1
|
Wei L, Chen Y, Wu M, Ma P, Wang H, Jiang Y, Aschner M, Zhou J, Lu G, Zhao L, Huang X. MEK1 inhibition ameliorates mitochondrial-dependent apoptosis induced by deltamethrin in mouse hippocampal neuron HT22 cells. Toxicol In Vitro 2025; 106:106047. [PMID: 40058615 DOI: 10.1016/j.tiv.2025.106047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Deltamethrin (DM), a widely used pyrethroid insecticide, has been increasingly recognized as a risk factor for neurodegeneration. However, the underlying mechanism is still far from clear. In this study, we investigated whether MEK1 is involved in DM-induced neurotoxicity and mediated mitochondrial-dependent apoptosis. In mouse hippocampal neuron HT22 cells model, DM (2,10,50 μM) dose-dependently increased apoptotic cells rate and impaired mitochondrial membrane potential (MMP), as well as significantly upregulated of apoptotic related proteins Bax, cytochrome c (Cyt-c) and Caspase-3 were observed. RNA-sequencing analysis further revealed that the MEK/ERK signal pathway was remarkably enriched and activated after DM exposure. In particularly, upregulation of MEK1, other than ERK1/2, was detected at both transcriptional and translational levels. Inhibition of MEK1 can effectively result in the recovery of mitochondrial morphology and MMP in DM-treated HT22 cells. And that further alleviated apoptosis by reversing the overexpression of Bax, Cyt-c and Caspase-3. Collectively, these findings demonstrate the critical role of MEK1 in regulating mitochondrial-dependent apoptosis induced by DM, providing a novel understanding of the neurotoxicity of DM.
Collapse
Affiliation(s)
- Lexing Wei
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Yang Chen
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Minjia Wu
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Peixuan Ma
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Huan Wang
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Michael Aschner
- Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jing Zhou
- School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Guodong Lu
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Lina Zhao
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiaowei Huang
- Department of Toxicology, School of Public Health, Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
2
|
Li S, Li S, Semde R, Teng H, Shi M, Huang L, Lou X, Jia B, Zhu H, Zhao Y. Protocatechuic Acid Improves Alzheimer's Disease by Regulating the Cholinergic Synaptic Signaling Pathway. Chem Biodivers 2025; 22:e202402771. [PMID: 39776239 DOI: 10.1002/cbdv.202402771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by memory decline and cognitive impairments. The clinical treatments for AD have numerous adverse effects; hence, the exploration of natural products for AD therapy is of significant importance. Protocatechuic acid (PA), a natural phenolic acid, has been shown to possess various pharmacological activities, including anti-inflammatory, antioxidant, and antitumor effects. However, the mechanisms underlying its therapeutic potential for AD remain elusive. This study utilized a β-amyloid (Aβ) injection into the hippocampus of mice as an AD model and L-glu-induced HT-22 cell neurotoxicity and lipopolysaccharides (LPS)-induced cellular neuroinflammation models to assess reactive oxygen species (ROS), JC-1, and relevant biochemical markers. This study examined behavioral, pathological, and inflammatory factors and investigated the molecular mechanisms through transcriptomics, western blot, and molecular docking studies. This study's findings reveal that high-dose PA (50 mg/kg) improves symptoms in AD mice through the cholinergic synaptic signaling pathway. This study indicates that PA is a potential candidate for AD treatment targeting the cholinergic synaptic signaling pathway, providing a lead compound for AD therapy.
Collapse
Affiliation(s)
- Siwen Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Songtao Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rasmané Semde
- Synthèse des médicaments, CEA-CFOREM, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Mengqi Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Liang Huang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Xinru Lou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Beining Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, China
| |
Collapse
|
3
|
Wang D, Liu W, Lu M, Xu Q. Neuropharmacological effects of Gastrodia elata Blume and its active ingredients. Front Neurol 2025; 16:1574277. [PMID: 40371076 PMCID: PMC12074926 DOI: 10.3389/fneur.2025.1574277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 05/16/2025] Open
Abstract
Gastrodia elata Blume (GE), a traditional Chinese medicine clinically employed to treat neurological disorders, demonstrates therapeutic efficacy supported by robust clinical evidence. Nowadays, conventional pharmacotherapies for neurological conditions-such as cholinesterase inhibitors for Alzheimer's or Ldopa for Parkinson's-often provide limited symptom relief, exhibit side effects, and fail to halt disease w, underscoring the need for alternative strategies. The primary bioactive compounds of Gastrodia elata Blume (GE) include gastrodin, p-hydroxybenzyl alcohol, Vanillyl alcohol, Polysaccharides, and β-sitosterol. Modern research has demonstrated that GE and its active components exhibit neuropharmacological effects, including neuron protection, reduction of neurotoxicity, and promotion of nerve regeneration and survival. For example, Gastrodin, exerts neuroprotection by scavenging reactive oxygen species, suppressing pro-inflammatory cytokines, and enhancing GABAergic transmission, thereby alleviating oxidative stress and neuronal apoptosis. Vanillin, potentiates GABA receptor activity, enhancing inhibitory neurotransmission and reducing seizure susceptibility.GE polysaccharides modulate the gut-brain axis and suppress microglial activation, mitigating neuroinflammation. Current studies primarily focus on GE and its active ingredients for the treatment of neurological diseases such as Parkinson's disease, Alzheimer's disease, epilepsy, convulsions, depression, schizophrenia, as well as enhancing learning and memory, and preventing or treating cerebral ischemic injury. This review explores the neuropharmacological effects of GE and its active compounds, elucidates the underlying mechanisms, and suggests potential preventive and therapeutic strategies for neurological diseases using herbal remedies.
Collapse
Affiliation(s)
- Dong Wang
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Liu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - MeiJuan Lu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiang Xu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Wang L, Li B, Tang Z, Wang Y, Peng Y, Sun T, Zhang A, Qi X. Gastrodin Alleviates Tau Pathology by Targeting the Alzheimer's Risk Gene FERMT2, Reversing the Reduction in Brain Viscoelasticity. CNS Neurosci Ther 2025; 31:e70283. [PMID: 40119586 PMCID: PMC11928745 DOI: 10.1111/cns.70283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The pathogenesis of Alzheimer's disease (AD) remains incompletely elucidated, and there is a notable deficiency in effective and safe therapeutic interventions. The influence of brain matrix viscoelasticity on the progression of AD has frequently been underestimated. It is imperative to elucidate these overlooked pathogenic factors and to innovate novel therapeutic strategies for AD. Gastrodin, a bioactive constituent derived from the traditional Chinese medicinal herb Gastrodia elata, exhibits a range of pharmacological properties, notably in the enhancement of neural function. Nevertheless, the underlying mechanisms of its action remain insufficiently elucidated. Consequently, this study seeks to examine the therapeutic effects and underlying mechanisms of gastrodin in the context of AD, with particular emphasis on its potential influence on the viscoelastic properties of the brain matrix. METHODS This study employs a range of methodologies, including the Morris water maze test, Y-maze spontaneous alternation test, atomic force microscopy (AFM), immunofluorescence, transmission electron microscopy, molecular docking, and Cellular Thermal Shift Assay (CETSA), to demonstrate that gastrodin mitigates tau pathology by modulating FERMT2, thereby reversing the deterioration of mechanical viscoelasticity in the brain. RESULTS Gastrodin administration via gavage has been demonstrated to mitigate cognitive decline associated with AD, attenuate the hyperphosphorylation of tau protein in the hippocampus and cortex, and ameliorate synaptic damage. Additionally, gastrodin was observed to counteract the reduction in brain matrix viscoelasticity in 3xTg-AD mice, as evidenced by the upregulation of extracellular matrix components pertinent to viscoelasticity, notably collagen types I and IV. Furthermore, molecular docking and CETSA revealed a strong binding affinity between gastrodin and FERMT2. Gastrodin treatment resulted in a reduction of FERMT2 fluorescence intensity, which is selectively expressed in astrocytes. Additionally, gastrodin contributed to the restoration of the blood-brain barrier (BBB) and modulated the expression levels of inflammatory mediators interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and matrix metallopeptidase 8 (MMP8). CONCLUSION Gastrodin treatment has the potential to mitigate tau pathology, thereby enhancing learning and memory in AD mouse models. This effect may be mediated through the modulation of cerebral mechanical viscoelasticity via the mechanosensor FERMT2, which facilitates the restoration of synaptic structure and function. This process is potentially linked to the maintenance of BBB integrity and the modulation of inflammatory factor release.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
- School of NursingGuizhou Medical UniversityGuiyangChina
| | - Bo Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
| | - Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
| | - Yang Wang
- The Department of ImagingAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
| | - Ting Sun
- School of NursingGuizhou Medical UniversityGuiyangChina
| | - Anni Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
- The Department of NeurologyAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Constructed by the Province and MinistryGuiyangChina
| |
Collapse
|
5
|
Wang S, Yu L, Guo H, Zuo W, Guo Y, Liu H, Wang J, Wang J, Li X, Hou W, Wang M. Gastrodin Ameliorates Post-Stroke Depressive-Like Behaviors Through Cannabinoid-1 Receptor-Dependent PKA/RhoA Signaling Pathway. Mol Neurobiol 2025; 62:366-385. [PMID: 38856794 DOI: 10.1007/s12035-024-04267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Post-stroke depression (PSD) is a significant complication in stroke patients, increases long-term mortality, and exaggerates ischemia-induced brain injury. However, the underlying molecular mechanisms and effective therapeutic targets related to PSD have remained elusive. Here, we employed an animal behavioral model of PSD by combining the use of middle cerebral artery occlusion (MCAO) followed by spatial restraint stress to study the molecular underpinnings and potential therapies of PSD. Interestingly, we found that sub-chronic application of gastrodin (Gas), a traditional Chinese medicinal herb Gastrodia elata extraction, relieved depression-related behavioral deficits, increased the impaired expression of synaptic transmission-associated proteins, and restored the altered spine density in hippocampal CA1 of PSD animals. Furthermore, our results indicated that the anti-PSD effect of Gas was dependent on membrane cannabinoid-1 receptor (CB1R) expression. The contents of phosphorated protein kinase A (p-PKA) and phosphorated Ras homolog gene family member A (p(ser188)-RhoA) were decreased in the hippocampus of PSD-mice, which was reversed by Gas treatment, and CB1R depletion caused a diminished efficacy of Gas on p-PKA and p-RhoA expression. In addition, the anti-PSD effect of Gas was partially blocked by PKA inhibition or RhoA activation, indicating that the anti-PSD effect of Gas is associated with the CB1R-mediated PKA/RhoA signaling pathway. Together, our findings revealed that Gas treatment possesses protective effects against the post-stroke depressive-like state; the CB1R-involved PKA/RhoA signaling pathway is critical in mediating Gas's anti-PSD potency, suggesting that Gas application may be beneficial in the prevention and adjunctive treatment of PSD.
Collapse
Affiliation(s)
- Shiquan Wang
- College of Life Sciences, Northwest University, Xi'an, 710127, Shaanxi, China
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Liang Yu
- Department of Information, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Huiqing Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Minghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
6
|
Dai Y, Ban W, Yang Z. Gastrodin, a Promising Natural Small Molecule for the Treatment of Central Nervous System Disorders, and Its Recent Progress in Synthesis, Pharmacology and Pharmacokinetics. Int J Mol Sci 2024; 25:9540. [PMID: 39273485 PMCID: PMC11394983 DOI: 10.3390/ijms25179540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 09/15/2024] Open
Abstract
Gastrodia elata Blume is a traditional medicinal and food homology substance that has been used for thousands of years, is mainly distributed in China and other Asian countries, and has always been distinguished as a superior class of herbs. Gastrodin is the main active ingredient of G. elata Blume and has attracted increasing attention because of its extensive pharmacological activities. In addition to extraction and isolation from the original plant, gastrodin can also be obtained via chemical synthesis and biosynthesis. Gastrodin has significant pharmacological effects on the central nervous system, such as sedation and improvement of sleep. It can also improve epilepsy, neurodegenerative diseases, emotional disorders and cognitive impairment to a certain extent. Gastrodin is rapidly absorbed and widely distributed in the body and can also penetrate the blood-brain barrier. In brief, gastrodin is a promising natural small molecule with significant potential in the treatment of brain diseases. In this review, we summarised studies on the synthesis, pharmacological effects and pharmacokinetic characteristics of gastrodin, with emphasis on its effects on central nervous system disorders and the possible mechanisms, in order to find potential therapeutic applications and provide favourable information for the research and development of gastodin.
Collapse
Affiliation(s)
- Yanan Dai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
7
|
Zhao M, Zhou Y, Sheng R, Zhang H, Xiang J, Wang J, Li P, Ma T, Liu P, Chen Q, Wen W, Xu S. Gastrodin relieves Parkinson's disease-related motor deficits by facilitating the MEK-dependent VMAT2 to maintain dopamine homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155819. [PMID: 38885579 DOI: 10.1016/j.phymed.2024.155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Dysfunction of dopamine homeostasis (DAH), which is regulated by vesicular monoamine transporter 2 (VMAT2), is a vital cause of dopamine (DA) neurotoxicity and motor deficits in Parkinson's disease (PD). Gastrodin (4-hydroxybenzyl alcohol 4-O-β-D-glucoside; GTD), a natural active compound derived from Gastrodia elata Blume, can be used to treat multiple neurological disorders, including PD. However, whether GTD regulates VMAT2-mediated DAH dysfunction in PD models remains unclear. PURPOSE To explore whether GTD confers dopaminergic neuroprotection by facilitating DA vesicle storage and maintaining DAH in PD models. METHODS Mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and PC12 cells with 1-methyl-4-phenyl-pyridinium (MPP+) to induce PD characteristics. Multiple behavioural tests were performed to evaluate the motor functions of the mice. HPLC was used to measure DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. Transmission electron microscopy was used to observe synaptic vesicles. Molecular docking and molecular dynamics were used to determine the binding affinity of GTD to the target protein. Reserpine (Res, a VMAT2 inhibitor) and PD0325901 (901, a MEK inhibitor) were employed to investigate the mechanism of GTD. Western blotting and immunohistochemistry were used to assess the expression of the target proteins. RESULTS GTD attenuated motor deficits and dopaminergic neuronal injury, reversed the imbalance of DAH, and increased VMAT2 levels and vesicle volume in MPTP-induced mice. GTD ameliorated cell damage, ROS release, and dysfunction of DAH in MPP+-induced PC12 cells. Moreover, the neuroprotective effects of GTD were reversed by Res in vitro and in vivo. Furthermore, GTD can activate the MEK/ERK/CREB pathway to upregulate VMAT2 in vitro and in vivo. Interestingly, 901 reversed the effects of GTD on VMAT2 and dopaminergic neuronal impairment. CONCLUSION GTD relieved PD-related motor deficits and dopaminergic neuronal impairment by facilitating MEK-depended VMAT2 to regulate DAH, which offers new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Meihuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Yongtao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Ruilin Sheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Junbao Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Tengyun Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Panwang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Qi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China.
| |
Collapse
|
8
|
Tang Z, Peng Y, Jiang Y, Wang L, Guo M, Chen Z, Luo C, Zhang T, Xiao Y, Ni R, Qi X. Gastrodin ameliorates synaptic impairment, mitochondrial dysfunction and oxidative stress in N2a/APP cells. Biochem Biophys Res Commun 2024; 719:150127. [PMID: 38761634 DOI: 10.1016/j.bbrc.2024.150127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease is characterized by abnormal β-amyloid and tau accumulation, mitochondrial dysfunction, oxidative stress, and synaptic dysfunction. Here, we aimed to assess the mechanisms and signalling pathways in the neuroprotective effect of gastrodin, a phenolic glycoside, on murine neuroblastoma N2a cells expressing human Swedish mutant APP (N2a/APP). We found that gastrodin increased the levels of presynaptic-SNAP, synaptophysin, and postsynaptic-PSD95 and reduced phospho-tau Ser396, APP and Aβ1-42 levels in N2a/APP cells. Gastrodin treatment reduced reactive oxygen species generation, lipid peroxidation, mitochondrial fragmentation and DNA oxidation; restored mitochondrial membrane potential and intracellular ATP production. Upregulated phospho-GSK-3β and reduced phospho-ERK and phospho-JNK were involved in the protective effect of gastrodin. In conclusion, we demonstrated the neuroprotective effect of gastrodin in the N2a/APP cell line by ameliorating the impairment on synaptic and mitochondrial function, reducing tau phosphorylation, Aβ1-42 levels as well as reactive oxygen species generation. These results provide new mechanistic insights into the potential effect of gastrodin in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yi Jiang
- Department of Pathology, Affiliated Hospital of Traditional Chinese Medicine of Guangzhou Medical University, Guangzhou, China
| | - Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Min Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Zhuyi Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Chao Luo
- Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
9
|
Wang Y, Bai M, Wang X, Peng Z, Cai C, Xi J, Yan C, Luo J, Li X. Gastrodin: a comprehensive pharmacological review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3781-3802. [PMID: 38165423 DOI: 10.1007/s00210-023-02920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Tianma is the dried tuber of Gastrodia elata Blume (G. elata), which is frequently utilized in clinical practice as a traditional Chinese medicine. Gastrodin (GAS) is the main active ingredient of Tianma, which has good pharmacological activity. Therefore, for the first time, this review focused on the extraction, synthesis, pharmacological effects, and derivatives of GAS and to investigate additional development options for GAS. The use of microorganisms to create GAS is a promising method. GAS has good efficacy in the treatment of neurological diseases, cardiovascular diseases, endocrine diseases, and liver diseases. GAS has significant anti-inflammatory, antioxidant, neuroprotective, vascular protective, blood sugar lowering, lipid-regulating, analgesic, anticancer, and antiviral effects. The mechanism involves various signaling pathways such as Nrf2, NF-κB, PI3K/AKT, and AMPK. In addition, the derivatives of GAS and biomaterials synthesized by GAS and PU suggested a broader application of GAS. The research on GAS is thoroughly summarized in this paper, which has useful applications for tackling a variety of disorders and exhibits good development value.
Collapse
Affiliation(s)
- Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengting Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Wang W, Wang Y, Wang F, Xie G, Liu S, Li Z, Wang P, Liu J, Lin L. Gastrodin regulates the TLR4/TRAF6/NF-κB pathway to reduce neuroinflammation and microglial activation in an AD model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155518. [PMID: 38552431 DOI: 10.1016/j.phymed.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Gastrodia elata (Orchidaceae) is a medicinal plant used in traditional Chinese medicine. The rhizomes contain numerous active components, of which Gastrodin (p-hydroxymethylphenyl-B-D-glucopyranoside) forms the basis of the traditional medicine Gastrodiae Rhizoma. Gastrodin is also found in other medicinal plants and has neuroprotective, antioxidant, and anti-inflammatory effects. Neuroinflammation plays a crucial role in neurodegeneration. Research indicates that consuming meals and drinks containing Gastrodiaelata can enhance cognitive functioning and memory in elderly patients. The mechanisms relevant to the problem have not been completely understood. PURPOSE The aim was to examine the in vivo and in vitro anti-neuroinflammatory effects of Gastrodin. STUDY DESIGN The neuroprotective effects of Gastrodin on the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation in LPS-treated C57BL/6 mice and BV-2 cells were investigated. METHODS 1. C57BL/6 mice were assigned to model, gastrodin, donepezil, and control groups (n = 10 per group). The Gastrodin group received 100 mg/kg/d for five days, and the Dopenezil group 1.3 mg/kg/d. A neuroinflammation model was established by administering intraperitoneal injections of 2 mg/kg LPS to all groups, excluding the control. To induce microglial activation in Gastrodin-treated mouse microglial BV-2 cells, 1 µg/ml LPS was introduced for 24 h Morris water mazes were utilized to evaluate learning and spatial memory. Expression and subcellular localization of TLR4/TRAF6/NF-κB axis-related proteins and p-Stat3, Iba-1, GFAP, iNOS, and CD206 were assessed by immunofluorescence, western blots, and ELISA. qRT-PCR was performed to determine and measure IL-1β, TNF-α, cell migration, and phagocytosis. Overexpression of TRAF6 was induced by transfection, and the effect of Gastrodin on IL-1β and p-NF-κB p65 levels was assessed. RESULTS 1. In mice, gastrodin treatment mitigated LPS-induced deficits in learning and spatial memory, as well as reducing neuroinflammation in the hippocampus, expression of TLR4/TRAF6/NF-κB pathway proteins, activation of microglia and astrocytes, and phosphorylation of Stat3. 2. Gastrodin pretreatment improved LPS-induced inflammation in vitro, reducing expression of TLR4/TRAF6/NF-κB-associated proteins and p-Stat3, inducing microglial transformation from M1 to M2, and inhibiting migration and phagocytosis. Overexpression of TRAF6 inhibited the Gastrodin-induced effects. CONCLUSION Gastrodin suppresses neuroinflammation and microglial activation by modifying the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation.
Collapse
Affiliation(s)
- Wensheng Wang
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No.16 of Huangjia Lake Western Road, Hong Shan District, Wuhan 430065, China; Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan 430065, China
| | - Yu Wang
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No.16 of Huangjia Lake Western Road, Hong Shan District, Wuhan 430065, China
| | - Fengjie Wang
- Department of Medicine, Hubei Minzu University, Enshi 445000, China
| | - Guangjing Xie
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan 430065, China
| | - Shangzhi Liu
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan 430065, China
| | - Zefei Li
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan 430065, China
| | - Ping Wang
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan 430065, China.
| | - Junfeng Liu
- Key Laboratory of TCM Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, No.16 of Huangjia Lake Western Road, Hong Shan District, Wuhan 430065, China.
| | - Li Lin
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, No.16 of Huangjia Lake Western Road, Hong Shan District, Wuhan 430065, China.
| |
Collapse
|
11
|
Ma R, Cheng H, Li X, Zhang G, Zheng J. Evaluating How Different Drying Techniques Change the Structure and Physicochemical and Flavor Properties of Gastrodia elata. Foods 2024; 13:1210. [PMID: 38672883 PMCID: PMC11049588 DOI: 10.3390/foods13081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
We evaluated the drying characteristics and structure, as well as the physicochemical and flavor properties, of G. elata treated by hot-air drying (HAD), vacuum drying (VD), freeze drying (FD), microwave drying (MD), and microwave vacuum drying (MVD). We found that MD and MVD showed the shortest drying times, while FD and MVD were able to better retain the active ingredients and color of the samples. However, the different drying methods did not change the internal structure of G. elata, and its main components did not fundamentally change. In addition, E-nose and HS-SPME-GC-MS effectively differentiated the volatile components, and 36 compounds were detected by HS-SPME-GC-MS. Of these samples, alcohols and aldehydes were the main substances identified. In particular, MVD samples possessed the most species of organic volatiles, but the FD method effectively eliminated pungent odors from the G. elata. Overall, MVD shows the most obvious advantages, improving drying rate while maintaining the original shape, color, and active components in G. elata. Ultimately, MVD is the preferred method to obtain high-quality dried G. elata, and our drying-method characterizations can be used to investigate similar structural and chemical changes to similar herbs in the future.
Collapse
Affiliation(s)
| | | | | | | | - Jianmei Zheng
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (R.M.); (H.C.); (X.L.); (G.Z.)
| |
Collapse
|
12
|
Scopa C, Barnada SM, Cicardi ME, Singer M, Trotti D, Trizzino M. JUN upregulation drives aberrant transposable element mobilization, associated innate immune response, and impaired neurogenesis in Alzheimer's disease. Nat Commun 2023; 14:8021. [PMID: 38049398 PMCID: PMC10696058 DOI: 10.1038/s41467-023-43728-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Adult neurogenic decline, inflammation, and neurodegeneration are phenotypic hallmarks of Alzheimer's disease (AD). Mobilization of transposable elements (TEs) in heterochromatic regions was recently reported in AD, but the underlying mechanisms are still underappreciated. Combining functional genomics with the differentiation of familial and sporadic AD patient derived-iPSCs into hippocampal progenitors, CA3 neurons, and cerebral organoids, we found that the upregulation of the AP-1 subunit, c-Jun, triggers decondensation of genomic regions containing TEs. This leads to the cytoplasmic accumulation of HERVK-derived RNA-DNA hybrids, the activation of the cGAS-STING cascade, and increased levels of cleaved caspase-3, suggesting the initiation of programmed cell death in AD progenitors and neurons. Notably, inhibiting c-Jun effectively blocks all these downstream molecular processes and rescues neuronal death and the impaired neurogenesis phenotype in AD progenitors. Our findings open new avenues for identifying therapeutic strategies and biomarkers to counteract disease progression and diagnose AD in the early, pre-symptomatic stages.
Collapse
Affiliation(s)
- Chiara Scopa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Samantha M Barnada
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria E Cicardi
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mo Singer
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
13
|
Xiao G, Tang R, Yang N, Chen Y. Review on pharmacological effects of gastrodin. Arch Pharm Res 2023; 46:744-770. [PMID: 37749449 DOI: 10.1007/s12272-023-01463-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Gastrodia elata Blume is a well-known traditional Chinese medicine that is mainly used to treat diseases related to the nervous system, such as stroke, epilepsy, and headache. Gastrodin is the main bioactive component of Gastrodia elata Blume, and studies have shown that it has extensive pharmacological activity. This narrative review aims to systematically review relevant studies on the pharmacological effects of gastrodin to provide researchers with the latest and most useful information. Studies have shown that gastrodin has prominent neuroprotective effects and can treat or improve epilepsy, Tourette syndrome, Alzheimer's disease, Parkinson's disease, emotional disorders, cerebral ischemia-reperfusion injury, cognitive impairment, and neuropathic pain. Gastrodin can also improve myocardial hypertrophy, hypertension, and myocardial ischemia-reperfusion injury. In addition, gastrodin can mitigate liver, kidney, and bone tissue damage caused by oxidative stress and inflammation. In short, gastrodin is expected to treat many diseases, and it is worth investing more effort in research on this compound.
Collapse
Affiliation(s)
- Guirong Xiao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tang
- Department of Pharmacy, Sichuan Hospital of Stomatology, Chengdu, 610031, China.
| | - Nan Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanhua Chen
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
14
|
Xiang L, Wang Y, Liu S, Liu B, Jin X, Cao X. Targeting Protein Aggregates with Natural Products: An Optional Strategy for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11275. [PMID: 37511037 PMCID: PMC10379780 DOI: 10.3390/ijms241411275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingzhi Xiang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
15
|
Su Z, Yang Y, Chen S, Tang Z, Xu H. The processing methods, phytochemistry and pharmacology of Gastrodia elata Bl.: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116467. [PMID: 37187361 DOI: 10.1016/j.jep.2023.116467] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Bl. (GE) is one of the rare Chinese medicinal materials with a long history of medicine and cooking. It consists of a variety of chemical components, including aromatic compounds, organic acids and esters, steroids, saccharides and their glycosides, etc., which has medicinal and edible value, and is widely used in various diseases, such as infantile convulsions, epilepsy, tetanus, headache, dizziness, limb numbness, rheumatism and arthralgia. It is also commonly used in health care products and cosmetics. Thus, its chemical composition and pharmacological activity have attracted more and more attention from the scientific community. AIM In this review, the processing methods, phytochemistry and pharmacological activities of GE were comprehensively and systematically summarized, which provides a valuable reference for researchers the rational of GE. MATERIALS AND METHODS A comprehensive search of published literature and classic books from 1958 to 2023 was conducted using online bibliographic databases PubMed, Google Scholar, ACS, Science Direct Database, CNKI and others to identify original research related to GE, its processing methods, active ingredients and pharmacological activities. RESULTS GE is traditionally used to treat infantile convulsion, epilepsy, tetanus, headache, dizziness, limb numbness, rheumatism and arthralgia. To date, more than 435 chemical constituents were identified from GE including 276 chemical constituents, 72 volatile components and 87 synthetic compounds, which are the primary bioactive compounds. In addition, there are other biological components, such as organic acids and esters, steroids and adenosines. These extracts have nervous system and cardiovascular and cerebrovascular system activities such as sedative-hypnotic, anticonvulsant, antiepileptic, neuron protection and regeneration, analgesia, antidepressant, antihypertensive, antidiabetic, antiplatelet aggregation, anti-inflammatory, etc. CONCLUSION: This review summarizes the processing methods, chemical composition, pharmacological activities, and molecular mechanism of GE over the last 66 years, which provides a valuable reference for researchers to understand its research status and applications.
Collapse
Affiliation(s)
- Zenghu Su
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuangui Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Shizhong Chen
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongbo Xu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
16
|
Wu S, Huang R, Zhang R, Xiao C, Wang L, Luo M, Song N, Zhang J, Yang F, Liu X, Yang W. Gastrodin and Gastrodigenin Improve Energy Metabolism Disorders and Mitochondrial Dysfunction to Antagonize Vascular Dementia. Molecules 2023; 28:molecules28062598. [PMID: 36985572 PMCID: PMC10059574 DOI: 10.3390/molecules28062598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Vascular dementia (VD) is the second most common dementia syndrome worldwide, and effective treatments are lacking. Gastrodia elata Blume (GEB) has been used in traditional Chinese herbal medicine for centuries to treat cognitive impairment, ischemic stroke, epilepsy, and dizziness. Gastrodin (p-hydroxymethylphenyl-b-D-glucopyranoside, Gas) and Gastrodigenin (p-hydroxybenzyl alcohol, HBA) are the main bioactive components of GEB. This study explored the effects of Gas and HBA on cognitive dysfunction in VD and their possible molecular mechanisms. The VD model was established by bilateral common carotid artery ligation (2-vessel occlusion, 2-VO) combined with an intraperitoneal injection of sodium nitroprusside solution. One week after modeling, Gas (25 and 50 mg/kg, i.g.) and HBA (25 and 50 mg/kg, i.g.) were administered orally for four weeks, and the efficacy was evaluated. A Morris water maze test and passive avoidance test were used to observe their cognitive function, and H&E staining and Nissl staining were used to observe the neuronal morphological changes; the expressions of Aβ1-42 and p-tau396 were detected by immunohistochemistry, and the changes in energy metabolism in the brain tissue of VD rats were analyzed by targeted quantitative metabolomics. Finally, a Hippocampus XF analyzer measured mitochondrial respiration in H2O2-treated HT-22 cells. Our study showed that Gas and HBA attenuated learning memory dysfunction and neuronal damage and reduced the accumulation of Aβ1-42, P-Tau396, and P-Tau217 proteins in the brain tissue. Furthermore, Gas and HBA improved energy metabolism disorders in rats, involving metabolic pathways such as glycolysis, tricarboxylic acid cycle, and the pentose phosphate pathway, and reducing oxidative damage-induced cellular mitochondrial dysfunction. The above results indicated that Gas and HBA may exert neuroprotective effects on VD by regulating energy metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Sha Wu
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Rong Huang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ruiqin Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chuang Xiao
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Lueli Wang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Min Luo
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Na Song
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Jie Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Fang Yang
- School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Xuan Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (X.L.); (W.Y.)
| | - Weimin Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
- Correspondence: (X.L.); (W.Y.)
| |
Collapse
|
17
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
18
|
Gastrodin and Vascular Dementia: Advances and Current Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2563934. [PMID: 35463081 PMCID: PMC9019412 DOI: 10.1155/2022/2563934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Gastrodia elata, a traditional Chinese medicine, has been widely used since ancient times to treat diseases such as dizziness, epilepsy, stroke, and memory loss. Gastrodin, one of the active components of Gastrodia elata, has been used in the treatment of migraine, epilepsy, Parkinson's disease, dementia, and depression in recent years. It can improve cognitive function and related neuropsychiatric symptoms through various effects and is considered as a promising treatment for dementia. Vascular dementia is a kind of severe cognitive impairment syndrome caused by vascular factors, and it is the dementia syndrome with the largest number of patients besides Alzheimer's disease. Although there is still a lack of evidence-based explorations, the paper reviewed the mechanism and methods of gastrodin in the treatment of vascular dementia, providing a reference for clinical therapy.
Collapse
|
19
|
Chen X, Wang J, He Z, Liu X, Liu H, Wang X. Analgesic and Anxiolytic Effects of Gastrodin and Its Influences on Ferroptosis and Jejunal Microbiota in Complete Freund’s Adjuvant-Injected Mice. Front Microbiol 2022; 13:841662. [PMID: 35516438 PMCID: PMC9063750 DOI: 10.3389/fmicb.2022.841662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 01/31/2023] Open
Abstract
This study investigated the effects of gastrodin (GAS) on analgesic, anxiolytic, ferroptosis, and jejunal microbiota in chronic inflammatory pain mice. The chronic inflammatory pain model of C57BL/6J mice was established by hindpaw injection of complete Freund’s adjuvant (CFA). After GAS treatment, thermal hyperalgesia test, mechanical allodynia test, elevated plus-maze (EPMT), and open-field test (OFT) were performed to assess the behavioral changes of pain and anxiety. mRNAs of FTHI, GPX4, HO-1, and PTGS2 and jejunal microbiota were measured by qPCR. In CFA-injected C57BL/6 mice, we found that the mechanical and thermal pain threshold were increased with treatment of GAS. In EPMT, the number of entries in open arms and retention times of open arms were increased by GAS. In the OFT, the time spent in the central area was also increased. Furthermore, GAS enhanced mRNA expressions of FTHI, GPX4, and HO-1 but decreased the expression of PTGS2 in a dose-dependent manner. GAS is effective in the treatment of mice chronic inflammatory pain and anxiety-like behaviors. It may be exhibits potential neuroprotective effects through inhibition of ferroptosis independently of the intestinal microbiota.
Collapse
Affiliation(s)
- Xin Chen
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Jinyue Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Zhixian He
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Liu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Huawei Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Xing Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Xing Wang,
| |
Collapse
|
20
|
Huang Q, Zhang C, Qu S, Dong S, Ma Q, Hao Y, Liu Z, Wang S, Zhao H, Shi Y. Chinese Herbal Extracts Exert Neuroprotective Effect in Alzheimer's Disease Mouse Through the Dopaminergic Synapse/Apoptosis Signaling Pathway. Front Pharmacol 2022; 13:817213. [PMID: 35295332 PMCID: PMC8918930 DOI: 10.3389/fphar.2022.817213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Alzheimer's disease (AD) as an age-related, irreversible neurodegenerative disease, characterized by cognitive dysfunction, has become progressively serious with a global rise in life expectancy. As the failure of drug elaboration, considerable research effort has been devoted to developing therapeutic strategies for treating AD. TCM is gaining attention as a potential treatment for AD. Gastrodia elata Blume, Polygala tenuifolia Willd., Cistanche deserticola Ma, Rehmannia lutinosa (Gaertn.)DC., Acorus gramineus Aiton, and Curcuma longa L. (GPCRAC) are all well-known Chinese herbs with neuroprotective benefits and are widely used in traditional Chinese decoction for AD therapy. However, the efficacy and further mechanisms of GPCRAC extracts in AD experimental models are still unclear. The purpose of this study was to investigate the synergistic protective efficacy of GPCRAC extracts (composed of extracts from these six Chinese medicines), and the protein targets mediated by GPCRAC extracts in treating AD. Methods: Scopolamine-induced cognitive impairment mouse model was established to determine the neuroprotective effects of GPCRAC extracts in vivo, as shown by behavioral tests and cerebral cholinergic function assays. To identify the potential molecular mechanism of GPCRAC extracts against AD, label-free quantitative proteomics coupled with tandem mass spectrometry (LC-MS/MS) were performed. The integrated bioinformatics analysis was applied to screen the core differentially expressed proteins in vital canonical pathways. Critical altered proteins were validated by qPCR and Western blotting. Results: Administration of GPCRAC extracts significantly recovered scopolamine-induced cognitive impairment, as evidenced by the improved learning and memory ability, increased Ach content and ChAT activity, as well as decreased AchE activity in the hippocampus of mice. In total, 390 proteins with fold-change>1.2 or <0.83 and p < 0.05 were identified as significant differentially expressed proteins, of which 110 were significantly up-regulated and 25 were significantly down-regulated between control and model group. By mapping the significantly regulated proteins, we identified five hub proteins: PPP2CA, Gsk3β, PP3CC, PRKACA, and BCL-2 that were associated with dopaminergic synapse and apoptosis signaling pathway, respectively. Western blotting and QPCR demonstrate that the expression levels of these core proteins could be significantly improved by the administration of GPCRAC extracts. These pathways and some of the identified proteins are implicated in AD pathogenesis. Conclusion: Administration of GPCRAC extracts was effective on alleviating scopolamine-induced cognitive impairment, which might be through modulation of dopaminergic synapse and apoptosis signaling pathway. Consequently, our quantitative proteome data obtained from scopolamine-treated model mice successfully characterized AD-related biological alterations and proposed novel protein biomarkers for AD.
Collapse
Affiliation(s)
- Qianqian Huang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shi Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihong Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Hao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Zimin Liu
- Chenland Nutritionals, Irvine, CA, United States
| | | | - Haibin Zhao
- Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
21
|
Luo K, Wang Y, Chen WS, Feng X, Liao Y, Chen S, Liu Y, Liao C, Chen M, Ao L. Treatment Combining Focused Ultrasound with Gastrodin Alleviates Memory Deficit and Neuropathology in an Alzheimer's Disease-Like Experimental Mouse Model. Neural Plast 2022; 2022:5241449. [PMID: 35069727 PMCID: PMC8776436 DOI: 10.1155/2022/5241449] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia but lacks effective treatment at present. Gastrodin (GAS) is a phenolic glycoside extracted from the traditional Chinese herb-Gastrodia elata-and has been reported as a potential therapeutic agent for AD. However, its efficiency is reduced for AD patients due to its limited BBB permeability. Studies have demonstrated the feasibility of opening the blood-brain barrier (BBB) via focused ultrasound (FUS) to overcome the obstacles preventing medicines from blood flow into the brain tissue. We explored the therapeutic potential of FUS-mediated BBB opening combined with GAS in an AD-like mouse model induced by unilateral intracerebroventricular (ICV) injection of Aβ 1-42. Mice were divided into 5 groups: control, untreated, GAS, FUS and FUS+GAS. Combined treatment (FUS+GAS) rather than single intervention (GAS or FUS) alleviated memory deficit and neuropathology of AD-like mice. The time that mice spent in the novel arm was prolonged in the Y-maze test after 15-day intervention, and the waste-cleaning effect was remarkably increased. Contents of Aβ, tau, and P-tau in the observed (also the targeted) hippocampus were reduced. BDNF, synaptophysin (SYN), and PSD-95 were upregulated in the combined group. Overall, our results demonstrate that FUS-mediated BBB opening combined with GAS injection exerts the potential to alleviate memory deficit and neuropathology in the AD-like experimental mouse model, which may be a novel strategy for AD treatment.
Collapse
Affiliation(s)
- Kaixuan Luo
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuhong Wang
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Xiangjun Feng
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yehui Liao
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Shaochun Chen
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yao Liu
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chengde Liao
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, Yunnan, China
| | - Moxian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Lijuan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
22
|
Gong X, Cheng J, Zhang K, Wang Y, Li S, Luo Y. Transcriptome sequencing reveals Gastrodia elata Blume could increase the cell viability of eNPCs under hypoxic condition by improving DNA damage repair ability. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114646. [PMID: 34530095 DOI: 10.1016/j.jep.2021.114646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Blume (GEB), known as Tianma in China, is a traditional medicinal herb that has been reported to have various pharmacological effects and neuroprotection, has long been used for treating dizziness, epilepsy, stroke. However, explanation of its underlying mechanisms remains a great challenge. AIM OF THE STUDY The neuroprotective mechanism of GEB on hypoxia-induced neuronal injury in cultured mouse embryonic neural progenitor cells (eNPCs) was investigated, with emphasis on the eNPCs proliferation and DNA damage repair. MATERIALS AND METHODS In this study, hypoxia was focused, which may be caused by stroke or acute cerebral ischemia and is considered as one of the important factors contributing to the Central Nervous System diseases. CoCl2 was adopted to construct a hypoxic/ischemic condition in eNPCs. eNPCs proliferation analysis validated GEB neuroprotective effect under hypoxic/ischemic condition. Transcriptome and weighted gene co-expression network analysis (WGCNA) screened the special gene-network module correlated with what appeared to have significant positive correlation with GEB. Then, Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed to explore the biological functions of selected genes in the modules that had high correlation with GEB. RESULTS GEB has neuroprotective effect and could rescue eNPCs proliferation under hypoxic/ischemic condition induced by CoCl2. Transcriptome and WGCNA unveil the neuroprotective mechanism of GEB on improving DNA damage repair ability by increasing the expression of genes associated with DNA repair and replication. Western blotting and qPCR showed that GEB could improve DNA damage repair ability by increasing the expression of Mcm2, Mcm6, Pold2, Pole, Pole2, Rfc1, Pole4, Dna2 and Rpa2, which were associated with DNA damage and replication. CONCLUSION Through transcriptome and WGCNA, this study unveiled Gastrodia elata Blume could increase the cell viability of eNPCs under hypoxic condition by improving DNA damage repair ability.
Collapse
Affiliation(s)
- Xi Gong
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 999 Xuefu Rd., Honggutan New District, Nanchang, Jiangxi, 330031, China
| | - Jing Cheng
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 999 Xuefu Rd., Honggutan New District, Nanchang, Jiangxi, 330031, China
| | - Kunshan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yanlu Wang
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 999 Xuefu Rd., Honggutan New District, Nanchang, Jiangxi, 330031, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yuping Luo
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 999 Xuefu Rd., Honggutan New District, Nanchang, Jiangxi, 330031, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
23
|
Berezutsky M, Durnova N, Romanteeva Y. Neurobiological effects of gastrodin and its possible use in neurology and psychiatry. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:27-34. [DOI: 10.17116/jnevro202212208127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Xiao H, Jiang Q, Qiu H, Wu K, Ma X, Yang J, Cheng O. Gastrodin promotes hippocampal neurogenesis via PDE9-cGMP-PKG pathway in mice following cerebral ischemia. Neurochem Int 2021; 150:105171. [PMID: 34419525 DOI: 10.1016/j.neuint.2021.105171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/04/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023]
Abstract
Gastrodin, which is extracted from the Chinese herbal medicine Gastrodia elata Blume, can ameliorate neurogenesis after cerebral ischemia. However, it's possible underlying mechanisms remain still elusive. PDE9-cGMP-PKG signaling pathway is involved in the proliferation of neural stem cells (NSCs) after cerebral ischemia. In this study, we investigated whether the beneficial effect of gastrodin on hippocampal neurogenesis after cerebral ischemia is correlated with the PDE9-cGMP-PKG signaling pathway. Bilateral common carotid artery occlusion (BCCAO) in mice and oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cultured hippocampal NSCs were used to mimic brain ischemic injury. The Morris water maze (MWM) test was executed to detect spatial learning and memory. Proliferation, differentiation, and mature neurons were examined using immunofluorescence. The survival and proliferation of NSCs were assessed by CCK-8 assay and BrdU immunofluorescence staining, respectively. ELISA and western blot were used to detect the level of the PDE9-cGMP-PKG signaling pathway. In BCCAO mice, administering gastrodin (50 and 100 mg/kg) for 14 d restored cognitive behaviors; meanwhile, neurogenesis in hippocampus was stimulated, and PDE9 was inhibited and cGMP-PKG was activated by gastrodin. Consistent with the results, administering gastrodin (from 0.01-1 μmol/L) for 48 h dose-dependently ameliorated the cell viability and promoted greatly the proliferation in primary hippocampal NSCs exposed to OGD/R. Gastrodin further decreased PDE9 activity and up-regulated cGMP-PKG level. KT5823, a PKG inhibitor, markedly abrogated the protective effects of gastrodin on OGD/R-injured NSCs, accompanied by the down-regulation of PKG protein expression, but had no effects on PDE9 activity and cGMP level. Gastrodin could accelerate hippocampal neurogenesis after cerebral ischemia, which is mediated, at least partly, by PDE9-cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Huan Xiao
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China; Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Qingsong Jiang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ke Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Xiaojiao Ma
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Junxia Yang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
25
|
Zeng YQ, Gu JH, Chen L, Zhang TT, Zhou XF. Gastrodin as a multi-target protective compound reverses learning memory deficits and AD-like pathology in APP/PS1 transgenic mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
26
|
Heese K. Gastrodia elata Blume (Tianma): Hope for Brain Aging and Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8870148. [PMID: 33424999 PMCID: PMC7781687 DOI: 10.1155/2020/8870148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Since aging-related diseases, including dementia, represent major public health threats to our society, physician-scientists must develop innovative, interdisciplinary strategies to open new avenues for development of alternative therapies. One such novel approach may lie in traditional Chinese medicine (TCM). Gastrodia elata Blume (G. elata, tianma) is a TCM frequently used for treatment of cerebrocardiovascular diseases (CCVDs). Recent studies of G. elata-based treatment modalities, which have investigated its pharmacologically relevant activity, potential efficacy, and safety, have employed G. elata in well-characterized, aging-related disease models, with a focus on models of aging-related dementia, such as Alzheimer's disease (AD). Here, I examine results from previous studies of G. elata, as well as related herbal preparations and pure natural products, as prophylaxis and remedies for aging-related CCVDs and dementia. Concluding, data suggest that tianma treatment may be used as a promising complementary therapy for AD.
Collapse
Affiliation(s)
- Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, Republic of Korea
| |
Collapse
|
27
|
A bibenzyl compound 20C protects rats against 6-OHDA-induced damage by regulating adaptive immunity associated molecules. Int Immunopharmacol 2020; 91:107269. [PMID: 33340781 DOI: 10.1016/j.intimp.2020.107269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with complicated pathogenesis. A novel bibenzyl compound 2-[4-hydroxy-3-(4-hydroxyphenyl)benzyl]-4-(4-hydroxyphenyl)phenol (20C) has been shown to have some neuroprotective effects, and its mechanism still needs further research. In this study, we used a 6-hydroxydopamine (6-OHDA)-induced PD rat model to evaluate the protective effect of 20C. Our study found that 20C could improve behavioral defects in 6-OHDA-lesion rats, decrease neuroinflammation and protect their DA neurons. It could inhibit the activity of inducible nitric oxide synthase (iNOS) induced by 6-OHDA, and lead to a decrease in the expression of nitrated-α-synuclein. When exposed to AMT-an inhibitor of iNOS, the nitrated-α-synuclein in PC12 decreased, and 20C demonstrated the same function on nitrated-α-synuclein as AMT. Besides, we also found that nitrated-α-synuclein was displayed in microglia. And 20C could decrease the expression of antigen-presenting molecule major histocompatibility complex I (MHC I) in dopamine (DA) neurons and MHC II in microglia induced by 6-OHDA. So, these imply that nitrated-α-synuclein might act as an endogenous antigen activating adaptive immunity, and the neuroprotection of 20C might be associated with inhibiting the activity of iNOS, decreasing the expression of the antigen molecule nitrated-α-synuclein and the antigen presenting molecule MHC. Our results indicated that inhibiting iNOS might be an effective strategy to protect neurons from oxidative stress.
Collapse
|
28
|
Kesari KK, Dhasmana A, Shandilya S, Prabhakar N, Shaukat A, Dou J, Rosenholm JM, Vuorinen T, Ruokolainen J. Plant-Derived Natural Biomolecule Picein Attenuates Menadione Induced Oxidative Stress on Neuroblastoma Cell Mitochondria. Antioxidants (Basel) 2020; 9:antiox9060552. [PMID: 32630418 PMCID: PMC7346164 DOI: 10.3390/antiox9060552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Several bioactive compounds are in use for the treatment of neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Historically, willow (salix sp.) bark has been an important source of salisylic acid and other natural compounds with anti-inflammatory, antipyretic and analgesic properties. Among these, picein isolated from hot water extract of willow bark, has been found to act as a natural secondary metabolite antioxidant. The aim of this study was to investigate the unrevealed pharmacological action of picein. In silico studies were utilized to direct the investigation towards the neuroprotection abilities of picein. Our in vitro studies demonstrate the neuroprotective properties of picein by blocking the oxidative stress effects, induced by free radical generator 2-methyl-1,4-naphthoquinone (menadione, MQ), in neuroblastoma SH-SY5Y cells. Several oxidative stress-related parameters were evaluated to measure the protection for mitochondrial integrity, such as mitochondrial superoxide production, mitochondrial activity (MTT), reactive oxygen species (ROS) and live-cell imaging. A significant increase in the ROS level and mitochondrial superoxide production were measured after MQ treatment, however, a subsequent treatment with picein was able to mitigate this effect by decreasing their levels. Additionally, the mitochondrial activity was significantly decreased by MQ exposure, but a follow-up treatment with picein recovered the normal metabolic activity. In conclusion, the presented results demonstrate that picein can significantly reduce the level of MQ-induced oxidative stress on mitochondria, and thereby plays a role as a potent neuroprotectant.
Collapse
Affiliation(s)
- Kavindra Kumar Kesari
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| | - Anupam Dhasmana
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78539, USA;
- Department of Biosciences, Swami Rama Himalayan University, Dehradun 248016, India
| | - Shruti Shandilya
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (N.P.); (J.M.R.)
| | - Ahmed Shaukat
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
| | - Jinze Dou
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (N.P.); (J.M.R.)
| | - Tapani Vuorinen
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| |
Collapse
|
29
|
Li L, Hao B, Zhang Y, Ji S, Chou G. Metabolite Profiling and Distribution of Militarine in Rats Using UPLC-Q-TOF-MS/MS. Molecules 2020; 25:molecules25051082. [PMID: 32121087 PMCID: PMC7179186 DOI: 10.3390/molecules25051082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Militarine, a natural glucosyloxybenzyl 2-isobutylmalate, isolated from Bletilla striata, was reported with a prominent neuroprotective effect recently. The limited information on the metabolism of militarine impedes comprehension of its biological actions and pharmacology. This study aimed to investigate the metabolite profile and the distribution of militarine in vivo, which help to clarify the action mechanism further. A total of 71 metabolites (57 new metabolites) in rats were identified with a systematic method by ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). The proposed metabolic pathways of militarine include hydrolyzation, oxidation, glycosylation, esterification, sulfation, glucuronidation and glycine conjugation. Militarine and its metabolites were distributed extensively in the treated rats. Notably, six metabolites of militarine were identified in cerebrospinal fluid (CSF), which were highly consistent with the metabolites after oral administration of gastrodin in rats. Among the metabolites in CSF, five of them were not reported before. It is the first systematic metabolic study of militarine in vivo, which is very helpful for better comprehension of the functions and the central nervous system (CNS) bioactivities of militarine. The findings will also provide an essential reference for the metabolism of other glucosylated benzyl esters of succinic, malic, tartaric and citric acids.
Collapse
Affiliation(s)
- Limin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China;
| | - Bin Hao
- School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China; (B.H.); (Y.Z.)
| | - Yulong Zhang
- School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China; (B.H.); (Y.Z.)
| | - Shen Ji
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China;
| | - Guixin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Correspondence: ; Tel.: +86-021-50271706
| |
Collapse
|
30
|
Mendell AL, Creighton SD, Wilson HA, Jardine KH, Isaacs L, Winters BD, MacLusky NJ. Inhibition of 5α Reductase Impairs Cognitive Performance, Alters Dendritic Morphology and Increases Tau Phosphorylation in the Hippocampus of Male 3xTg-AD Mice. Neuroscience 2020; 429:185-202. [PMID: 31954826 DOI: 10.1016/j.neuroscience.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Recent work has suggested that 5α-reduced metabolites of testosterone may contribute to the neuroprotection conferred by their parent androgen, as well as to sex differences in the incidence and progression of Alzheimer's disease (AD). This study investigated the effects of inhibiting 5α-reductase on object recognition memory (ORM), hippocampal dendritic morphology and proteins involved in AD pathology, in male 3xTg-AD mice. Male 6-month old wild-type or 3xTg-AD mice received daily injections of finasteride (50 mg/kg i.p.) or vehicle (18% β-cyclodextrin, 1% v/b.w.) for 20 days. Female wild-type and 3xTg-AD mice received only the vehicle. Finasteride treatment differentially impaired ORM in males after short-term (3xTg-AD only) or long-term (3xTg-AD and wild-type) retention delays. Dendritic spine density and dendritic branching of pyramidal neurons in the CA3 hippocampal subfield were significantly lower in 3xTg-AD females than in males. Finasteride reduced CA3 dendritic branching and spine density in 3xTg-AD males, to within the range observed in vehicle-treated females. In the CA1 hippocampal subfield, dendritic branching and spine density were reduced in both male and female 3xTg-AD mice, compared to wild type controls. Hippocampal amyloid β levels were substantially higher in 3xTg-AD females compared to both vehicle and finasteride-treated 3xTg-AD males. Site-specific Tau phosphorylation was higher in 3xTg-AD mice compared to sex-matched wild-type controls, increasing slightly after finasteride treatment. These results suggest that 5α-reduced neurosteroids may play a role in testosterone-mediated neuroprotection and may contribute to sex differences in the development and severity of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Boyer D Winters
- Psychology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
31
|
Xi Z, Qiao Y, Wang J, Su H, Bao Z, Li H, Liao X, Zhong X. Gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103. J Cell Mol Med 2019; 24:1451-1459. [PMID: 31769187 PMCID: PMC6991667 DOI: 10.1111/jcmm.14826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
The beneficial function of gastrodin towards many inflammatory diseases has been identified. This study designed to see the influence of gastrodin in a cell model of chronic obstructive pulmonary disease (COPD). MRC-5 cells were treated by LPS, before which gastrodin was administrated. The effects of gastrodin were evaluated by conducting CCK-8, FITC-PI double staining, Western blot, qRT-PCR and ELISA. Besides this, the downstream effector and signalling were studied to decode how gastrodin exerted its function. And dual-luciferase assay was used to detect the targeting link between miR-103 and lipoprotein receptor-related protein 1 (LRP1). LPS induced apoptosis and the release of MCP-1, IL-6 and TNF-α in MRC-5 cells. Pre-treating MRC-5 cells with gastrodin attenuated LPS-induced cell damage. Meanwhile, p38/JNK and NF-κB pathways induced by LPS were repressed by gastrodin. miR-103 expression was elevated by gastrodin. Further, the protective functions of gastrodin were attenuated by miR-103 silencing. And LRP1 was a target of miR-103 and negatively regulated by miR-103. The in vitro data illustrated the protective function of gastrodin in LPS-injured MRC-5 cells. Gastrodin exerted its function possibly by up-regulating miR-103 and modulating p38/JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Zhuona Xi
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yahong Qiao
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jifang Wang
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hongjian Su
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Zhen Bao
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hongyan Li
- Department of Internal Medicine, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Xiaoming Liao
- Department of Integrated Chinese and Western Internal Medicine, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Xiaolan Zhong
- Department of Quality Control, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
32
|
Gastrodin, a traditional Chinese medicine monomer compound, can be used as adjuvant to enhance the immunogenicity of melanoma vaccines. Int Immunopharmacol 2019; 74:105699. [DOI: 10.1016/j.intimp.2019.105699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
|
33
|
Li X, Ma M, Xin X, Tang Y, Zhao G, Xiao X. Efficient acylation of gastrodin by Aspergillus oryzae whole-cells in non-aqueous media. RSC Adv 2019; 9:16701-16712. [PMID: 35516375 PMCID: PMC9064431 DOI: 10.1039/c9ra01605h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022] Open
Abstract
Gastrodin, a bioactive compound extracted from the plant source of Gastrodia elata Blume, has a wide range of therapeutic effects on central nervous system (CNS) diseases, but suffers from poor brain permeability and short half-life in plasma. In this study, fatty acid esters of gastrodin were successfully synthesized by a whole cell-based biocatalytic method. Aspergillus oryzae cells showed different catalytic activities in the organic solvent systems tested. Tetrahydrofuran was confirmed as the most suitable pure organic solvent, with the highest substrate conversion of 98.0%. Addition of ionic liquids (ILs) into pyridine dramatically accelerated the reaction with conversion increased from 5.9% to 84.2%, and also changed the selectivity of the cells, mainly due to the use of IL-containing systems altering cell permeability and contact of the enzymes with solvent molecules possessing different polarities. The ester products were characterized by 13C-NMR and ESI-MS as gastrodin monoester and diester.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology Wushan Road 381 Guangzhou China 510641 +86-20-2223-6819
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Wushan Road 381 Guangzhou 510641 China +86-20-8711-1770
| | - Maohua Ma
- School of Food Science and Engineering, South China University of Technology Wushan Road 381 Guangzhou China 510641 +86-20-2223-6819
| | - Xuan Xin
- School of Food Science and Engineering, South China University of Technology Wushan Road 381 Guangzhou China 510641 +86-20-2223-6819
| | - Yuqian Tang
- School of Food Science and Engineering, South China University of Technology Wushan Road 381 Guangzhou China 510641 +86-20-2223-6819
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Wushan Road 381 Guangzhou 510641 China +86-20-8711-1770
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology Wushan Road 381 Guangzhou China 510641 +86-20-2223-6819
| |
Collapse
|
34
|
Shao QH, Zhang XL, Chen Y, Zhu CG, Shi JG, Yuan YH, Chen NH. Anti-neuroinflammatory effects of 20C from Gastrodia elata via regulating autophagy in LPS-activated BV-2 cells through MAPKs and TLR4/Akt/mTOR signaling pathways. Mol Immunol 2018; 99:115-123. [PMID: 29763880 DOI: 10.1016/j.molimm.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/21/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022]
Abstract
20C, a novel bibenzyl compound, is isolated from Gastrodia elata. In our previous study, 20C showed protective effects on tunicamycin-induced endoplasmic reticulum stress, rotenone-induced apoptosis and rotenone-induced oxidative damage. However, the anti-neuroinflammatory effect of 20C is still with limited acquaintance. The objective of this study was to confirm the anti-neuroinflammatory effect of 20C on Lipopolysaccharide (LPS)-activated BV-2 cells and further elucidated the underlying molecular mechanisms. In this study, 20C significantly attenuated the protein levels of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin (IL)-1β, and secretion of nitric oxide (NO) and tumor necrosis factor (TNF)-α induced by Lipopolysaccharide (LPS) in BV-2 cells. Moreover, 20C up-regulated the levels of autophagy-related proteins in LPS-activated BV-2 cells. The requirement of mitogen-activated protein kinases (MAPKs) has been well documented for regulating the process of autophagy. Both 20C and rapamycin enhanced autophagy by suppressing the phosphorylation of MAPKs signaling pathway. Furthermore, 20C treatment significantly inhibited the levels of toll like receptor 4 (TLR4), phosphorylated-protein kinase B (Akt) and phosphorylated-mechanistic target of rapamycin (mTOR), indicating blocking TLR4/Akt/mTOR might be an underlying basis for the anti-inflammatory effect of 20C. These findings suggest that 20C has therapeutic potential for treating neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Ling Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
35
|
Mendell AL, Chung BY, Creighton CE, Kalisch BE, Bailey CD, MacLusky NJ. Neurosteroid metabolites of testosterone and progesterone differentially inhibit ERK phosphorylation induced by amyloid β in SH-SY5Y cells and primary cortical neurons. Brain Res 2018; 1686:83-93. [DOI: 10.1016/j.brainres.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
|
36
|
Liu B, Gao JM, Li F, Gong QH, Shi JS. Gastrodin Attenuates Bilateral Common Carotid Artery Occlusion-Induced Cognitive Deficits via Regulating Aβ-Related Proteins and Reducing Autophagy and Apoptosis in Rats. Front Pharmacol 2018; 9:405. [PMID: 29755351 PMCID: PMC5932202 DOI: 10.3389/fphar.2018.00405] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Gastrodin (GAS), an active constituent extracted from Gastrodia elata Blume, is used to treat ischemic stroke, epilepsy, dizziness, and dementia for centuries in China. This study examined its effects on vascular dementia (VD) and the underlying molecular mechanisms. VD was established by ligation of bilateral common carotid artery occlusion (BCCAO). A total of 7 days after BCCAO surgery, GAS (15, 30, and 60 mg/kg) was orally administered for 28 consecutive days to evaluate therapeutic effects. Cognitive function was tested by the Morris water maze. The neuronal morphological changes were examined via Hematoxylin-Eosin staining. Flow cytometry was used for evaluating apoptosis in the hippocampi. The target protein expression was examined by Western blot. The results showed that BCCAO induced cognitive impairment, hippocampus CA1 and CA3 pyramidal neuron damage, beta-amyloid (Aβ) deposition, excessive autophagy, and apoptosis. GAS treatment significantly improved BCCAO-induced cognitive deficits and hippocampus neuron damage. Molecular analysis revealed that GAS exerted the protective effect via reducing the levels of Aβ1-40/42, APP, and β-site APP-cleaving enzyme 1 expression, and increasing Aβ-related protein, a disintegrin and metalloprotease 10, and insulin degrading enzyme expression. Meanwhile, GAS inhibited excessive autophagy via decreasing Beclin-1, LC3-II, and p62 levels. Furthermore, GAS inhibited apoptosis through the downregulation of Bax and upregulation of Bcl-2. Moreover, P38 MAPK signaling pathway was involved in the process. Our findings demonstrate that GAS was effective in the treatment of BCCAO-induced VD via targeting Aβ-related protein formation and inhibiting autophagy and apoptosis of hippocampus neurons.
Collapse
Affiliation(s)
- Bo Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jian-Mei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
37
|
Yin Y, Zhao Y, Han S, Zhang N, Chen H, Wang X. Autophagy-ERK1/2-Involved Disinhibition of Hippocampal Neurons Contributes to the Pre-Synaptic Toxicity Induced by Aβ42 Exposure. J Alzheimers Dis 2018; 59:851-869. [PMID: 28697568 DOI: 10.3233/jad-170246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most frequent cause of progressive cognitive decline in the elderly population. To date, there is still no effective treatment for AD, requiring more underlying mechanisms. In the present study, we investigated the effects of Aβ42 on the inhibitory synaptic transmission in the cultured hippocampal neurons, and explored the possible mechanism. The frequency, but not amplitude, of miniature inhibitory post-synaptic currents was significantly suppressed by Aβ42, indicating that Aβ42 played its role in inhibitory transmitter release at the pre-synaptic sites. Aβ42 had no effect on miniature excitatory post-synaptic currents, suggesting GABAergic synapses are more susceptible to Aβ42 exposure. However, the number of GABAergic neurons or synapses was not influenced, suggesting the corresponding stage may be a preclinical one. The effect of Aβ42 can be mimicked by PD98059 (an inhibitor of ERK1/2) and blocked by curcumin (an activator of MEK), which reveals Aβ-involved influence is via the decreased phosphorylation of MAPK-ERK1/2. In addition, synaptophysin is confirmed to be a downstream protein of MAPK-ERK1/2 at the pre-synaptic site. At the same time, suppressed autophagy was observed after Aβ42 exposure, and the activation of autophagy increased pERK1/2 level and salvaged the disinhibition of hippocampal neurons. These data suggest that diminished GABAergic tone likely starts from the preclinical stage of AD, so some GABAergic stress test may be effective for identifying cognitively normal elder adults. Strategies against the dysfunction of autophagy should be adopted in the early stage of AD because of its initial effects.
Collapse
Affiliation(s)
- Yanling Yin
- Department of Neurobiology and Beijing Institute for Brain Disorders, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Yuanyuan Zhao
- Core Facility Center, Capital Medical University, Beijing, PR China
| | - Song Han
- Department of Neurobiology and Beijing Institute for Brain Disorders, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Nan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, PRChina
| | - Hanyu Chen
- Wyoming Seminary College Preparatory School, Kingston, PA, USA
| | - Xiaomin Wang
- Department of Neurobiology and Beijing Institute for Brain Disorders, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| |
Collapse
|
38
|
Zhang TH, Huang CM, Gao X, Wang JW, Hao LL, Ji Q. Gastrodin inhibits high glucose‑induced human retinal endothelial cell apoptosis by regulating the SIRT1/TLR4/NF‑κBp65 signaling pathway. Mol Med Rep 2018; 17:7774-7780. [PMID: 29620267 DOI: 10.3892/mmr.2018.8841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/06/2018] [Indexed: 11/05/2022] Open
Abstract
Diabetic retinopathy (DR), one of the most common complications of late‑phase diabetes, is associated with the ectopic apoptosis of microvascular cells. Gastrodin, a phenolic glucoside derived from Gastrodia elata Blume, has been reported to have antioxidant and anti‑inflammation activities. The aim of the present study was to investigate the effects of gastrodin on high glucose (HG)‑induced human retinal endothelial cell (HREC) injury and its underlying mechanism. The results demonstrated that HG induced cell apoptosis in HRECs, which was accompanied by increased levels of reactive oxygen species production. Gastrodin treatment significantly alleviated HG‑induced apoptosis and oxidative stress. Furthermore, HG stimulation decreased the levels of SIRT1, which was accompanied by an increase in Toll‑like receptor 4 (TLR4) expression and the levels of phosphorylated nuclear factor (NF)‑κBp65. However, the administration of gastrodin significantly inhibited the activation of the sirtuin 1 (SIRT1)/TLR4/NF‑κBp65 signaling pathway in HRECs exposed to HG. Collectively, the present study demonstrated that gastrodin may be effective against HG‑induced apoptosis and its action may be exerted through the regulation of the SIRT1/TLR4/NF‑κBp65 signaling pathway.
Collapse
Affiliation(s)
- Tong-He Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| | - Chun-Mei Huang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| | - Xue Gao
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250031, P.R. China
| | - Jia-Wei Wang
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250031, P.R. China
| | - Lin-Lin Hao
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250031, P.R. China
| | - Qiang Ji
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
39
|
Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, Xu Y, Zhao Q, Si G. A Review on Central Nervous System Effects of Gastrodin. Front Pharmacol 2018; 9:24. [PMID: 29456504 PMCID: PMC5801292 DOI: 10.3389/fphar.2018.00024] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/09/2018] [Indexed: 11/21/2022] Open
Abstract
Rhizoma Gastrodiae (also known as Tian ma), the dried rhizome of Gastrodia elata Blume, is a famous Chinese herb that has been traditionally used for the treatment of headache, dizziness, spasm, epilepsy, stoke, amnesia and other disorders for centuries. Gastrodin, a phenolic glycoside, is the main bioactive constituent of Rhizoma Gastrodiae. Since identified in 1978, gastrodin has been extensively investigated on its pharmacological properties. In this article, we reviewed the central nervous system (CNS) effects of gastrodin in preclinical models of CNS disorders including epilepsy, Alzheimer's disease, Parkinson's disease, affective disorders, cerebral ischemia/reperfusion, cognitive impairment as well as the underlying mechanisms involved and, where possible, clinical data that support the pharmacological activities. The sources and pharmacokinetics of gastrodin were also reviewed here. As a result, gastrodin possesses a broad range of beneficial effects on the above-mentioned CNS diseases, and the mechanisms of actions include modulating neurotransmitters, antioxidative, anti-inflammatory, suppressing microglial activation, regulating mitochondrial cascades, up-regulating neurotrophins, etc. However, more detailed clinical trials are still in need for positioning it in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongyan Meng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongbo Ma
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qiong Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guomin Si
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
40
|
Liang WZ, Jan CR, Hsu SS. Cytotoxic effects of gastrodin extracted from the rhizome of Gastrodia elata Blume in glioblastoma cells, but not in normal astrocytes, via the induction of oxidative stress-associated apoptosis that involved cell cycle arrest and p53 activation. Food Chem Toxicol 2017; 107:280-292. [PMID: 28689919 DOI: 10.1016/j.fct.2017.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Researches have been conducted to explore the biological effect of gastrodin, a natural compound extracted from the rhizome of Gastrodia elata Blume, in different models. However, the effects of gastrodin on cytotoxicity, cell cycle distribution and oxidative stress in glia cells have not been explored. The aim of this study was to investigate the cytotoxic effect of gastrodin and its mechanisms in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. In DBTRG-05MG cells but not in CTX TNA2 cells, gastrodin (20-30 μM) induced cytotoxicity, G2/M phase cell cycle arrest and apoptosis. Regarding oxidative stress, gastrodin (20-30 μM) elevated intracellular ROS levels but reduced GSH levels. Treatment with the antioxidant NAC (10 μM) partially reversed gastrodin-altered antioxidant enzymes levels. Furthermore, gastrodin induced mitochondria-associated apoptosis. The apoptotic effects evoked by gastrodin were partially inhibited by the antioxidant NAC and the pancaspase inhibitor Z-VAD-FMK. Together, in DBTRG-05MG cells, but not in CTX TNA2 cells, gastrodin activated ROS-associated mitochondrial apoptotic pathways that involved cell cycle arrest. These data provide insight into the molecular mechanisms governing the ability of gastrodin to induce cytotoxicity in human glioblastoma cells and further suggest that gastrodin is a new potential agent for the treatment of human gliblasoma.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, ROC
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, ROC
| | - Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, ROC; Department of Surgery, National Defense Medical Center, Taipei 11490, Taiwan, ROC.
| |
Collapse
|
41
|
Tran NQV, Nguyen AN, Takabe K, Yamagata Z, Miyake K. Pre-treatment with amitriptyline causes epigenetic up-regulation of neuroprotection-associated genes and has anti-apoptotic effects in mouse neuronal cells. Neurotoxicol Teratol 2017; 62:1-12. [PMID: 28511916 DOI: 10.1016/j.ntt.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Antidepressants, such as imipramine and fluoxetine, are known to alter gene expression patterns by inducing changes in the epigenetic status of neuronal cells. There is also some evidence for the anti-apoptotic effect of various groups of antidepressants; however, this effect is complicated and cell-type dependent. Antidepressants of the tricyclic group, in particular amitriptyline, have been suggested to be beneficial in the treatment of neurodegenerative disorders. We examined whether amitriptyline exerts an anti-apoptotic effect via epigenetic mechanisms. Using DNA microarray, we analyzed global gene expression in mouse primary cultured neocortical neurons after treatment with amitriptyline and imipramine. The neuroprotection-associated genes, activating transcription factor 3 (Atf3) and heme oxygenase 1 (Hmox1), were up-regulated at both mRNA and protein levels by treatment with amitriptyline. Quantitative chromatin immunoprecipitation assay revealed that amitriptyline increased enrichments of trimethylation of histone H3 lysine 4 in the promoter regions of Atf3 and Hmox1 and acetylation of histone H3 lysine 9 in the promoter regions of Atf3, which indicate an active epigenetic status. Amitriptyline pre-treatment attenuated 1-methyl-4-phenylpyridinium ion (MPP+)- or amyloid β peptide 1-42 (Aβ1-42)-induced neuronal cell death and inhibited the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). We found that Atf3 and Hmox1 were also up-regulated after Aβ1-42 treatment, and were further increased when pre-treated with amitriptyline. Interestingly, the highest up-regulation of Atf3 and Hmox1, at least at mRNA level, was observed after co-treatment with Aβ1-42 and amitriptyline, together with the loss of the neuroprotective effect. These findings suggest preconditioning and neuroprotective effects of amitriptyline; however, further investigations are needed for clarifying the contribution of epigenetic up-regulation of Atf3 and Hmox1 genes.
Collapse
Affiliation(s)
- Nguyen Quoc Vuong Tran
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - An Nghia Nguyen
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kyoko Takabe
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
42
|
Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci 2017; 61:489-497. [PMID: 28124230 DOI: 10.1007/s12031-017-0889-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
ATP-binding cassette transporter A7 (ABCA7) is expressed in the hippocampus and cortex of the brain and was confirmed to be involved in the development of Alzheimer's disease (AD). Previous studies have demonstrated that ABCA7 regulated Aβ production, lipid transport, leading to AD characteristic pathological changes. However, the role and mechanism of ABCA7 in the context of AD needs further research. We augmented the expression of ABCA7 using lentiviral vector carrying ABCA7 gene to investigate the effect of ABCA7 overexpression on AD mice; then, we further explored the underlying mechanism in vitro. In the present study, ABCA7 was expressed successfully in the hippocampus of AD mice through lentiviral vector mediating ABCA7 gene; we showed that ABCA7 overexpression can effectively improve cognitive behavior of AD mice and diminished Aβ production; meanwhile, ABCA7 overexpression significantly relieved the neurotoxicity of Aβ by promoting cell viability and reducing endoplasmic reticulum stress. In conclusion, our findings showed that ABCA7 had obvious anti-Aβ effect and appeared to improve cognitive function of AD mice. Our results provided a new thought and basic scientific data for the clinical treatment of AD.
Collapse
Affiliation(s)
- Mengqian Li
- Department of Psychosomatic Medicine, First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yefeng Yuan
- Department of Psychosomatic Medicine, First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Bo Hu
- Department of Psychosomatic Medicine, First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Lei Wu
- Department of Epidemiology, Public Health Institute of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
43
|
Effect of Chinese Herbal Medicine on Alzheimer's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:29-56. [DOI: 10.1016/bs.irn.2017.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|