1
|
Eldien HMS, Alenzi MJ. The immune-modulatory role of MSCs exerted by PI3K/AKT signaling pathway in kidney tissue after cyclophosphamide. Afr Health Sci 2023; 23:371-381. [PMID: 38974297 PMCID: PMC11225483 DOI: 10.4314/ahs.v23i4.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Background Cyclophosphamide (CP) is one of the most effective immunosuppressive agents. To understand the mechanisms used by the CP and MSCs in the kidney, we investigated their effects on some pathways. Experimental animals and methods 4 groups of female rats were used. GI: was the normal control group treated with saline solution. Groups G II, G III, and G IV were treated with CP. G I and G II groups were sacrificed on the fourth day after treatment., G III (Auto healing group) was left without treatment after the CP injection for six days. The G IV group was treated with MSCs on the fourth day after the CP injection. G III and G IV groups were sacrificed six days after treatment, and the kidney was removed and processed. Results CP induced up-regulation in CD14 and CD21 positive cells and caspase. Significant down-regulation of previous markers in groups III and IV. CP exerted a downregulation effect on AKT/ PI3K, that were ameliorated in groups III and IV. A significant increase in P53, BCL2, as well as VEGF in Group IV (P < 0 05). Conclusion MSCs play a vital function in the immune inhibition in CP-treated rats through PI3K/AKT pathway.
Collapse
|
2
|
Guo M, Chang P, Hauke E, Girard BM, Tooke K, Ojala J, Malley SM, Hsiang H, Vizzard MA. Expression and Function of Chemokines CXCL9-11 in Micturition Pathways in Cyclophosphamide (CYP)-Induced Cystitis and Somatic Sensitivity in Mice. Front Syst Neurosci 2018; 12:9. [PMID: 29681802 PMCID: PMC5897511 DOI: 10.3389/fnsys.2018.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
Changes in urinary bladder function and somatic sensation may be mediated, in part, by inflammatory changes in the urinary bladder including the expression of chemokines. Male and female C57BL/6 mice were treated with cyclophosphamide (CYP; 75 mg/kg, 200 mg/kg, i.p.) to induce bladder inflammation (4 h, 48 h, chronic). We characterized the expression of CXC chemokines (CXCL9, CXCL10 and CXCL11) in the urinary bladder and determined the effects of blockade of their common receptor, CXCR3, at the level urinary bladder on bladder function and somatic (hindpaw and pelvic) sensation. qRT-PCR and Enzyme-Linked Immunoassays (ELISAs) were used to determine mRNA and protein expression of CXCL9, CXCL10 and CXCL11 in urothelium and detrusor. In urothelium of female mice treated with CYP, CXCL9 and CXCL10 mRNA significantly (p ≤ 0.01) increased with CYP treatment whereas CXC mRNA expression in the detrusor exhibited both increases and decreases in expression with CYP treatment. CXC mRNA expression urothelium and detrusor of male mice was more variable with both significant (p ≤ 0.01) increases and decreases in expression depending on the specific CXC chemokine and CYP treatment. CXCL9 and CXCL10 protein expression was significantly (p ≤ 0.01) increased in the urinary bladder with 4 h CYP treatment in female mice whereas CXC protein expression in the urinary bladder of male mice did not exhibit an overall change in expression. CXCR3 blockade with intravesical instillation of AMG487 (5 mg/kg) significantly (p ≤ 0.01) increased bladder capacity, reduced voiding frequency and reduced non-voiding contractions in female mice treated with CYP (4 h, 48 h). CXCR3 blockade also reduced (p ≤ 0.01) hindpaw and pelvic sensitivity in female mice treated with CYP (4 h, 48 h). CXC chemokines may be novel targets for treating urinary bladder dysfunction and somatic sensitization resulting from urinary bladder inflammation.
Collapse
Affiliation(s)
- Michael Guo
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Phat Chang
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Eric Hauke
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Beatrice M Girard
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Katharine Tooke
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Jacqueline Ojala
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Susan M Malley
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Harrison Hsiang
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Margaret A Vizzard
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
3
|
Girard BM, Tooke K, Vizzard MA. PACAP/Receptor System in Urinary Bladder Dysfunction and Pelvic Pain Following Urinary Bladder Inflammation or Stress. Front Syst Neurosci 2017; 11:90. [PMID: 29255407 PMCID: PMC5722809 DOI: 10.3389/fnsys.2017.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex organization of CNS and PNS pathways is necessary for the coordinated and reciprocal functions of the urinary bladder, urethra and urethral sphincters. Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways and target organs can produce lower urinary tract (LUT) dysfunction. Numerous neuropeptide/receptor systems are expressed in the neural pathways of the LUT and non-neural components of the LUT (e.g., urothelium) also express peptides. One such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder dysfunction and altered somatic sensation. PACAP and associated receptors are expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation, and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency in preclinical animal models and transgenic mouse models that mirror some clinical symptoms of bladder dysfunction. A change in the balance of the expression and resulting function of the PACAP/receptor system in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including symptoms of urinary urgency, increased voiding frequency, and visceral pain. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction.
Collapse
Affiliation(s)
| | | | - Margaret A. Vizzard
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
4
|
Yusta B, Holland D, Waschek JA, Drucker DJ. Intestinotrophic glucagon-like peptide-2 (GLP-2) activates intestinal gene expression and growth factor-dependent pathways independent of the vasoactive intestinal peptide gene in mice. Endocrinology 2012; 153:2623-32. [PMID: 22535770 PMCID: PMC3359603 DOI: 10.1210/en.2012-1069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The enteroendocrine and enteric nervous systems convey signals through an overlapping network of regulatory peptides that act either as circulating hormones or as localized neurotransmitters within the gastrointestinal tract. Because recent studies invoke an important role for vasoactive intestinal peptide (VIP) as a downstream mediator of glucagon-like peptide-2 (GLP-2) action in the gut, we examined the importance of the VIP-GLP-2 interaction through analysis of Vip(-/-) mice. Unexpectedly, we detected abnormal villous architecture, expansion of the crypt compartment, increased crypt cell proliferation, enhanced Igf1 and Kgf gene expression, and reduced expression of Paneth cell products in the Vip(-/-) small bowel. These abnormalities were not reproduced by antagonizing VIP action in wild-type mice, and VIP administration did not reverse the intestinal phenotype of Vip(-/-) mice. Exogenous administration of GLP-2 induced the expression of ErbB ligands and immediate-early genes to similar levels in Vip(+/+) vs. Vip(-/-) mice. Moreover, GLP-2 significantly increased crypt cell proliferation and small bowel growth to comparable levels in Vip(+/+) vs. Vip(-/-) mice. Unexpectedly, exogenous GLP-2 administration had no therapeutic effect in mice with dextran sulfate-induced colitis; the severity of colonic injury and weight loss was modestly reduced in female but not male Vip(-/-) mice. Taken together, these findings extend our understanding of the complex intestinal phenotype arising from loss of the Vip gene. Furthermore, although VIP action may be important for the antiinflammatory actions of GLP-2, the Vip gene is not required for induction of a gene expression program linked to small bowel growth after enhancement of GLP-2 receptor signaling.
Collapse
Affiliation(s)
- Bernardo Yusta
- Department of Medicine, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada M5G 1X5
| | | | | | | |
Collapse
|
5
|
Abstract
Inflammation of the lower urinary tract occurs frequently in people. The causes remain obscure, with the exception of urinary tract infection. Animal models have proven useful for investigating and assessing mechanisms underlying symptoms associated with lower urinary tract inflammation and options for suppressing these symptoms. This review will discuss various animal models of lower urinary tract inflammation, including feline spontaneous (interstitial) cystitis, neurogenic cystitis, autoimmune cystitis, cystitis induced by intravesical instillation of chemicals or bacterial products (particularly lipopolysaccharide or LPS), and prostatic inflammation initiated by transurethral instillation of bacteria. Animal models will continue to be of significant value in identifying mechanisms resulting in bladder inflammation, but the relevance of some of these models to the causes underlying clinical disease is unclear. This is primarily because of the lack of understanding of causes of these disorders in people. Comparative and translational studies are required if the full potential of findings obtained with animal models to improve prevention and treatment of lower urinary tract inflammation in people is to be realized.
Collapse
Affiliation(s)
- Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | |
Collapse
|
6
|
Moody TW, Ito T, Osefo N, Jensen RT. VIP and PACAP: recent insights into their functions/roles in physiology and disease from molecular and genetic studies. Curr Opin Endocrinol Diabetes Obes 2011; 18:61-67. [PMID: 21157320 PMCID: PMC3075877 DOI: 10.1097/med.0b013e328342568a] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as well as the three classes of G-protein-coupled receptors mediating their effects, are widely distributed in the central nervous system (CNS) and peripheral tissues. These peptides are reported to have many effects in different tissues, which are physiological or pharmacological, and which receptor mediates which effect, has been difficult to determine, primarily due to lack of potent, stable, selective agonists/antagonists. Recently the use of animals with targeted knockout of the peptide or a specific receptor has provided important insights into their role in normal physiology and disease states. RECENT FINDINGS During the review period, considerable progress and insights has occurred in the understanding of the role of VIP/PACAP as well as their receptors in a number of different disorders/areas. Particularly, insights into their roles in energy metabolism, glucose regulation, various gastrointestinal processes including gastrointestinal inflammatory conditions and motility and their role in the CNS as well as CNS diseases has greatly expanded. SUMMARY PACAP/VIP as well as their three classes of receptors are important in many physiological/pathophysiological processes, some of which are identified in these studies using knockout animals. These studies may lead to new novel treatment approaches. Particularly important are their roles in glucose metabolism and on islets leading to possible novel approaches in diabetes; their novel anti-inflammatory, cytoprotective effects, their CNS neuroprotective effects, and their possible roles in diseases such as schizophrenia and chronic depression.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Nuramy Osefo
- Department of Health and Human Services, National Cancer Institute Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
7
|
Kemény Á, Reglődi D, Cseharovszky R, Hashimoto H, Baba A, Szolcsányi J, Pintér E, Helyes Z. Pituitary Adenylate Cyclase-Activating Polypeptide Deficiency Enhances Oxazolone-Induced Allergic Contact Dermatitis in Mice. J Mol Neurosci 2010; 42:443-9. [DOI: 10.1007/s12031-010-9368-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/07/2010] [Indexed: 12/18/2022]
|
8
|
Cheppudira BP, Girard BM, Malley SE, Dattilio A, Schutz KC, May V, Vizzard MA. Involvement of JAK-STAT signaling/function after cyclophosphamide-induced bladder inflammation in female rats. Am J Physiol Renal Physiol 2009; 297:F1038-44. [PMID: 19625377 DOI: 10.1152/ajprenal.00110.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytokines are upregulated in a variety of inflammatory conditions and cytokine/receptor interactions can activate JAK-STAT signaling. Previous studies demonstrated upregulation of numerous cytokines in the urinary bladder following cyclophosphamide (CYP)-induced cystitis. The role of JAK-STAT signaling in urinary bladder inflammation and referred somatic sensitivity has not been addressed. The contribution of JAK-STAT signaling pathways in CYP-induced bladder hyperreflexia and referred somatic hypersensitivity was determined in CYP-treated rats using a JAK2 inhibitor, AG490. Acute (4 h; 150 mg/kg ip), intermediate (48 h; 150 mg/kg ip), or chronic (75 mg/kg ip, once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Phosphorylation status of STAT-3 was increased in urinary bladder after CYP-induced cystitis (4 h, 48 h, chronic). Blockade of JAK2 with AG490 (5-15 mg/kg ip or intravesical) significantly (P < or = 0.05) reduced bladder hyperreflexia and hind paw sensitivity in CYP-treated rats. These studies demonstrate a potential role for JAK-STAT signaling pathways in bladder hyperreflexia and referred pain induced by CYP-induced bladder inflammation.
Collapse
Affiliation(s)
- Bopaiah P Cheppudira
- Dept. of Neurology, Univ. of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Cheppudira BP, Girard BM, Malley SE, Schutz KC, May V, Vizzard MA. Upregulation of vascular endothelial growth factor isoform VEGF-164 and receptors (VEGFR-2, Npn-1, and Npn-2) in rats with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 2008; 295:F826-36. [PMID: 18632792 DOI: 10.1152/ajprenal.90305.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulation of the VEGF-VEGF receptor system was examined in the urinary bladder after acute (2-48 h) and chronic (10 days) cyclophosphamide (CYP)-induced cystitis. ELISAs demonstrated significant (P < or = 0.01) upregulation of VEGF in whole urinary bladder with acute and chronic CYP-induced cystitis; however, the magnitude of increase was greater after acute (2-4 h) cystitis. Immunohistochemistry for VEGF immunoreactivity revealed a significant (P < or = 0.05) increase in VEGF immunoreactivity in the urothelium, suburothelial vasculature, and detrusor smooth muscle with acute (4 and 48 h) CYP treatment. RT-PCR identified the isoform VEGF-164, the VEGF receptor VEGFR-2, and the VEGF co-receptors neuropilin (Npn)-1 and Npn-2 in the urinary bladder. Quantitative PCR demonstrated upregulation of VEGF-164 transcript with acute and chronic CYP-induced cystitis, but VEGFR-2, Npn-1, and Npn-2 transcripts were upregulated (P < or = 0.01) in whole bladder only with chronic CYP-induced cystitis. Additional studies demonstrated regulation of VEGF transcript expression in the urinary bladder by nerve growth factor (NGF) in a novel line of NGF-overexpressing mice. These studies demonstrated that urinary bladder inflammation and NGF regulate the VEGF-VEGF receptor system in the urinary bladder. Functional role(s) for the VEGF-VEGF receptor system in urinary bladder inflammation remain to be determined.
Collapse
Affiliation(s)
- Bopaiah P Cheppudira
- Department of Neurology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
10
|
Studeny S, Cheppudira BP, Meyers S, Balestreire EM, Apodaca G, Birder LA, Braas KM, Waschek JA, May V, Vizzard MA. Urinary bladder function and somatic sensitivity in vasoactive intestinal polypeptide (VIP)-/- mice. J Mol Neurosci 2008; 36:175-87. [PMID: 18561033 DOI: 10.1007/s12031-008-9100-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/09/2008] [Indexed: 12/18/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) is an immunomodulatory neuropeptide widely distributed in neural pathways that regulate micturition. VIP is also an endogenous anti-inflammatory agent that has been suggested for the development of therapies for inflammatory disorders. In the present study, we examined urinary bladder function and hindpaw and pelvic sensitivity in VIP(-/-) and littermate wildtype (WT) controls. We demonstrated increased bladder mass and fewer but larger urine spots on filter paper in VIP(-/-) mice. Using cystometry in conscious, unrestrained mice, VIP(-/-) mice exhibited increased void volumes and shorter intercontraction intervals with continuous intravesical infusion of saline. No differences in transepithelial resistance or water permeability were demonstrated between VIP(-/-) and WT mice; however, an increase in urea permeability was demonstrated in VIP(-/-) mice. With the induction of bladder inflammation by acute administration of cyclophosphamide, an exaggerated or prolonged bladder hyperreflexia and hindpaw and pelvic sensitivity were demonstrated in VIP(-/-) mice. The changes in bladder hyperreflexia and somatic sensitivity in VIP(-/-) mice may reflect increased expression of neurotrophins and/or proinflammatory cytokines in the urinary bladder. Thus, these changes may further regulate the neural control of micturition.
Collapse
Affiliation(s)
- Simon Studeny
- Department of Neurology, University of Vermont College of Medicine, D415A Given Research Building, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|