1
|
Silva BTDA, Martins-Perles JVC, Bossolani GDP, Lima MM, Sehaber-Sierakowski CC, Gremaschi LB, Cunha JPSE, Bersani-Amado CA, Zanoni JN. Quercetin and ibuprofen combination displayed anti-inflammatory effects and also extenuates the enteric neurons damage of arthritic rats. AN ACAD BRAS CIENC 2024; 96:e20230244. [PMID: 39140520 DOI: 10.1590/0001-3765202420230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2024] [Indexed: 08/15/2024] Open
Abstract
This study aimed to investigate the antioxidant and anti-inflammatory properties of quercetin on the cellular components of the Enteric Nervous System in the ileum of rats with arthritis. Rats were distributed into five groups: control (C), arthritic (AIA), arthritic treated with ibuprofen (AI), arthritic treated with quercetin (AQ) and arthritic treated with both ibuprofen and quercetin (AIQ). The ileum was processed for immunohistochemical techniques for HuC/D, calcitonin gene-related peptide, and vasoactive intestinal polypeptide. Measurements in histological sections, chemiluminescence assays, and total antioxidant capacity were also performed. Rheumatoid arthritis resulted in a decrease in neuronal density, yet neuroplasticity mechanisms were evident through observed changes in varicosities size and neuronal area compared to the control group. Reduced paw edema and neuroprotective effects were predominantly noted in both plexuses, as evidenced by the increased density preservation of HuC/D-IR neurons in the AIQ group. The increase of lipoperoxidation levels and paw edema volume in the AQ group was observed compared to the arthritic, whereas the AIQ group mainly showed similar results to those observed in the control. The enteropathy associated with arthritis proved to be significant in the field of gastroenterology, and the combination of quercetin and ibuprofen demonstrated promising anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Bruna Thais DA Silva
- Universidade Estadual de Maringá, Departamento de Biologia, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | | | - Gleison Daion P Bossolani
- Universidade Estadual de Maringá, Departamento de Farmácia, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Mariana M Lima
- Universidade Estadual de Maringá, Departamento de Farmácia, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Camila C Sehaber-Sierakowski
- Universidade Estadual de Maringá, Departamento de Farmácia, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Lucas B Gremaschi
- Universidade Estadual de Maringá, Departamento de Medicina, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - João Paulo Silveira E Cunha
- Universidade Estadual de Maringá, Departamento de Ciências, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Ciomar A Bersani-Amado
- Universidade Estadual de Maringá, Departamento de Farmacologia e Terapêutica, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Jacqueline N Zanoni
- Universidade Estadual de Maringá, Departamento de Ciências, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
2
|
Kvetkina A, Pislyagin E, Menchinskaya E, Yurchenko E, Kalina R, Kozlovskiy S, Kaluzhskiy L, Menshov A, Kim N, Peigneur S, Tytgat J, Ivanov A, Ayvazyan N, Leychenko E, Aminin D. Kunitz-Type Peptides from Sea Anemones Protect Neuronal Cells against Parkinson's Disease Inductors via Inhibition of ROS Production and ATP-Induced P2X7 Receptor Activation. Int J Mol Sci 2022; 23:ijms23095115. [PMID: 35563513 PMCID: PMC9103184 DOI: 10.3390/ijms23095115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a socially significant disease, during the development of which oxidative stress and inflammation play a significant role. Here, we studied the neuroprotective effects of four Kunitz-type peptides from Heteractis crispa and Heteractis magnifica sea anemones against PD inductors. The peptide HCIQ1c9, which was obtained for the first time, inhibited trypsin less than other peptides due to unfavorable interactions of Arg17 with Lys43 in the enzyme. Its activity was reduced by up to 70% over the temperature range of 60–100 °C, while HCIQ2c1, HCIQ4c7, and HMIQ3c1 retained their conformation and stayed active up to 90–100 °C. All studied peptides inhibited paraquat- and rotenone-induced intracellular ROS formation, in particular NO, and scavenged free radicals outside the cells. The peptides did not modulate the TRPV1 channels but they affected the P2X7R, both of which are considered therapeutic targets in Parkinson’s disease. HMIQ3c1 and HCIQ4c7 almost completely inhibited the ATP-induced uptake of YO-PRO-1 dye in Neuro-2a cells through P2X7 ion channels and significantly reduced the stable calcium response in these cells. The complex formation of the peptides with the P2X7R extracellular domain was determined via SPR analysis. Thus, these peptides may be considered promising compounds to protect neuronal cells against PD inductors, which act as ROS production inhibitors and partially act as ATP-induced P2X7R activation inhibitors.
Collapse
Affiliation(s)
- Aleksandra Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Ekaterina Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Rimma Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Sergei Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Leonid Kaluzhskiy
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia; (L.K.); (A.I.)
| | - Alexander Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Natalia Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Alexis Ivanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia; (L.K.); (A.I.)
| | - Naira Ayvazyan
- L.A. Orbeli Institute of Physiology, National Academy of Sciences of Armenia, Yerevan 0028, Armenia;
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (E.P.); (E.M.); (E.Y.); (R.K.); (S.K.); (A.M.); (N.K.); (E.L.)
- Correspondence:
| |
Collapse
|
3
|
Tabikh M, Chahla C, Okdeh N, Kovacic H, Sabatier JM, Fajloun Z. Parkinson disease: Protective role and function of neuropeptides. Peptides 2022; 151:170713. [PMID: 34929264 DOI: 10.1016/j.peptides.2021.170713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Neuropeptides are bioactive molecules, made up of small chains of amino acids, with many neuromodulatory properties. Several lines of evidence suggest that neuropeptides, mainly expressed in the central nervous system (CNS), play an important role in the onset of Parkinson's Disease (PD) pathology. The wide spread disruption of neuropeptides has been excessively demonstrated to be related to the pathophysiological symptoms in PD where impairment in motor function per example was correlated with neuropeptides dysregulation in the substantia niagra (SN). Moreover, the levels of different neuropeptides have been found modified in the cerebrospinal fluid and blood of PD patients, indicating their potential role in the manifestation of PD symptoms and dysfunctions. In this review, we outlined the neuroprotective effects of neuropeptides on dopaminergic neuronal loss, oxidative stress and neuroinflammation in several models and tissues of PD. Our main focus was to elaborate the role of orexin, pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), opioids, angiotensin, carnosine and many others in the protection and/or involvement in the neurodegeneration of striatal dopaminergic cells. Further studies are required to better assess the mode of action and cellular mechanisms of neuropeptides in order to shift the focus from the in vitro and in vivo testing to applicable clinical testing. This review, allows a support for future use of neuropeptides as therapeutic solution for PA pathophysiology.
Collapse
Affiliation(s)
- Mireille Tabikh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Charbel Chahla
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Nathalie Okdeh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Herve Kovacic
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France
| | - Jean-Marc Sabatier
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France.
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon; Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon.
| |
Collapse
|
4
|
VIP alleviates sepsis-induced cognitive dysfunction as the TLR-4/NF-κB signaling pathway is inhibited in the hippocampus of rats. J Mol Histol 2022; 53:369-377. [PMID: 35239068 DOI: 10.1007/s10735-022-10068-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 01/17/2023]
Abstract
Cognitive dysfunction caused by sepsis-associated encephalopathy (SAE) is still poorly understood. It is reported that vasoactive intestinal peptide (VIP) exerts its anti-inflammatory effects in multiple diseases, while its biological function in SAE remains unclear. We aimed to figure out whether VIP has influence on sepsis-induced neuroinflammation and cognitive dysfunction. To induce sepsis, rats were subjected to cecal ligation and puncture (CLP) operation. Morris water maze test and fear conditioning test were conducted to reveal cognitive dysfunctions. TUNEL assay was performed to evaluate apoptosis. We found out that the expression of VIP was downregulated in the hippocampus of septic rats. VIP was verified to attenuate sepsis-induced memory impairment following CLP. Additionally, we examined apoptosis and inflammation in rats' hippocampus. It is worth noting that VIP inhibited the apoptosis in the hippocampus and reduced the productions of proinflammatory cytokines TNF-α, IL-6 and IL-1β. Furthermore, our data confirmed that VIP was involved in regulating the TLR-4/NF-κB signaling. In conclusion, VIP inhibited neuroinflammation and cognitive impairment in hippocampus of septic rats through the TLR-4/NF-κB signaling pathway.
Collapse
|
5
|
Solés-Tarrés I, Cabezas-Llobet N, Lefranc B, Leprince J, Alberch J, Vaudry D, Xifró X. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Protects Striatal Cells and Improves Motor Function in Huntington’s Disease Models: Role of PAC1 Receptor. Front Pharmacol 2022; 12:797541. [PMID: 35153755 PMCID: PMC8832515 DOI: 10.3389/fphar.2021.797541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by the expression of mutant huntingtin (mHtt). One of the main features of HD is the degeneration of the striatum that leads to motor discoordination. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that acts through three receptors named PAC1R, VPAC1R, and VPAC2R. In the present study, we first investigated the effect of PACAP on STHdhQ7/Q7 and STHdhQ111/Q111 cells that express wild-type Htt with 7 and mHtt with 111 glutamines, respectively. Then we explored the capacity of PACAP to rescue motor symptoms in the R6/1, a murine model of HD. We found that PACAP treatment (10–7 M) for 24 h protects STHdhQ111/Q111 cells from mHtt-induced apoptosis. This effect is associated with an increase in PAC1R transcription, phosphorylation of ERK and Akt, and an increase of intracellular c-fos, egr1, CBP, and BDNF protein content. Moreover, the use of pharmacological inhibitors revealed that activation of ERK and Akt mediates these antiapoptotic and neurotrophic effects of PACAP. To find out PAC1R implication, we treated STHdh cells with vasoactive intestinal peptide (VIP), which exhibits equal affinity for VPAC1R and VPAC2R, but lower affinity for PAC1R, in contrast to PACAP which has same affinity for the three receptors. VIP reduced cleaved caspase-3 protein level, without promoting the expression of c-fos, egr1, CBP, and the neurotrophin BDNF. We next measured the protein level of PACAP receptors in the striatum and cortex of R6/1 mice. We observed a specific reduction of PAC1R at the onset of motor symptoms. Importantly, the intranasal administration of PACAP to R6/1 animals restored the motor function and increased the striatal levels of PAC1R, CBP, and BDNF. In conclusion, PACAP exerts antiapoptotic and neurotrophic effects in striatal neurons mainly through PAC1R. This effect in HD striatum allows the recovery of motor function and point out PAC1R as a therapeutic target for treatment of HD.
Collapse
Affiliation(s)
- Irene Solés-Tarrés
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Núria Cabezas-Llobet
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Xavier Xifró
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
- *Correspondence: Xavier Xifró,
| |
Collapse
|
6
|
Korkmaz OT, Arkan S, Öncü-Kaya EM, Ateş N, Tunçel N. Vasoactive intestinal peptide (VIP) conducts the neuronal activity during absence seizures: GABA seems to be the main mediator of VIP. Neurosci Lett 2021; 765:136268. [PMID: 34571088 DOI: 10.1016/j.neulet.2021.136268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022]
Abstract
Absence epilepsy is classified as a childhood generalized epilepsy syndrome with distinctive electroencephalographic patterns. The Wistar Albino Glaxo originating from Rijswijk (WAG/Rij) strain is a very well validated animal model of absence epilepsy that also shows behavioral deficits. In addition to the gastrointestinal system, VIP is highly expressed throughout numerous brain regions, and it plays crucial roles as a neurotransmitter and as a neuromodulatory, neurotrophic and neuroprotective factor in both the central and peripheral nervous systems. In this study, adult WAG/Rij rats were divided into two groups (n = 10): a group that was administered VIP (25 ng/kg i.p.) every 2 days for 15 days and an age-matched control group that was administered physiological saline. Electrical brain activity and behavior (depressive- like behavior, learning and memory and anxiety) were investigated in both groups. In addition, the extracellular concentrations of GABA and glutamate and the GABA/glutamate ratio were measured by high-performance liquid chromatography in microdialysate samples collected from the somatosensorial cortex of WAG/Rij rats. Our results demonstrated that VIP treatment significantly suppressed the total duration and number of spike wave discharges in WAG/Rij rats. However, VIP had no significant effect on behavior. VIP increased the extracellular concentration of GABA and the GABA/glutamate ratio in the somatosensory cortex. In conclusion, VIP has suppressive effects on absence seizures, possibly by increasing the GABA concentration and inducing the transformation of glutamate to GABA in the somatosensory cortex of WAG/Rij rats.
Collapse
Affiliation(s)
- Orhan Tansel Korkmaz
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Sertan Arkan
- Department of Physiology, Medical Faculty, Kocaeli University, 41380, Kocaeli, Turkey
| | - Elif Mine Öncü-Kaya
- Department of Chemistry, Science Faculty, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Nurbay Ateş
- Department of Physiology, Medical Faculty, Kocaeli University, 41380, Kocaeli, Turkey
| | - Neşe Tunçel
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| |
Collapse
|
7
|
Hu S, Huang S, Ma J, Li D, Zhao Z, Zheng J, Li M, Wang Z, Sun W, Shi X. Correlation of Decreased Serum Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide Levels With Non-motor Symptoms in Patients With Parkinson's Disease. Front Aging Neurosci 2021; 13:689939. [PMID: 34566619 PMCID: PMC8457255 DOI: 10.3389/fnagi.2021.689939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: Pituitary adenylate-cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two neuropeptides that exhibit anti-inflammatory and neuroprotective properties, modulating the production of cytokines and chemokines, and the behavior of immune cells. However, the relationship between PACAP and VIP levels and Parkinson’s disease (PD) are not clear. The aim of the current study was to evaluate serum PACAP and VIP levels in PD patients and to analysis the correlation between neuropeptide levels and non-motor symptoms. Methods: In this cross-sectional study, we enrolled 72 patients with idiopathic PD and 71 healthy volunteers. Serum PACAP and VIP levels were measured using an enzyme-linked immunosorbent assay (ELISA) kit. Non-motor symptoms were assessed with the Non-Motor Symptoms Scale (NMSS) for PD, including total and single-item scores. Results: The serum PACAP levels of PD patients were significantly lower than those of healthy controls [(76.02 ± 43.78) pg/ml vs. (154.96 ± 76.54) pg/ml, P < 0.001]; and the serum VIP levels of PD patients were also significantly lower than those of healthy controls [(109.56 ± 15.39) pg/ml vs. (136.46 ± 24.16) pg/ml, P < 0.001]. PACAP levels were inversely correlated only with the score on NMSS item five, assessing Attention/memory (r = −0.276, P < 0.05) and lower serum PACAP levels were detected in the cognitive dysfunction subgroup than in the cognitively intact subgroup [(61.87 ± 32.66) pg/ml vs. (84.51 ± 47.59) pg/ml, P < 0.05]; meanwhile, VIP levels were inversely correlated with the NMSS total score (r = −0.285, P < 0.05) and the single-item scores for item one, assessing Cardiovascular (r = −0.257, P < 0.05) and item three, assessing Mood/cognition (r = −0.373, P < 0.05), and lower serum VIP levels were detected in the anxiety subgroup and depression subgroup than in the non-anxiety subgroup and non-depression subgroup, respectively [(107.45 ± 15.40) pg/ml vs. (116.41 ± 13.67) pg/ml, P < 0.05]; [(104.45 ± 15.26) pg/ml vs. (113.43 ± 14.52) pg/ml, P < 0.05]. Conclusion: The serum PACAP and VIP levels of PD patients were significantly lower than those of healthy controls. The non-motor symptoms significantly negatively correlated with serum PACAP level was cognitive dysfunction, while mood disorder was significantly correlated with serum VIP level.
Collapse
Affiliation(s)
- Shiyu Hu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China
| | - Shen Huang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China.,Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongsheng Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China.,Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenxiang Zhao
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China.,Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China.,Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingjian Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China
| | - Zhidong Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhua Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Kaleczyc J, Lepiarczyk E. The Effect of Castration on Peripheral Autonomic Neurons Supplying Mammalian Male Genitourinary System. Int J Mol Sci 2021; 22:7632. [PMID: 34299251 PMCID: PMC8304345 DOI: 10.3390/ijms22147632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
This review paper deals with the influence of androgens (testosterone) on pelvic autonomic pathways in male mammals. The vast majority of the relevant information has been gained in experiments involving castration (testosterone deprivation) performed in male rats, and recently, in male pigs. In both species, testosterone significantly affects the biology of the pathway components, including the pelvic neurons. However, there are great differences between rats and pigs in this respect. The most significant alteration is that testosterone deprivation accomplished a few days after birth results some months later in the excessive loss (approximately 90%) of pelvic and urinary bladder trigone intramural neurons in the male pig, while no changes in the number of pelvic neurons are observed in male rats (rats do not have the intramural ganglia). In the castrated pigs, much greater numbers of pelvic neurons than in the non-castrated animals express CGRP, GAL, VIP (peptides known to have neuroprotective properties), and caspase 3, suggesting that neurons die due to apoptosis triggered by androgen deprivation. In contrast, only some morpho-electrophysiological changes affecting neurons following castration are found in male rats. Certain clinicopathological consequences of testosterone deprivation for the functioning of urogenital organs are also discussed.
Collapse
Affiliation(s)
- Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| |
Collapse
|
9
|
Zheng Y, Zhang L, Xie J, Shi L. The Emerging Role of Neuropeptides in Parkinson's Disease. Front Aging Neurosci 2021; 13:646726. [PMID: 33762925 PMCID: PMC7982480 DOI: 10.3389/fnagi.2021.646726] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD), the second most common age-related neurodegenerative disease, results from the loss of dopamine neurons in the substantia nigra. This disease is characterized by cardinal non-motor and motor symptoms. Several studies have demonstrated that neuropeptides, such as ghrelin, neuropeptide Y, pituitary adenylate cyclase-activating polypeptide, substance P, and neurotensin, are related to the onset of PD. This review mainly describes the changes in these neuropeptides and their receptors in the substantia nigra-striatum system as well as the other PD-related brain regions. Based on several in vitro and in vivo studies, most neuropeptides play a significant neuroprotective role in PD by preventing caspase-3 activation, decreasing mitochondrial-related oxidative stress, increasing mitochondrial biogenesis, inhibiting microglial activation, and anti-autophagic activity. Thus, neuropeptides may provide a new strategy for PD therapy.
Collapse
Affiliation(s)
- Yanan Zheng
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Linlin Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Saadi S, Ghazali HM, Saari N, Abdulkarim SM. The structural reconformation of peptides in enhancing functional and therapeutic properties: Insights into their solid state crystallizations. Biophys Chem 2021; 273:106565. [PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023]
Abstract
Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agro-alimentaires INATAA 25017, Université Frères Mentouri, Constantine 1, Algeria; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hasanah Mohd Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sabo Mohammed Abdulkarim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Study on different pathogenic factors in different disease stages of patients with Wilson disease. Neurol Sci 2021; 42:3749-3756. [PMID: 33443665 DOI: 10.1007/s10072-020-04973-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/06/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate in different stages of patients with Wilson disease (WD), there are different pathogenic factors such as metal deposition, oxidative stress, and inflammatory response in the brain. METHODS A total of 32 untreated WD patients and 10 normal controls were enrolled in the study. The neurological symptoms were evaluated using the modified Young scale. Liver function, metal metabolism, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS) examination were done. The clinical disease stages were divided into metal deposition period, fiber damage period, and neuronal necrosis period according to the imaging results. The content of 24-h urine copper, serum copper, and serum iron; and the levels of catalase (CAT), glutathione peroxidase (GSH-PX), malondialdehyde (MDA), nitric oxide (NO), nitric oxide synthase (NOS), superoxide dismutase (SOD), interleukin (IL-1), and tumor necrosis factor alpha (TNF-α) were detected. RESULTS The contents of urinary copper in WD patients at neuronal necrosis stage were lower than those in patients at the metal deposition stage (P = 0.011) and fiber injury stage (P = 0.023). The contents of NOS (P = 0.039) and NO (P = 0.047) in WD patients at the stage of fiber injury were higher than those of the normal control, while GSH-PX (P = 0.025) and CAT (P = 0.041) were lower in the neuronal necrosis stage. In the stage of neuronal necrosis, the levels of IL-1 (P = 0.030) and TNF-α were higher than those of the normal control (P = 0.042). The neurological symptom scores in patients with fiber injury (P = 0.013) and neuron injury were higher than those with metal deposition (P = 0.026). CONCLUSION There are different pathogenic factors in different stages of WD. At the neuronal necrosis stage, copper deposition was decreased in WD patients. In the stage of fiber injury and neuronal necrosis, there is oxidative stress injury in WD patients. In the neuronal necrosis phase, WD patients have an inflammatory response.
Collapse
|
12
|
Effect of Acrylamide Supplementation on the Population of Vasoactive Intestinal Peptide (VIP)-Like Immunoreactive Neurons in the Porcine Small Intestine. Int J Mol Sci 2020; 21:ijms21249691. [PMID: 33353157 PMCID: PMC7765847 DOI: 10.3390/ijms21249691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Acrylamide is one of the harmful substances present in food. The present study aimed to establish the effect of acrylamide supplementation in tolerable daily intake (TDI) dose (0.5 µg/kg b.w./day) and a dose ten times higher than TDI (5 µg/kg b.w./day) on the population of vasoactive intestinal peptide-like immunoreactive (VIP-LI) neurons in the porcine small intestine and the degree of the co-localization of VIP with other neuroactive substances (neuronal nitric oxide synthase (nNOS), substance P (SP), and cocaine- and amphetamine-regulated transcript peptide (CART)). In our work, 15 Danish landrace gilts (5 in each experimental group) received capsules (empty or with low or high doses of acrylamide) for a period of 28 days with their morning feeding. Using double immunofluorescence staining, we established that acrylamide supplementation increased the number of neurons showing immunoreactivity towards VIP in all types of enteric nervous system (ENS) plexuses and fragments of the small intestine studied. Moreover, both doses of acrylamide led to changes in the degree of co-localization of VIP with nNOS, SP, and CART in intramural neurons. The observed changes may be the adaptation of neurons to local inflammation, oxidative stress, or the direct toxic effects of acrylamide on intestinal neurons, also referred to as neuronal plasticity.
Collapse
|
13
|
Solés-Tarrés I, Cabezas-Llobet N, Vaudry D, Xifró X. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide Against Cognitive Decline in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:221. [PMID: 32765225 PMCID: PMC7380167 DOI: 10.3389/fncel.2020.00221] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cognitive impairment is one of the major symptoms in most neurodegenerative disorders such as Alzheimer’s (AD), Parkinson (PD), and Huntington diseases (HD), affecting millions of people worldwide. Unfortunately, there is no treatment to cure or prevent the progression of those diseases. Cognitive impairment has been related to neuronal cell death and/or synaptic plasticity alteration in important brain regions, such as the cerebral cortex, substantia nigra, striatum, and hippocampus. Therefore, compounds that can act to protect the neuronal loss and/or to reestablish the synaptic activity are needed to prevent cognitive decline in neurodegenerative diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two highly related multifunctional neuropeptides widely distributed in the central nervous system (CNS). PACAP and VIP exert their action through two common receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. In this review article, we first presented evidence showing the therapeutic potential of PACAP and VIP to fight the cognitive decline observed in models of AD, PD, and HD. We also reviewed the main transduction pathways activated by PACAP and VIP receptors to reduce cognitive dysfunction. Furthermore, we identified the therapeutic targets of PACAP and VIP, and finally, we evaluated different novel synthetic PACAP and VIP analogs as promising pharmacological tools.
Collapse
Affiliation(s)
- Irene Solés-Tarrés
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| | - Núria Cabezas-Llobet
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Normandie University, UNIROUEN, Inserm, Rouen, France
| | - Xavier Xifró
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
14
|
Yu R, Li J, Lin Z, Ouyang Z, Huang X, Reglodi D, Vaudry D. TAT-tagging of VIP exerts positive allosteric modulation of the PAC1 receptor and enhances VIP neuroprotective effect in the MPTP mouse model of Parkinson's disease. Biochim Biophys Acta Gen Subj 2020; 1864:129626. [PMID: 32335135 DOI: 10.1016/j.bbagen.2020.129626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28-38) fragment. METHODS To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it. RESULTS VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28-38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone. CONCLUSIONS The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP. GENERAL SIGNIFICANCE VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Rongjie Yu
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Junfeng Li
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhuochao Lin
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zehua Ouyang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoling Huang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Dora Reglodi
- Department of Anatomy, University of Pecs Medical School, Pecs, Hungary
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death, Cell plasticity Team, Rouen, France
| |
Collapse
|
15
|
Kvetkina A, Leychenko E, Chausova V, Zelepuga E, Chernysheva N, Guzev K, Pislyagin E, Yurchenko E, Menchinskaya E, Aminin D, Kaluzhskiy L, Ivanov A, Peigneur S, Tytgat J, Kozlovskaya E, Isaeva M. A new multigene HCIQ subfamily from the sea anemone Heteractis crispa encodes Kunitz-peptides exhibiting neuroprotective activity against 6-hydroxydopamine. Sci Rep 2020; 10:4205. [PMID: 32144281 PMCID: PMC7060258 DOI: 10.1038/s41598-020-61034-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The Kunitz/BPTI-type peptides are ubiquitous in numerous organisms including marine venomous animals. The peptides demonstrate various biological activities and therefore they are the subject of a number of investigations. We have discovered a new HCIQ subfamily belonging to recently described multigene HCGS family of Heteractis crispa Kunitz-peptides. The uniqueness of this subfamily is that the HCIQ precursors contain a propeptide terminating in Lys-Arg (endopeptidase cleavage site) the same as in the neuro- and cytotoxin ones. Moreover, the HCIQ genes contain two introns in contrast to HCGS genes with one intron. As a result of Sanger and amplicon deep sequencings, 24 HCIQ isoforms were revealed. The recombinant peptides for the most prevalent isoform (HCIQ2c1) and for the isoform with the rare substitution Gly17Glu (HCIQ4c7) were obtained. They can inhibit trypsin with Ki 5.2 × 10-8 M and Ki 1.9 × 10-7 M, respectively, and interact with some serine proteinases including inflammatory ones according to the SPR method. For the first time, Kunitz-peptides have shown to significantly increase neuroblastoma cell viability in an in vitro 6-OHDA-induced neurotoxicity model being a consequence of an effective decrease of ROS level in the cells.
Collapse
Affiliation(s)
- Aleksandra Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia.
| | - Victoria Chausova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Nadezhda Chernysheva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Konstantin Guzev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Ekaterina Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Leonid Kaluzhskiy
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow, 119121, Russia
| | - Alexis Ivanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow, 119121, Russia
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, Leuven, B-3000, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, Leuven, B-3000, Belgium
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Marina Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| |
Collapse
|
16
|
Kaleczyc J, Kasica-Jarosz N, Pidsudko Z, Dudek A, Klimczuk M, Sienkiewicz W. Effect of castration on pelvic neurons in the male pig. Histochem Cell Biol 2020; 153:135-151. [DOI: 10.1007/s00418-019-01837-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
|
17
|
Korkmaz OT, Tunçel N. Advantages of Vasoactive Intestinal Peptide for the Future Treatment of Parkinson's Disease. Curr Pharm Des 2019; 24:4693-4701. [PMID: 30636594 DOI: 10.2174/1381612825666190111150953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/04/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder in adults over the age of 65. The characteristic symptoms of Parkinson's disease, such as resting tremor, muscular rigidity, bradykinesia, postural instability and gait imbalance, are thought to be a result of the progressive degeneration of the dopaminergic neurons of the substantia nigra compacta, resulting in insufficient dopamine integrated signalling on GABAergic medium spiny neurons in the striatum. Despite tremendous research, the molecular mechanisms underlying the pathogenesis of neurodegeneration in Parkinson's disease have remained largely unknown. Although a variety of possible pathogenic mechanisms have been proposed over the years, including excessive release of oxygen free radicals, impairment of mitochondrial function, loss of trophic support, abnormal kinase activity, disruption of calcium homeostasis, dysfunction of protein degradation and neuroinflammation, the pathogenesis is still largely uncertain, and there is currently no effective cure for Parkinson's disease. To develop potential therapies for Parkinson's disease, inflammatory processes, mitochondrial dynamics, oxidative stress, production of reactive aldehydes, excitotoxicity and synucleinopathies are to be targeted. In this respect, vasoactive intestinal peptide has beneficial effects that provide an advantage for the treatment of Parkinson's disease. Vasoactive intestinal peptide is a major neuropeptide-neurotransmitter having antioxidant, anti-inflammatory, neurotropic, neuromodulator, and anti-apoptotic properties. In addition to its direct neuroprotective actions regulating the activity of astrocytes, microglia and brain mast cells, it also plays important roles for neuronal adaptation, maintenance and survival.
Collapse
Affiliation(s)
- Orhan Tansel Korkmaz
- Eskisehir Osmangazi University, Medical Faculty, Department of Physiology and Neurophysiology Eskisehir 26480, Turkey
| | - Neşe Tunçel
- Eskisehir Osmangazi University, Medical Faculty, Department of Physiology and Neurophysiology Eskisehir 26480, Turkey
| |
Collapse
|
18
|
Mosley RL, Lu Y, Olson KE, Machhi J, Yan W, Namminga KL, Smith JR, Shandler SJ, Gendelman HE. A Synthetic Agonist to Vasoactive Intestinal Peptide Receptor-2 Induces Regulatory T Cell Neuroprotective Activities in Models of Parkinson's Disease. Front Cell Neurosci 2019; 13:421. [PMID: 31619964 PMCID: PMC6759633 DOI: 10.3389/fncel.2019.00421] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
A paradigm shift has emerged in Parkinson’s disease (PD) highlighting the prominent role of CD4+ Tregs in pathogenesis and treatment. Bench to bedside research, conducted by others and our own laboratories, advanced a neuroprotective role for Tregs making pharmacologic transformation of immediate need. Herein, a vasoactive intestinal peptide receptor-2 (VIPR2) peptide agonist, LBT-3627, was developed as a neuroprotectant for PD-associated dopaminergic neurodegeneration. Employing both 6-hydroxydopamine (6-OHDA) and α-synuclein (α-Syn) overexpression models in rats, the sequential administration of LBT-3627 increased Treg activity without altering cell numbers both in naïve animals and during progressive nigrostriatal degeneration. LBT-3627 administration was linked to reductions of inflammatory microglia, increased survival of dopaminergic neurons, and improved striatal densities. While α-Syn overexpression resulted in reduced Treg activity, LBT-3627 rescued these functional deficits. This occurred in a dose-dependent manner closely mimicking neuroprotection. Taken together, these data provide the basis for the use of VIPR2 agonists as potent therapeutic immune modulating agents to restore Treg activity, attenuate neuroinflammation, and interdict dopaminergic neurodegeneration in PD. The data underscore an important role of immunity in PD pathogenesis.
Collapse
Affiliation(s)
- R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wenhui Yan
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jenell R Smith
- Longevity Biotech, Inc., Philadelphia, PA, United States
| | | | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
19
|
Kaddour H, Hamdi Y, Amri F, Bahdoudi S, Bouannee I, Leprince J, Zekri S, Vaudry H, Tonon MC, Vaudry D, Amri M, Mezghani S, Masmoudi-Kouki O. Antioxidant and Anti-Apoptotic Activity of Octadecaneuropeptide Against 6-OHDA Toxicity in Cultured Rat Astrocytes. J Mol Neurosci 2018; 69:1-16. [PMID: 30343367 DOI: 10.1007/s12031-018-1181-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Oxidative stress, associated with various neurodegenerative diseases, promotes ROS generation, impairs cellular antioxidant defenses, and finally, triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN acts as a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10-14 to 10-8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. 6-OHDA-treated cells also exhibited enhanced levels of ROS associated with a generation of H2O2 and O2°-, and a reduction of both superoxide dismutase (SOD) and catalase (CAT) activities. Co-treatment of astrocytes with low concentrations of ODN dose-dependently blocked 6-OHDA-evoked production of ROS and inhibition of antioxidant enzyme activities. Concomitantly, ODN stimulated Mn-SOD, CAT, glutathione peroxidase-1, and sulfiredoxin-1 gene transcription and rescued 6-OHDA-associated reduced expression of endogenous antioxidant enzymes. Taken together, these data indicate that, in rat astrocytes, ODN exerts anti-apoptotic and anti-oxidative activities, and hence prevents 6-OHDA-induced oxidative assault and cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.
Collapse
Affiliation(s)
- Hadhemi Kaddour
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,CIRB, CNRS UMR 7241/INSERM U1050, PSL University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, 75231, Paris, France.,Imagine Institute and Center of Psychiatry and Neuroscience, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Yosra Hamdi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Fatma Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Seyma Bahdoudi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - Ibtissem Bouannee
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Sami Zekri
- USCR Transmission Electron Microscopy, Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Hubert Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Sana Mezghani
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.
| |
Collapse
|
20
|
Abstract
Neurodegenerative disorders (NDDs) are characterized by neuronal death in the brain. The mechanism of the neuronal death is too complicated to be fully understood, although in many NDDs, aging and neurotoxins are known risk factors. In the central and peripheral nervous system, vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide, is released to support neuronal survival in both physiological and pathological condition. VIP can inhibit the neurodegeneration induced by the loss of neurons. The indirect protection effect is mainly mediated by glial cells through the production of neurotrophic factor(s) and inhibition of proinflammatory mediators. By remolding the structure and improving the transfer efficiency of VIP, its nerve protective function could be further improved. Its neuroprotective action and efficacy in inhibiting a broad range of inflammatory responses make VIP or related peptides becoming a novel therapeutic method to NDDs. In this review, we aim to summarize the relationship between VIP and NDDs.
Collapse
Affiliation(s)
- Guangxiu Deng
- a National Glycoengineering Research Center , Shandong University , Jinan , China
| | - Lan Jin
- a National Glycoengineering Research Center , Shandong University , Jinan , China
| |
Collapse
|
21
|
Resveratrol promotes myenteric neuroprotection in the ileum of rats after ischemia-reperfusion injury. Life Sci 2016; 166:54-59. [PMID: 27671039 DOI: 10.1016/j.lfs.2016.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/31/2023]
Abstract
AIMS The present study evaluated the effects of resveratrol in the myenteric plexus after intestinal ischemia-reperfusion (I/R) injury caused by occluding the superior mesenteric artery for 45min, followed by 7days of reperfusion. MAIN METHODS Forty-two male Wistar rats were divided into seven groups: control (C group), untreated sham surgery control (SC group), sham surgery control treated with resveratrol before surgery (STA group), sham surgery control treated with resveratrol before and after surgery (STAD group), ischemic control (IRC group), ischemic treated before I/R (IRTA group), and ischemic treated before and after I/R (IRTAD group). Resveratrol (10mg/kg) was administered for 4days and 2h prior to surgery and/or 7days later. Morphometric analyses were performed, and the density of the general neuronal population (HuC/D-immunoreactive [IR]), nitrergic subpopulation (neuronal nitric oxide synthase [nNOS]-IR), vasoactive intestinal peptide (VIP)ergic varicosities (VIP-IR), and glial cells (S100-IR) was determined. KEY FINDINGS Injury that was caused by I/R significantly reduced (p<0.01) the HuC/D-IR general neuronal population. Treatment with resveratrol before and after ischemia had a neuroprotective effect. Morphometric changes caused by I/R in nitrergic neurons and varicosities were also attenuated by resveratrol. Ischemia/reperfusion promoted the proliferation of enteric glial cells, and resveratrol treatment before and after I/R reversed this effect. SIGNIFICANCE Resveratrol had neuroprotective effects, showing promise for application in intestinal surgery and transplants.
Collapse
|
22
|
Vicentini GE, Fracaro L, de Souza SRG, Martins HA, Guarnier FA, Zanoni JN. Experimental Cancer Cachexia Changes Neuron Numbers and Peptide Levels in the Intestine: Partial Protective Effects after Dietary Supplementation with L-Glutamine. PLoS One 2016; 11:e0162998. [PMID: 27635657 PMCID: PMC5026352 DOI: 10.1371/journal.pone.0162998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal dysmotility frequently occurs in cancer cachexia and may result from damage to enteric innervation caused by oxidative stress, especially due to glutathione depletion. We assessed the effect of dietary supplementation with 20 g/kg l-glutamine (a glutathione precursor) on the intrinsic innervation of the enteric nervous system in healthy and Walker 256 tumor-bearing Wistar rats during the development of experimental cachexia (14 days), in comparison with non-supplemented rats, by using immunohistochemical methods and Western blotting. The total neural population and cholinergic subpopulation densities in the myenteric plexus, as well as the total population and VIPergic subpopulation in the submucosal plexus of the jejunum and ileum, were reduced in cachectic rats, resulting in adaptive morphometric alterations and an increase in vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) expression, suggesting a neuroplastic response. l-glutamine supplementation prevented decrease in myenteric neuronal density in the ileum, morphometric alterations in the neurons and nerve fibers (in both the plexuses of the jejunum and ileum), and the overexpression of VIP and CGRP. Cancer cachexia severely affected the intrinsic innervation of the jejunum and ileum to various degrees and this injury seems to be associated with adaptive neural plasticity. l-glutamine supplementation presented partial protective effects on the enteric innervation against cancer cachexia, possibly by attenuating oxidative stress.
Collapse
Affiliation(s)
- Geraldo E. Vicentini
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Luciane Fracaro
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Sara R. G. de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Heber A. Martins
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Flávia A. Guarnier
- Department of General Pathology, Universidade Estadual de Londrina, Londrina, Parana, Brazil
| | - Jacqueline N. Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
- * E-mail:
| |
Collapse
|
23
|
Yelkenli İH, Ulupinar E, Korkmaz OT, Şener E, Kuş G, Filiz Z, Tunçel N. Modulation of Corpus Striatal Neurochemistry by Astrocytes and Vasoactive Intestinal Peptide (VIP) in Parkinsonian Rats. J Mol Neurosci 2016; 59:280-9. [DOI: 10.1007/s12031-016-0757-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/11/2016] [Indexed: 12/29/2022]
|
24
|
Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice. J Neurosci 2016; 35:16463-78. [PMID: 26674871 DOI: 10.1523/jneurosci.2131-15.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Vasoactive intestinal peptide (VIP) mediates a broad range of biological responses by activating two related receptors, VIP receptor 1 and 2 (VIPR1 and VIPR2). Although the use of native VIP facilitates neuroprotection, clinical application of the hormone is limited due to VIP's rapid metabolism and inability to distinguish between VIPR1 and VIPR2 receptors. In addition, activation of both receptors by therapeutics may increase adverse secondary toxicities. Therefore, we developed metabolically stable and receptor-selective agonists for VIPR1 and VIPR2 to improve pharmacokinetic and pharmacodynamic therapeutic end points. Selective agonists were investigated for their abilities to protect mice against MPTP-induced neurodegeneration used to model Parkinson's disease (PD). Survival of tyrosine hydroxylase neurons in the substantia nigra was determined by stereological tests after MPTP intoxication in mice pretreated with either VIPR1 or VIPR2 agonist or after adoptive transfer of splenic cell populations from agonist-treated mice administered to MPTP-intoxicated animals. Treatment with VIPR2 agonist or splenocytes from agonist-treated mice resulted in increased neuronal sparing. Immunohistochemical tests showed that agonist-treated mice displayed reductions in microglial responses, with the most pronounced effects in VIPR2 agonist-treated, MPTP-intoxicated mice. In parallel studies, we observed reductions in proinflammatory cytokine release that included IL-17A, IL-6, and IFN-γ and increases in GM-CSF transcripts in CD4(+) T cells recovered from VIPR2 agonist-treated animals. Moreover, a phenotypic shift of effector to regulatory T cells was observed. These results support the use of VIPR2-selective agonists as neuroprotective agents for PD treatment. SIGNIFICANCE STATEMENT Vasoactive intestinal peptide receptor 2 can elicit immune transformation in a model of Parkinson's disease (PD). Such immunomodulatory capabilities can lead to neuroprotection by attenuating microglial activation and by slowing degradation of neuronal cell bodies and termini in MPTP-intoxicated mice. The protective mechanism arises from altering a Th1/Th2 immune cytokine response into an anti-inflammatory and neuronal sparing profile. These results are directly applicable for the development of novel PD therapies.
Collapse
|
25
|
Morara S, Colangelo AM, Provini L. Microglia-Induced Maladaptive Plasticity Can Be Modulated by Neuropeptides In Vivo. Neural Plast 2015; 2015:135342. [PMID: 26273481 PMCID: PMC4529944 DOI: 10.1155/2015/135342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023] Open
Abstract
Microglia-induced maladaptive plasticity is being recognized as a major cause of deleterious self-sustaining pathological processes that occur in neurodegenerative and neuroinflammatory diseases. Microglia, the primary homeostatic guardian of the central nervous system, exert critical functions both during development, in neural circuit reshaping, and during adult life, in the brain physiological and pathological surveillance. This delicate critical role can be disrupted by neural, but also peripheral, noxious stimuli that can prime microglia to become overreactive to a second noxious stimulus or worsen underlying pathological processes. Among regulators of microglia, neuropeptides can play a major role. Their receptors are widely expressed in microglial cells and neuropeptide challenge can potently influence microglial activity in vitro. More relevantly, this regulator activity has been assessed also in vivo, in experimental models of brain diseases. Neuropeptide action in the central nervous system has been associated with beneficial effects in neurodegenerative and neuroinflammatory pathological experimental models. This review describes some of the mechanisms of the microglia maladaptive plasticity in vivo and how neuropeptide activity can represent a useful therapeutical target in a variety of human brain pathologies.
Collapse
Affiliation(s)
- Stefano Morara
- Neuroscience Institute (CNR), Via Vanvitelli 32, 20129 Milano, Italy
- Department of BIOMETRA, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Luciano Provini
- Department of BIOMETRA, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
26
|
Tripathy D, Chakraborty J, Mohanakumar KP. Antagonistic pleiotropic effects of nitric oxide in the pathophysiology of Parkinson's disease. Free Radic Res 2015; 49:1129-39. [DOI: 10.3109/10715762.2015.1045505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Protective effects of poly (butyl) cyanoacrylate nanoparticles containing vasoactive intestinal peptide against 6-hydroxydopamine-induced neurotoxicity in vitro. J Mol Neurosci 2014; 55:854-64. [PMID: 25326789 DOI: 10.1007/s12031-014-0438-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022]
Abstract
The present study investigated brain delivery system of vasoactive intestinal peptide (VIP) adsorbed on poly (butyl cyanoacrylate) nanoparticles coated with polysorbate 80 (P80-poly (butyl) cyanoacrylate (PBCA)-nanoparticles (NPs)) and the neuroprotective effects on the formulation in the model of 6-hydroxydopamine (6-OHDA)-induced Parkinsonian dysfunction in the human neuroblastoma cell line SH-SY5Y. Drug-loaded nanoparticles were prepared by emulsion polymerization method using VIP and PBCA and then stirring with polysorbate 80. The resulting nanoparticles possessed high entrapment efficiency and favorable stability against CaCl2 or fetal bovine serum (FBS)-induced aggregation. Use of fluorescein isothiocyanate (FITC)-conjugated polysorbate 80-PBCA nanoparticles in confocal microscopy revealed that nanoparticles are located inside, while the FITC solution could not penetrate into the cells. The blank nanoparticles showed no significant effects on cell viability, indicating that they had no role in protection; however, polysorbate 80-modified VIP-loading PBCA nanoparticles showed enhanced cell viability compared to free VIP in 6-OHDA-mimic cellular model of Parkinson's disease. In addition, the nanoparticles strikingly increased the anti-apoptosis activity and restored the loss of mitochondrial membrane potential (MMP) significantly after the treatment of 6-OHDA. These results demonstrated that the activity of VIP was enhanced by polysorbate 80-PBCA nanoparticles compared to control solutions, suggesting that PBCA nanoparticles coated with polysorbate 80 could be an effective carrier system for VIP.
Collapse
|
28
|
Goursaud S, Schäfer S, Dumont AO, Vergouts M, Gallo A, Desmet N, Deumens R, Hermans E. The anti-inflammatory peptide stearyl-norleucine-VIP delays disease onset and extends survival in a rat model of inherited amyotrophic lateral sclerosis. Exp Neurol 2014; 263:91-101. [PMID: 25311268 DOI: 10.1016/j.expneurol.2014.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022]
Abstract
Vasoactive intestinal peptide (VIP) has potent immune modulatory actions that may influence the course of neurodegenerative disorders associated with chronic inflammation. Here, we show the therapeutic benefits of a modified peptide agonist stearyl-norleucine-VIP (SNV) in a transgenic rat model of amyotrophic lateral sclerosis (mutated superoxide dismutase 1, hSOD1(G93A)). When administered by systemic every-other-day intraperitoneal injections during a period of 80 days before disease, SNV delayed the onset of motor dysfunction by no less than three weeks, while survival was extended by nearly two months. SNV-treated rats showed reduced astro- and microgliosis in the lumbar ventral spinal cord and a significant degree of motor neuron preservation. Throughout the treatment, SNV promoted the expression of the anti-inflammatory cytokine interleukin-10 as well as neurotrophic factors commonly considered as beneficial in amyotrophic lateral sclerosis management (glial derived neuroptrophic factor, insulin like growth factor, brain derived neurotrophic factor). The peptide nearly totally suppressed the expression of tumor necrosis factor-α and repressed the production of the pro-inflammatory mediators interleukin-1β, nitric oxide and of the transcription factor nuclear factor kappa B. Inhibition of tumor necrosis factor-α likely accounted for the observed down-regulation of nuclear factor kappa B that modulates the transcription of genes specifically involved in amyotrophic lateral sclerosis (sod1 and the glutamate transporter slc1a2). In line with this, levels of human superoxide dismutase 1 mRNA and protein were decreased by SNV treatment, while the expression and activity of the glutamate transporter-1 was promoted. Considering the large diversity of influences of this peptide on both clinical features of the disease and associated biochemical markers, we propose that SNV or related peptides may constitute promising candidates for amyotrophic lateral sclerosis treatment.
Collapse
Affiliation(s)
- Stéphanie Goursaud
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Sabrina Schäfer
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Amélie O Dumont
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Maxime Vergouts
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Alessandro Gallo
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Nathalie Desmet
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Ronald Deumens
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Emmanuel Hermans
- Group of Neuropharmacology, Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium.
| |
Collapse
|
29
|
Oxidative stress mediated neuronal damage in the corpus striatum of 6-hydroxydopamine lesioned Parkinson's rats: Neuroprotection by Serotonin, GABA and Bone Marrow Cells Supplementation. J Neurol Sci 2013; 331:31-7. [DOI: 10.1016/j.jns.2013.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 02/22/2013] [Accepted: 04/22/2013] [Indexed: 11/20/2022]
|
30
|
PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson's disease. J Mol Neurosci 2013; 50:600-7. [PMID: 23625270 DOI: 10.1007/s12031-013-0015-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/15/2013] [Indexed: 01/14/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino acid containing neuropeptide with various cytoprotective functions including neuroprotection. Administration of PACAP has been shown to reduce damage induced by ischemia, trauma, or exogenous toxic substances. Moreover, mice deficient in PACAP are more vulnerable to damaging insults. In this study, we sought to determine whether PACAP may also be protective against salsolinol-induced toxicity in SH-SY5Y cells and, if so, elucidate its mechanism(s) of action. Salsolinol (SALS) is an endogenous dopamine metabolite with selective toxicity to nigral dopaminergic neurons, which are directly implicated in Parkinson's disease (PD). SH-SY5Y cells, derived from human neuroblastoma cells, express high levels of dopaminergic activity and are used extensively as a model to study these neurons. Exposure of SH-SY5Y cells to 400 μM SALS for 24 h resulted in approximately 50 % cell death that was mediated by apoptosis as determined by cell flow cytometry and increases in caspase-3 levels. Cellular toxicity was also associated with reductions in brain-derived neurotrophic factor and phosphorylated cyclic AMP response element-binding protein. Pretreatment with PACAP dose-dependently attenuated SALS-induced toxicity and the associated apoptosis and the chemical changes. PACAP receptor antagonist PACAP6-38, in turn, dose-dependently blocked the effects of PACAP. Neither PACAP nor PACAP antagonist had any effect of its own on cellular viability. These results suggest the protective effects of PACAP in a cellular model of PD. Hence, PACAP or its agonists could be of therapeutic benefit in PD.
Collapse
|
31
|
Vacas E, Bajo AM, Schally AV, Sánchez-Chapado M, Prieto JC, Carmena MJ. Antioxidant activity of vasoactive intestinal peptide in HK2 human renal cells. Peptides 2012; 38:275-81. [PMID: 23000305 DOI: 10.1016/j.peptides.2012.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 11/21/2022]
Abstract
Oxidative stress is a major mediator of tissue and cell injuries. The injury in chronic nephrotic syndrome, acute renal failure, myeloma kidney injury and other kidney diseases is initiated by oxidative stress. We have previously demonstrated that vasoactive intestinal peptide (VIP) acts as an antiproliferative agent in renal cancer cells. This study was designed to evaluate the renoprotective activity of VIP against H(2)O(2)-induced oxidative damage in a proximal tubule kidney cell line (human, non-tumor, HK2 cells) in order to investigate the potential usefulness of this peptide in the treatment of oxidative-stress related kidney diseases. HK2 cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Propidium iodide was used to identify cells undergoing apoptosis. Western blotting was performed with anti-Bcl-2, anti-Bax and anti-formyl peptide receptor (low-affinity variant FPRL-1) monoclonal antibodies whereas 2,7-dichlorofluorescein diacetate was used for measurement of levels of intracellular reactive oxygen species (ROS). HK2 cells were injured with H(2)O(2) in order to induce apoptosis: the effect was time- and dose-dependent. VIP increased the levels of the antiapoptotic protein Bcl-2 and decreased those of the proapoptotic protein Bax. VIP decreased the intracellular ROS levels reached by H(2)O(2)-induced oxidative stress. VIP effect on ROS levels involved FPLR-1 but not VPAC(1,2) receptors as evidenced by the use of the respective antagonists WRW4 and JV-1-53. Thus, VIP protects HK2 cells from apoptosis by increasing Bcl-2 levels and this effect is initiated through FPLR1 receptor. In conclusion, VIP might exert a renoprotective effect by the suppression of oxidative stress.
Collapse
Affiliation(s)
- Eva Vacas
- Department of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Torrão AS, Café-Mendes CC, Real CC, Hernandes MS, Ferreira AF, Santos TO, Chaves-Kirsten GP, Mazucanti CH, Ferro ES, Scavone C, Britto LR. Different Approaches, One Target: Understanding Cellular Mechanisms of Parkinson's and Alzheimer's Diseases. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34 Suppl 2:S194-205. [DOI: 10.1016/j.rbp.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Shobana C, Ramesh Kumar R, Sumathi T. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study. Cell Mol Neurobiol 2012; 32:1099-112. [PMID: 22527857 PMCID: PMC11498616 DOI: 10.1007/s10571-012-9833-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/16/2012] [Indexed: 12/26/2022]
Abstract
Parkinson's disease is one of the commonest neurodegenerative diseases, and oxidative stress has been evidenced to play a vital role in its causation. In this study, we evaluated whether alcoholic extract of Bacopa monniera (AEBM), an antioxidant and memory enhancer can slow the neuronal injury in a 6-OHDA-rat model of Parkinson's. Rats were treated with 20 and 40 mg/kg bodyweight of AEBM for 3 weeks. On Day 21, 2 μl of 6-OHDA (12 μg in 0.01 % in ascorbic acid-saline) was infused into the right striatum, while the control group received 2 μl of vehicle. Three weeks after the 6-OHDA injection, the rats were tested for neurobehavioral activity (rotarod, locomotor activity, grip test, forced swim test, radial arm maze) and were killed after 6 weeks for the estimation of lipid peroxidation, reduced glutathione (GSH) content, activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase (SOD), and catalase (CAT). The deficits in behavioral activity due to 6-OHDA lesioning were significantly and dose dependently restored by AEBM. Lesioning was followed by an increased lipid peroxidation and significant depletion of reduced GSH content in the substantia nigra, which was prevented with AEBM pretreatment. The activities of GSH-dependent enzymes, CAT and SOD in striatum were reduced significantly by lesioning, which were restored significantly and dose dependently by AEBM. This study indicates that the extract of B. monniera might be helpful in attenuating 6-OHDA-induced lesioning in rats.
Collapse
Affiliation(s)
- Chandrasekar Shobana
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113 Tamil Nadu India
| | - Radhakrishnan Ramesh Kumar
- Department of Anatomy, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113 Tamil Nadu India
| | - Thangarajan Sumathi
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113 Tamil Nadu India
| |
Collapse
|
34
|
Korkmaz O, Ay H, Ulupinar E, Tunçel N. Vasoactive intestinal peptide enhances striatal plasticity and prevents dopaminergic cell loss in Parkinsonian rats. J Mol Neurosci 2012; 48:565-73. [PMID: 22544516 DOI: 10.1007/s12031-012-9781-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/12/2012] [Indexed: 01/18/2023]
Abstract
Destruction of the nigrostriatal dopaminergic pathway by the administration of 6-OHDA generates an animal model of Parkinson's disease. The main characteristic of this progressive neurological disorder is the loss of the dopaminergic neurons located in the substantia nigra pars compacta (SNc). Dopaminergic inputs from the SNc innervate the medium spiny neurons of the striatum and modulate the spontaneous activity of the primary output nuclei of the basal ganglia, globus pallidus interna, and substantia nigra pars reticulata. In our previous studies, we showed that systematically administered vasoactive intestinal peptide (VIP) is effective at reversing motor deficits, decreasing neuronal cell death, and repairing the myelin sheet in parkinsonian rats. In the current study, the effects of VIP on the dendritic morphology of the striatal neurons and the number of dopaminergic neurons in the SNc were examined in 6-OHDA-lesioned rats using Golgi-Cox staining and design-based stereological methods, respectively. Adult Sprague-Dawley rats were separated into sham-operated, bilaterally 6-OHDA lesioned and lesioned + i.p. VIP-injected (25 ng/kg) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection (every 2 days for 15 days). The 6-OHDA significantly decreased the total number of dopaminergic neurons, branching, and spine density of the medium spiny neurons in the striatum. VIP significantly increased the number of neurons immunostained with tyrosine hydroxylase and the density of spines without altering the branching and the total length of dendrites. In conclusion, VIP might display synaptogenetic activity by enhancing the spine density in the striatum of the parkinsonian rats.
Collapse
Affiliation(s)
- OrhanTansel Korkmaz
- Department of Physiology and Neurophysiology, Eskişehir Osmangazi University, 26040 Eskisehir, Turkey
| | | | | | | |
Collapse
|