relative risk, 11.8; 95% CI, 3.9-35.8) and MCP-1 (relative risk, 2.7; 95% CI, 1.7-4.4) were independently associated with presence and duration of LBP. The combination of age, leptin and MCP-1 predicted 61% of the risk of LBP duration. The area under the curve of MCP-1 for distinguishing persistent from non-persistent LBP was 0.65 (95% CI, 0.54-0.76). CONCLUSIONS Then results of our study suggest that leptin and MCP-1 may be promising biomarkers for diagnosis of acute LBP and its risk to become chronic.
Collapse
|
38
|
Kazezian Z, Li Z, Alini M, Grad S, Pandit A. Injectable hyaluronic acid down-regulates interferon signaling molecules, IGFBP3 and IFIT3 in the bovine intervertebral disc. Acta Biomater 2017; 52:118-129. [PMID: 28003146 DOI: 10.1016/j.actbio.2016.12.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
Low back pain which is a major cause of disability for people aged between 20 and 50years imposes a serious socio-economic burden. The current focus of regenerative medicine is on identifying molecular markers to facilitate the design of targeted therapeutics. Previously, we have demonstrated that expression of the anti-proliferative interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) and pro-apoptotic insulin-like growth factor-binding protein-3 (IGFBP3), are up-regulated as downstream targets of the inflammatory cytokine interferon α (IFNα) signaling pathway in the human annulus fibrosus (AF). Here, we hypothesised that injection of hyaluronic acid (HA) would have an anti-inflammatory and matrix modulatory effect on injured and IFNα2β inflamed bovine intervertebral discs (IVD). Discs with an AF defect and challenged with IFNα2β were used in a bovine IVD organ culture model to test the effect of HA on the IFNα2β pathway, as well as the matrix proteins aggrecan and collagen I. qRT-PCR was used to assess the gene expression of IFNα2β signaling molecules. Additionally, immunostaining was used to measure protein expression. Our results show that HA treatment significantly down-regulates IFNAR1, IFNAR2, STAT1/2, JAK1, IFIT3 and IGFBP3 mRNA expression in the inflamed groups. Protein analysis confirmed the PCR results. In the extracellular matrix, aggrecan and collagen I were up-regulated while ADAMTS4 was down-regulated upon treatment of the injured and inflamed discs with HA. Hence, HA demonstrates both an anti-inflammatory role, resulting in the down-regulation of IFIT3 and IGFBP3 in the AF, and a matrix modulatory effect by up-regulating aggrecan and collagen I expression. STATEMENT OF SIGNIFICANCE The pro-inflammatory environment of the degenerated IVD represents a challenge for regenerative therapies. The study demonstrates that hyaluronan acts as an anti-inflammatory molecule by down-regulating IFNAR1 and IFNAR2, the signaling molecules STAT1, STAT2, JAK1 and the downstream apoptotic targets IGFBP3 and IFIT3. We also demonstrated that hyaluronan modulates the disc matrix environment by increasing aggrecan and collagen I synthesis and down-regulating ADAMTS4 that degrades the matrix under inflammatory conditions. The significance of this work lies in the fact that hyaluronan acts as an anti-inflammatory molecule by shifting the disc environment towards a more anabolic state and by promoting native IVD matrix production.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos 7270, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos 7270, Switzerland; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos 7270, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos 7270, Switzerland; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos 7270, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Davos 7270, Switzerland; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos 7270, Switzerland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos 7270, Switzerland.
| |
Collapse
|
39
|
Tong W, Lu Z, Qin L, Mauck RL, Smith HE, Smith LJ, Malhotra NR, Heyworth MF, Caldera F, Enomoto-Iwamoto M, Zhang Y. Cell therapy for the degenerating intervertebral disc. Transl Res 2017; 181:49-58. [PMID: 27986604 PMCID: PMC5776755 DOI: 10.1016/j.trsl.2016.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
Abstract
Spinal conditions related to intervertebral disc (IVD) degeneration cost billions of dollars in the US annually. Despite the prevalence and soaring cost, there is no specific treatment that restores the physiological function of the diseased IVD. Thus, it is vital to develop new treatment strategies to repair the degenerating IVD. Persons with IVD degeneration without back pain or radicular leg pain often do not require any intervention. Only patients with severe back pain related to the IVD degeneration or biomechanical instability are likely candidates for cell therapy. The IVD progressively degenerates with age in humans, and strategies to repair the IVD depend on the stage of degeneration. Cell therapy and cell-based gene therapy aim to address moderate disc degeneration; advanced stage disease may require surgery. Studies involving autologous, allogeneic, and xenogeneic cells have all shown good survival of these cells in the IVD, confirming that the disc niche is an immunologically privileged site, permitting long-term survival of transplanted cells. All of the animal studies reviewed here reported some improvement in disc structure, and 2 studies showed attenuation of local inflammation. Among the 50 studies reviewed, 25 used some type of scaffold, and cell leakage is a consistently noted problem, though some studies showed reduced cell leakage. Hydrogel scaffolds may prevent cell leakage and provide biomechanical support until cells can become established matrix producers. However, these gels need to be optimized to prevent this leakage. Many animal models have been leveraged in this research space. Rabbit is the most frequently used model (28 of 50), followed by rat, pig, and dog. Sheep and goat IVDs resemble those of humans in size and in the absence of notochordal cells. Despite this advantage, there were only 2 sheep and 1 goat studies of 50 studies in this cohort. It is also unclear if a study in large animals is needed before clinical trials since some of the clinical trials proceeded without a study in large animals. No animal studies or clinical trials completely restored IVD structure. However, results suggest cause for optimism. In light of the fact that patients primarily seek medical care for back pain, attenuating local inflammation should be a priority in benchmarks for success. Clinicians generally agree that short-term back pain should be treated conservatively. When interventions are considered, the ideal therapy should also be minimally invasive and concurrent with other procedures such as discography or discectomy. Restoration of tissue structure and preservation of spinal motion are desirable.
Collapse
Affiliation(s)
- Wei Tong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Zhouyu Lu
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Robert L Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa
| | - Harvey E Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Martin F Heyworth
- Research Service, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Franklin Caldera
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Motomi Enomoto-Iwamoto
- Department of Surgery, Division of Orthopedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa.
| |
Collapse
|
40
|
Karateev AE, Karateev DE, Davydov OS. PAIN AND INFLAMMATION. PART 1. PATHOGENETIC ASPECTS. RHEUMATOLOGY SCIENCE AND PRACTICE 2017. [DOI: 10.14412/1995-4484-2016-693-704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The relief of suffering, which is associated with a rapid and complete elimination of painful sensations, is the most important challenge facing physicians of many specialties. It is obvious that it can be solved only when you understand clearly the processes governing the development and chronization of pain. Inflammation, a universal adaptive mechanism that always accompanies damage to living tissues, plays a key role. Part 1 of this review considers the main stages of development of an inflammatory response, beginning with primary damage accompanied by the release of molecules acting as an alarm and ending with the deployment of a complete picture of the inflammatory response with the involvement of many cell elements and the overexpression of cytokines and proinflammatory mediators. The biological basis of the peripheral and central nociceptive sensitization phenomenon that is rigidly associated with inflammation is presented. Particular emphasis is placed on the possible natural completion of the inflammatory response, on the adaptive mechanisms regulating this process and on the reasons that prevent this and determines inflammation chronization.
Collapse
Affiliation(s)
| | | | - O. S. Davydov
- Z.P. Solovyev Research and Practical Center of Psychoneurology, Moscow Healthcare Department
| |
Collapse
|
41
|
Cai F, Zhu L, Wang F, Shi R, Xie XH, Hong X, Wang XH, Wu XT. The Paracrine Effect of Degenerated Disc Cells on Healthy Human Nucleus Pulposus Cells Is Mediated by MAPK and NF-κB Pathways and Can Be Reduced by TGF-β1. DNA Cell Biol 2016; 36:143-158. [PMID: 28005398 DOI: 10.1089/dna.2016.3230] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is thought to have a major role in the pathogenesis of disc degeneration. Studies have shown that nucleus pulposus cells (NPCs) respond to one or two specific cytokines by regulating cell proliferation or matrix synthesis. However, the effects of a cocktail of factors secreted by degenerated disc cells on transplanted exogenous healthy NPCs remain unknown. Concentrations of multiple cytokines in degenerated disc tissue-conditioned medium (dCM) were measured using enzyme-linked immunosorbent assay (ELISA). 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and Ki67 immunofluorescence staining were used to evaluate the proliferation of cells in dCM. The function of exogenous NPCs cultured in dCM was evaluated by examining catabolic markers (ADAMTS-4, ADAMTS-5, MMP-1, MMP-3, and MMP-13), anabolic markers (TIMP-1, TIMP-2, and TIMP-3), and the extracellular matrix protein-aggrecan (ACAN) and collagen II (COL2)-expression with real time polymerase chain reaction (RT-PCR). Mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathway activation was observed using Western blotting. Finally, we examined the role of transforming growth factor (TGF)-β1 in reducing dCM-mediated exogenous NPC dysfunction. Levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17, interferon-γ (IFN-γ), and prostaglandin E2 (PGE2) were higher and TGF-β1 levels were lower in dCM compared with the control medium. Treatment with dCM increased the proliferation of healthy NPCs. NPCs exhibited significantly higher expression of ADAMTS-4, ADAMTS-5, MMP-1, MMP-3, and MMP-13 and decreased TIMP-2, ACAN, and COL2 expression in the dCM group in a dose- and time-dependent manner. Treatment with dCM moderately increased TIMP-1 expression and had no effect on TIMP-3 mRNA levels. The MAPK and NF-κB pathways were implicated in dCM-mediated responses of healthy NPCs. TGF-β1 partially reversed the dCM-mediated NPC dysfunction. Increased levels of inflammatory factors and decreased TGF-β1 levels in dCM suggest an inflammatory environment in degenerated disc tissue. The catabolic effect of dCM on human healthy NPCs is mediated by MAPK and NF-κB pathways and can be reduced by TGF-β1.
Collapse
Affiliation(s)
- Feng Cai
- 1 Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China .,2 Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Lei Zhu
- 1 Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Feng Wang
- 1 Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Rui Shi
- 1 Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Xin-Hui Xie
- 1 Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Xin Hong
- 1 Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Xiao-Hu Wang
- 1 Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Xiao-Tao Wu
- 1 Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| |
Collapse
|
42
|
Zhu RS, Ren YM, Yuan JJ, Cui ZJ, Wan J, Fan BY, Lin W, Zhou XH, Zhang XL. Does local lavage influence functional recovery during lumber discectomy of disc herniation?: One year's systematic follow-up of 410 patients. Medicine (Baltimore) 2016; 95:e5022. [PMID: 27759631 PMCID: PMC5079315 DOI: 10.1097/md.0000000000005022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lumbar disc herniation (LDH) is a common disease and lumbar discectomy is the most common surgical procedure carried out for patients with low back pain and leg symptoms. Although most researchers are focusing on the surgical techniques during operation, the aim of this study is to evaluate the effect of local intervertebral lavage during microdiscectomy.In this retrospective study, 410 patients were operated on by microdiscectomy for LDH during 2011 to 2014. Retrospectively, 213 of them (group A) accepted local intervertebral irrigation with saline water before wound closure and 197 patients (group B) only had their operative field irrigated with saline water. Systematic records of visual analog scores (VAS), Oswestry disability Index (ODI) questionnaire scale scores, use of analgesia, and hospital length of stay were done after hospitalization.The majority (80.49%) of the cases were diagnosed with lumber herniation at the levels of L4/5 and L5/S1. Fifty-one patients had herniations at 2 levels. There were significant decreases of VAS scores and ODI in both groups between preoperation and postoperation of different time points. VAS scores decreased more in group A than group B at early stage of postoperation follow-up. However, there were no statistically significant differences between 2 groups in using analgesia, VAS and ODI up to 1 month of follow-up.Microdiscectomy for LDH offers a marked improvement in back and radicular pain. Local irrigation of herniated lumber disc area could relief dick herniation-derived low back pain and leg radicular pain at early stage of post-operation. However, the pain relief of this intervention was not noticeable for a long period.
Collapse
Affiliation(s)
- Ru-Sen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Yi-Ming Ren
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Jian-Jun Yuan
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Zi-Jian Cui
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Jun Wan
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Bao-You Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Wei Lin
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xian-Hu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
- Correspondence: Xue-Li Zhang, Jieyuan Road 190, Hongqiao District, Tianjin 300121, PR China (e-mail: ); Xian-Hu Zhou, Anshan Road 154, Heping District Tianjin 300052, PR China (e-mail: )
| | - Xue-Li Zhang
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, PR China
- Correspondence: Xue-Li Zhang, Jieyuan Road 190, Hongqiao District, Tianjin 300121, PR China (e-mail: ); Xian-Hu Zhou, Anshan Road 154, Heping District Tianjin 300052, PR China (e-mail: )
| |
Collapse
|
43
|
Salah El-din Mahmoud W, Yousef A, Manssor E, Ahmed S. The relationship between pain and functional disability with morphological changes of psoas major in discogenic low back pain patients. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2016. [DOI: 10.12968/ijtr.2016.23.8.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ahmed Yousef
- Chief, Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul Aziz University, Al-Kharj, KSA, Physics Department, Faculty of Science, South Valley University, Qena, Egypt
| | - E Manssor
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul Aziz University, Al-Kharj, KSA
| | - Sameh Ahmed
- Lecturer Basic Sciences Department, Faculty of Physical Therapy, Cairo University, Egypt
| |
Collapse
|
44
|
Weber KT, Alipui DO, Sison CP, Bloom O, Quraishi S, Overby MC, Levine M, Chahine NO. Serum levels of the proinflammatory cytokine interleukin-6 vary based on diagnoses in individuals with lumbar intervertebral disc diseases. Arthritis Res Ther 2016; 18:3. [PMID: 26743937 PMCID: PMC4718017 DOI: 10.1186/s13075-015-0887-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/03/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Many intervertebral disc diseases cause low back pain (LBP). Proinflammatory cytokines and matrix metalloproteinases (MMPs) participate in disc pathology. In this study, we examined levels of serum cytokines and MMPs in human subjects with diagnoses of disc herniation (DH), spinal stenosis (SS), or degenerative disc disease (DDD) relative to levels in control subjects. Comparison between subjects with DH and those with other diagnoses (Other Dx, grouped from SS and DDD) was performed to elaborate a pathological mechanism based on circulating cytokine levels. METHODS Study participants were recruited from a spine neurosurgery practice (n = 80), a back pain management practice (n = 27), or a control cohort (n = 26). Serum samples were collected before treatment and were assayed by multiplex assays for levels of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, interferon-γ, tumor necrosis factor-α, MMP-1, MMP-3, and MMP-9. Inflammatory and degradative mediator levels were compared for subjects with LBP and control subjects, by diagnosis and by treatment groups, controlling for effects of sex, age, and reported history of osteoarthritis. Spearman's correlation coefficient was used to examine relationships with age, body mass index (BMI), symptom duration, and smoking history. RESULTS Serum levels of IL-6 were significantly higher in subjects with LBP compared with control subjects. Participants with LBP due to Other Dx had significantly higher levels of IL-6 than DH and controls. Serum levels of MMP-1 were significantly lower in LBP subjects, specifically those with DH, than in control subjects. Positive correlations were found between IL-6 levels and BMI, symptom duration, and age. MMP-1 levels were positively correlated with age. CONCLUSIONS The findings of the present clinical study are the results of the first examination of circulating cytokine levels in DDD and SS and provide evidence for a more extensive role of IL-6 in disc diseases, where patients with DDD or SS have higher serum cytokine levels than those with DH or control subjects. These findings suggest that LBP subjects have low-grade systemic inflammation, and biochemical profiling of circulating cytokines may assist in refining personalized diagnoses of disc diseases.
Collapse
Affiliation(s)
- Kathryn T Weber
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| | - D Olivier Alipui
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| | - Cristina P Sison
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Population Health, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - Ona Bloom
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Physical Medicine and Rehabilitation, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - Shaheda Quraishi
- Department of Physical Medicine and Rehabilitation, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Neurosurgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - M Chris Overby
- Department of Neurosurgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - Mitchell Levine
- Department of Neurosurgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - Nadeen O Chahine
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Neurosurgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Orthopedic Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| |
Collapse
|
45
|
Zhang Y, Liu L, Wang S, Zhao Y, Liu Y, Li J, Nie L, Cheng L. Production of CCL20 on nucleus pulposus cells recruits IL-17-producing cells to degenerated IVD tissues in rat models. J Mol Histol 2015; 47:81-9. [DOI: 10.1007/s10735-015-9651-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/20/2015] [Indexed: 12/27/2022]
|