1
|
Lauer RC, Barry M, Smith TL, Thomas AM, Wu J, Du R, Lee JH, Rao A, Dobroff AS, Arap MA, Nunes DN, Silva IT, Dias-Neto E, Chen I, McCance DJ, Cavenee WK, Pasqualini R, Arap W. Dysregulation of the PRUNE2/PCA3 genetic axis in human prostate cancer: from experimental discovery to validation in two independent patient cohorts. eLife 2023; 12:e81929. [PMID: 36645410 PMCID: PMC9886275 DOI: 10.7554/elife.81929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Background We have previously shown that the long non-coding (lnc)RNA prostate cancer associated 3 (PCA3; formerly prostate cancer antigen 3) functions as a trans-dominant negative oncogene by targeting the previously unrecognized prostate cancer suppressor gene PRUNE2 (a homolog of the Drosophila prune gene), thereby forming a functional unit within a unique allelic locus in human cells. Here, we investigated the PCA3/PRUNE2 regulatory axis from early (tumorigenic) to late (biochemical recurrence) genetic events during human prostate cancer progression. Methods The reciprocal PCA3 and PRUNE2 gene expression relationship in paired prostate cancer and adjacent normal prostate was analyzed in two independent retrospective cohorts of clinically annotated cases post-radical prostatectomy: a single-institutional discovery cohort (n=107) and a multi-institutional validation cohort (n=497). We compared the tumor gene expression of PCA3 and PRUNE2 to their corresponding expression in the normal prostate. We also serially examined clinical/pathological variables including time to disease recurrence. Results We consistently observed increased expression of PCA3 and decreased expression of PRUNE2 in prostate cancer compared with the adjacent normal prostate across all tumor grades and stages. However, there was no association between the relative gene expression levels of PCA3 or PRUNE2 and time to disease recurrence, independent of tumor grades and stages. Conclusions We concluded that upregulation of the lncRNA PCA3 and targeted downregulation of the protein-coding PRUNE2 gene in prostate cancer could be early (rather than late) molecular events in the progression of human prostate tumorigenesis but are not associated with biochemical recurrence. Further studies of PCA3/PRUNE2 dysregulation are warranted. Funding We received support from the Human Tissue Repository and Tissue Analysis Shared Resource from the Department of Pathology of the University of New Mexico School of Medicine and a pilot award from the University of New Mexico Comprehensive Cancer Center. RP and WA were supported by awards from the Levy-Longenbaugh Donor-Advised Fund and the Prostate Cancer Foundation. EDN reports research fellowship support from the Brazilian National Council for Scientific and Technological Development (CNPq), Brazil, and the Associação Beneficente Alzira Denise Hertzog Silva (ABADHS), Brazil. This work has been funded in part by the NCI Cancer Center Support Grants (CCSG; P30) to the University of New Mexico Comprehensive Cancer Center (CA118100) and the Rutgers Cancer Institute of New Jersey (CA072720).
Collapse
Affiliation(s)
- Richard C Lauer
- University of New Mexico Comprehensive Cancer CenterAlbuquerque, New MexicoUnited States
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of MedicineAlbuquerque, New MexicoUnited States
| | - Marc Barry
- Department of Pathology, University of UtahSalt Lake City, UtahUnited States
| | - Tracey L Smith
- Rutgers Cancer Institute of New JerseyNewark, New JerseyUnited States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical SchoolNewark, New JerseyUnited States
| | - Andrew Maltez Thomas
- Department of Biochemistry, Institute of Chemistry, University of São PauloSão PauloBrazil
| | - Jin Wu
- University of New Mexico Comprehensive Cancer CenterAlbuquerque, New MexicoUnited States
- Department of Pathology, University of New MexicoAlbuquerque, New MexicoUnited States
| | - Ruofei Du
- Department of Biostatistics, University of Arkansas for Medical SciencesLittle Rock, ArkansasUnited States
| | - Ji-Hyun Lee
- Department of Biostatistics, University of FloridaGainesville, FloridaUnited States
- Division of Quantitative Sciences, University of Florida Health Cancer CenterGainesville, FloridaUnited States
| | - Arpit Rao
- Section of Hematology and Oncology, Department of Medicine, Baylor College of MedicineHouston, TexasUnited States
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer CenterAlbuquerque, New MexicoUnited States
- Division of Molecular Medicine, Department of MedicineAlbuquerqueUnited States
| | - Marco A Arap
- Division of Urology, University of São Paulo Medical SchoolSão PauloBrazil
- Syrian-Lebanese HospitalSão PauloBrazil
| | - Diana N Nunes
- Laboratory of Medical Genomics, A.C. Camargo Cancer CenterSão PauloBrazil
| | - Israel T Silva
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer CenterSão PauloBrazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer CenterSão PauloBrazil
| | - Isan Chen
- MBrace TherapeuticsSan Diego, CaliforniaUnited States
| | - Dennis J McCance
- University of New Mexico Comprehensive Cancer CenterAlbuquerque, New MexicoUnited States
- Department of Pathology, University of New MexicoAlbuquerque, New MexicoUnited States
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San DiegoLa Jolla, CaliforniaUnited States
| | - Renata Pasqualini
- Rutgers Cancer Institute of New JerseyNewark, New JerseyUnited States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical SchoolNewark, New JerseyUnited States
| | - Wadih Arap
- Rutgers Cancer Institute of New JerseyNewark, New JerseyUnited States
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical SchoolNewark, New JerseyUnited States
| |
Collapse
|
2
|
Zheng YJ, Liang TS, Wang J, Zhao JY, Zhai SN, Yang DK, Wang LD. Long non-coding RNA ZNF667-AS1 retards the development of esophageal squamous cell carcinoma via modulation of microRNA-1290-mediated PRUNE2. Transl Oncol 2022; 21:101371. [PMID: 35504176 PMCID: PMC9079108 DOI: 10.1016/j.tranon.2022.101371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022] Open
|
3
|
Li T, Huang S, Yan W, Zhang Y, Guo Q. PRUNE2 inhibits progression of colorectal cancer in vitro and in vivo. Exp Ther Med 2021; 23:169. [PMID: 35069850 PMCID: PMC8764654 DOI: 10.3892/etm.2021.11092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
Prune homolog 2 with BCH domain (PRUNE2) is associated with prostate cancer, neuroblastoma, glioblastoma and melanoma; however, the function of PRUNE2 in colorectal cancer (CRC) remains unknown. The present study aimed to evaluate the effects of PRUNE2 on the development of CRC. The biological function of PRUNE2 in CRC cell lines was investigated by using Cell Counting Kit-8, colony formation, flow cytometry and Transwell assay. Additionally, a mouse model was established to investigate the effect of PRUNE2 on metastasis of CRC cells. The expression levels of PRUNE2 were lower in CRC compared with adjacent normal tissue and this expression pattern was associated with poor relapse-free survival probability. PRUNE2 overexpression significantly decreased cell proliferation and invasion, increased cell apoptosis and arrested the cell cycle. Consistently, it increased the protein expression levels of pro-apoptosis genes and decreased the expression of antiapoptotic proteins. PRUNE2 knockdown had the opposite effects. Furthermore, PRUNE2 overexpression decreased the tumorigenicity of CRC cells. In conclusion, PRUNE2 decreased cell survival, proliferation, invasion and tumorigenicity and promoted apoptosis, suggesting that PRUNE2 may function as a tumor-suppressive gene in CRC.
Collapse
Affiliation(s)
- Ting Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Silin Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Wei Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Qiang Guo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
4
|
Chen ZH, Xu YX, Xie XL, Wang DF, Aguilar-Gómez D, Liu GJ, Li X, Esmailizadeh A, Rezaei V, Kantanen J, Ammosov I, Nosrati M, Periasamy K, Coltman DW, Lenstra JA, Nielsen R, Li MH. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biol 2021; 4:1307. [PMID: 34795381 PMCID: PMC8602413 DOI: 10.1038/s42003-021-02817-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.
Collapse
Affiliation(s)
- Ze-Hui Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China ,grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Xi Xu
- grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xing-Long Xie
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Dong-Feng Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Diana Aguilar-Gómez
- grid.47840.3f0000 0001 2181 7878Center for Computational Biology, University of California at Berkeley, Berkeley, CA 94720 USA
| | | | - Xin Li
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ali Esmailizadeh
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahideh Rezaei
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, The Sakha Republic (Yakutia), Yakutsk, Russia
| | - Maryam Nosrati
- grid.412462.70000 0000 8810 3346Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Kathiravan Periasamy
- grid.420221.70000 0004 0403 8399Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - David W. Coltman
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9 Canada
| | - Johannes A. Lenstra
- grid.5477.10000000120346234Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA. .,Department of Statistics, UC Berkeley, Berkeley, CA, 94707, USA. .,Globe Institute, University of Copenhagen, 1350, København K, Denmark.
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Islam S, Ueda M, Nishida E, Wang MX, Osawa M, Lee D, Itoh M, Nakagawa K, Tana, Nakagawa T. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice. Brain Res 2018; 1688:81-90. [PMID: 29571668 DOI: 10.1016/j.brainres.2018.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2Ex16-/-; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory.
Collapse
Affiliation(s)
- Saiful Islam
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masashi Ueda
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Embryology, Institute for Developmental Research, Aichi Human Service Center, Aichi, Japan
| | - Emika Nishida
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Miao-Xing Wang
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masatake Osawa
- Department of Molecular Design and Synthesis, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Dongsoo Lee
- Department of Molecular Design and Synthesis, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Itoh
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyomi Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tana
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
6
|
Anuppalle M, Maddirevula S, Kumar A, Huh TL, Choe J, Rhee M. Expression patterns of prune2 is regulated by Notch and retinoic acid signaling pathways in the zebrafish embryogenesis. Gene Expr Patterns 2017; 23-24:45-51. [DOI: 10.1016/j.gep.2017.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023]
|
7
|
Cheray M, Bessette B, Lacroix A, Mélin C, Jawhari S, Pinet S, Deluche E, Clavère P, Durand K, Sanchez-Prieto R, Jauberteau MO, Battu S, Lalloué F. KLRC3, a Natural Killer receptor gene, is a key factor involved in glioblastoma tumourigenesis and aggressiveness. J Cell Mol Med 2016; 21:244-253. [PMID: 27641066 PMCID: PMC5264145 DOI: 10.1111/jcmm.12960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma is the most lethal brain tumour with a poor prognosis. Cancer stem cells (CSC) were proposed to be the most aggressive cells allowing brain tumour recurrence and aggressiveness. Current challenge is to determine CSC signature to characterize these cells and to develop new therapeutics. In a previous work, we achieved a screening of glycosylation-related genes to characterize specific genes involved in CSC maintenance. Three genes named CHI3L1, KLRC3 and PRUNE2 were found overexpressed in glioblastoma undifferentiated cells (related to CSC) compared to the differentiated ones. The comparison of their roles suggest that KLRC3 gene coding for NKG2E, a protein initially identified in NK cells, is more important than both two other genes in glioblastomas aggressiveness. Indeed, KLRC3 silencing decreased self-renewal capacity, invasion, proliferation, radioresistance and tumourigenicity of U87-MG glioblastoma cell line. For the first time we report that KLRC3 gene expression is linked to glioblastoma aggressiveness and could be a new potential therapeutic target to attenuate glioblastoma.
Collapse
Affiliation(s)
- Mathilde Cheray
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France
| | - Barbara Bessette
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France
| | - Aurélie Lacroix
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France
| | - Carole Mélin
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France
| | - Soha Jawhari
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France
| | - Sandra Pinet
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France
| | - Elise Deluche
- Oncology Department, University Hospital, Limoges, France
| | - Pierre Clavère
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France.,Oncology Department, University Hospital, Limoges, France.,Immunology Lab., University Hospital, Limoges, France.,Radiotherapy Department, University Hospital, Limoges, France
| | - Karine Durand
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France.,Oncology Department, University Hospital, Limoges, France.,Immunology Lab., University Hospital, Limoges, France.,Radiotherapy Department, University Hospital, Limoges, France.,Pathology and Anatomy, CBRS, Limoges, France
| | - Ricardo Sanchez-Prieto
- Laboratorio de Oncología Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha/PCyTA/Unidad de Biomédicina UCLM-CSIC, Albacete, Spain
| | - Marie-Odile Jauberteau
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France.,Immunology Lab., University Hospital, Limoges, France
| | - Serge Battu
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France
| | - Fabrice Lalloué
- EA3842 Homéostasie Cellulaire et Pathologies, Faculty of Medicine of Limoges, University of Limoges, Limoges, France
| |
Collapse
|
8
|
Roberts TC, Johansson HJ, McClorey G, Godfrey C, Blomberg KEM, Coursindel T, Gait MJ, Smith CIE, Lehtiö J, El Andaloussi S, Wood MJA. Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration. Hum Mol Genet 2015; 24:6756-68. [PMID: 26385637 PMCID: PMC4634378 DOI: 10.1093/hmg/ddv381] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/11/2015] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a classical monogenic disorder, a model disease for genomic studies and a priority candidate for regenerative medicine and gene therapy. Although the genetic cause of DMD is well known, the molecular pathogenesis of disease and the response to therapy are incompletely understood. Here, we describe analyses of protein, mRNA and microRNA expression in the tibialis anterior of the mdx mouse model of DMD. Notably, 3272 proteins were quantifiable and 525 identified as differentially expressed in mdx muscle (P < 0.01). Therapeutic restoration of dystrophin by exon skipping induced widespread shifts in protein and mRNA expression towards wild-type expression levels, whereas the miRNome was largely unaffected. Comparison analyses between datasets showed that protein and mRNA ratios were only weakly correlated (r = 0.405), and identified a multitude of differentially affected cellular pathways, upstream regulators and predicted miRNA-target interactions. This study provides fundamental new insights into gene expression and regulation in dystrophic muscle.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK, Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Henrik J Johansson
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm SE-171 21, Sweden
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - K Emelie M Blomberg
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden and
| | - Thibault Coursindel
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Michael J Gait
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden and
| | - Janne Lehtiö
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm SE-171 21, Sweden
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE-141 86, Sweden and
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK,
| |
Collapse
|
9
|
PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A 2015; 112:8403-8. [PMID: 26080435 DOI: 10.1073/pnas.1507882112] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer antigen 3 (PCA3) is the most specific prostate cancer biomarker but its function remains unknown. Here we identify PRUNE2, a target protein-coding gene variant, which harbors the PCA3 locus, thereby classifying PCA3 as an antisense intronic long noncoding (lnc)RNA. We show that PCA3 controls PRUNE2 levels via a unique regulatory mechanism involving formation of a PRUNE2/PCA3 double-stranded RNA that undergoes adenosine deaminase acting on RNA (ADAR)-dependent adenosine-to-inosine RNA editing. PRUNE2 expression or silencing in prostate cancer cells decreased and increased cell proliferation, respectively. Moreover, PRUNE2 and PCA3 elicited opposite effects on tumor growth in immunodeficient tumor-bearing mice. Coregulation and RNA editing of PRUNE2 and PCA3 were confirmed in human prostate cancer specimens, supporting the medical relevance of our findings. These results establish PCA3 as a dominant-negative oncogene and PRUNE2 as an unrecognized tumor suppressor gene in human prostate cancer, and their regulatory axis represents a unique molecular target for diagnostic and therapeutic intervention.
Collapse
|
10
|
Simão D, Pinto C, Piersanti S, Weston A, Peddie CJ, Bastos AE, Licursi V, Schwarz SC, Collinson LM, Salinas S, Serra M, Teixeira AP, Saggio I, Lima PA, Kremer EJ, Schiavo G, Brito C, Alves PM. Modeling Human Neural Functionality In Vitro: Three-Dimensional Culture for Dopaminergic Differentiation. Tissue Eng Part A 2015; 21:654-68. [DOI: 10.1089/ten.tea.2014.0079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Daniel Simão
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Pinto
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Stefania Piersanti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Università di Roma La Sapienza, Rome, Italy
| | - Anne Weston
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London, United Kingdom
| | - Christopher J. Peddie
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London, United Kingdom
| | - André E.P. Bastos
- NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Valerio Licursi
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Università di Roma La Sapienza, Rome, Italy
| | | | - Lucy M. Collinson
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London, United Kingdom
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France
- Université Montpellier I and II, Montpellier, France
| | - Margarida Serra
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P. Teixeira
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Università di Roma La Sapienza, Rome, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Rome, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma La Sapienza, Rome, Italy
| | - Pedro A. Lima
- NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France
- Université Montpellier I and II, Montpellier, France
| | - Giampietro Schiavo
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London, United Kingdom
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Catarina Brito
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
11
|
Harris JL, Richards RS, Chow CWK, Lee S, Kim M, Buck M, Teng L, Clarke R, Gardiner RA, Lavin MF. BMCC1 is an AP-2 associated endosomal protein in prostate cancer cells. PLoS One 2013; 8:e73880. [PMID: 24040105 PMCID: PMC3765211 DOI: 10.1371/journal.pone.0073880] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/23/2013] [Indexed: 12/04/2022] Open
Abstract
The prostate cancer antigen gene 3 (PCA3) is embedded in an intron of a second gene BMCC1 (Bcl2-/adenovirus E1B nineteen kDa-interacting protein 2 (BNIP-2) and Cdc42GAP homology BCH motif-containing molecule at the carboxyl terminal region 1) which is also upregulated in prostate cancer. BMCC1 was initially annotated as two genes (C9orf65/PRUNE and BNIPXL) on either side of PCA3 but our data suggest that it represents a single gene coding for a high molecular weight protein. Here we demonstrate for the first time the expression of a >300 kDa BMCC1 protein (BMCC1-1) in prostate cancer and melanoma cell lines. This protein was found exclusively in the microsomal fraction and localised to cytoplasmic vesicles. We also observed expression of BMCC1 protein in prostate cancer sections using immunohistology. GST pull down, immunoprecipitation and mass spectrometry protein interaction studies identified multiple members of the Adaptor Related Complex 2 (AP-2) as BMCC1 interactors. Consistent with a role for BMCC1 as an AP-2 interacting endosomal protein, BMCC1 co-localised with β-adaptin at the perinuclear region of the cell. BMCC1 also showed partial co-localisation with the early endosome small GTP-ase Rab-5 as well as strong co-localisation with internalised pulse-chase labelled transferrin (Tf), providing evidence that BMCC1 is localised to functional endocytic vesicles. BMCC1 knockdown did not affect Tf uptake and AP-2 knockdown did not disperse BMCC1 vesicular distribution, excluding an essential role for BMCC1 in canonical AP-2 mediated endocytic uptake. Instead, we posit a novel role for BMCC1 in post-endocytic trafficking. This study provides fundamental characterisation of the BMCC1 complex in prostate cancer cells and for the first time implicates it in vesicle trafficking.
Collapse
Affiliation(s)
- Janelle L. Harris
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- * E-mail: (MFL); (JLH)
| | - Renée S. Richards
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Clement W. K. Chow
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Soon Lee
- School of Medicine, University of Western Sydney, Liverpool, Sydney, Australia
| | - Misook Kim
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Marion Buck
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Linda Teng
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Raymond Clarke
- School of Medicine, University of Western Sydney, Liverpool, Sydney, Australia
| | - Robert A. Gardiner
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Herston, Brisbane, Queensland, Australia
- * E-mail: (MFL); (JLH)
| |
Collapse
|
12
|
Song Y, Ahn J, Suh Y, Davis ME, Lee K. Identification of novel tissue-specific genes by analysis of microarray databases: a human and mouse model. PLoS One 2013; 8:e64483. [PMID: 23741331 PMCID: PMC3669334 DOI: 10.1371/journal.pone.0064483] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022] Open
Abstract
Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved.
Collapse
Affiliation(s)
- Yan Song
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Interdisciplinary PhD Program in Nutrition (OSUN), The Ohio State University, Columbus, Ohio, United States of America
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael E. Davis
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Interdisciplinary PhD Program in Nutrition (OSUN), The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
13
|
Li S, Hayakawa-Yano Y, Itoh M, Ueda M, Ohta K, Suzuki Y, Mizuno A, Ohta E, Hida Y, Wang MX, Nakagawa T. Olfaxin as a novel Prune2 isoform predominantly expressed in olfactory system. Brain Res 2012; 1488:1-13. [DOI: 10.1016/j.brainres.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/05/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023]
|
14
|
Pan CQ, Low BC. Functional plasticity of the BNIP-2 and Cdc42GAP Homology (BCH) domain in cell signaling and cell dynamics. FEBS Lett 2012; 586:2674-91. [DOI: 10.1016/j.febslet.2012.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
15
|
Arama J, Boulay AC, Bosc C, Delphin C, Loew D, Rostaing P, Amigou E, Ezan P, Wingertsmann L, Guillaud L, Andrieux A, Giaume C, Cohen-Salmon M. Bmcc1s, a novel brain-isoform of Bmcc1, affects cell morphology by regulating MAP6/STOP functions. PLoS One 2012; 7:e35488. [PMID: 22523599 PMCID: PMC3327665 DOI: 10.1371/journal.pone.0035488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/16/2012] [Indexed: 12/21/2022] Open
Abstract
The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology.
Collapse
Affiliation(s)
- Jessica Arama
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Christophe Bosc
- Equipe Physiopathologie du Cytosquelette, Institut National de la Santé et de la Recherche Médicale U836, Institut des Neurosciences, Université Joseph Fourier, Faculté de Médecine, Domaine de la Merci, La Tronche, France
| | - Christian Delphin
- Equipe Physiopathologie du Cytosquelette, Institut National de la Santé et de la Recherche Médicale U836, Institut des Neurosciences, Université Joseph Fourier, Faculté de Médecine, Domaine de la Merci, La Tronche, France
| | - Damarys Loew
- Institut Curie, Laboratory of Proteomic Mass Spectrometry, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Paris, France
| | - Edwige Amigou
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Pascal Ezan
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Laure Wingertsmann
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Paris, France
| | - Laurent Guillaud
- Cell and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Annie Andrieux
- Equipe Physiopathologie du Cytosquelette, Institut National de la Santé et de la Recherche Médicale U836, Institut des Neurosciences, Université Joseph Fourier, Faculté de Médecine, Domaine de la Merci, La Tronche, France
| | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Cheray M, Petit D, Forestier L, Karayan-Tapon L, Maftah A, Jauberteau MO, Battu S, Gallet FP, Lalloué F. Glycosylation-related gene expression is linked to differentiation status in glioblastomas undifferentiated cells. Cancer Lett 2011; 312:24-32. [DOI: 10.1016/j.canlet.2011.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 01/06/2023]
|
17
|
Li S, Itoh M, Ohta K, Ueda M, Mizuno A, Ohta E, Hida Y, Wang MX, Takeuchi K, Nakagawa T. The expression and localization of Prune2 mRNA in the central nervous system. Neurosci Lett 2011; 503:208-14. [PMID: 21893162 DOI: 10.1016/j.neulet.2011.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/28/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022]
Abstract
A family of Bcl-2/adenovirus E1B 19kDa-interacting proteins (BNIPs) plays critical roles in several cellular processes such as cellular transformation, apoptosis, neuronal differentiation, and synaptic function, which are mediated by the BNIP2 and Cdc42GAP homology (BCH) domain. Prune homolog 2 (Drosophila) (PRUNE2) and its isoforms -C9orf65, BCH motif-containing molecule at the carboxyl terminal region 1 (BMCC1), and BNIP2 Extra Long (BNIPXL) - have been shown to be a susceptibility gene for Alzheimer's disease, a biomarker for leiomyosarcomas, a proapoptotic protein in neuronal cells, and an antagonist of cellular transformation, respectively. However, precise localization of PRUNE2 in the brain remains unclear. Here, we identified the distribution of Prune2 mRNA in the adult mouse brain. Prune2 mRNA is predominantly expressed in the neurons of the cranial nerve motor nuclei and the motor neurons of the spinal cord. The expression in the dorsal root ganglia (DRG) is consistent with the previously described reports. In addition, we observed the expression in another sensory neuron in the mesencephalic trigeminal nucleus. These results suggest that Prune2 may be functional in these restricted brain regions.
Collapse
Affiliation(s)
- Shimo Li
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|