1
|
Saija C, Currò M, Ientile R, Caccamo D, Bertuccio MP. Impact of Alterations in Homocysteine, Asymmetric Dimethylarginine and Vitamins-Related Pathways in Some Neurodegenerative Diseases: A Narrative Review. Int J Mol Sci 2025; 26:3672. [PMID: 40332285 PMCID: PMC12027465 DOI: 10.3390/ijms26083672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Hyperhomocysteinemia (HHcy) influences the development and progression of neurodegenerative disorders in different ways. Homocysteine (Hcy) metabolism is related to that of asymmetric dimethylarginine (ADMA) and group B vitamins. The breakdown of the pathway involving nitric oxide (NO) and ADMA can be considered one of the causes of endothelial alteration that represents a crucial step in the development of several neurodegenerative disorders. Deficiencies of vitamins other than group B ones, such as D and A, have also been associated with central nervous system disorders. The aim of this narrative review is to describe the link between HHcy, ADMA, and vitamins in Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS) in terms of dysfunctional pathways and neuropathological processes, performing a literature search from 2015 to 2025 on PubMed. This review also provides an overview of the effects of vitamin supplementation on neurodegenerative diseases. The alteration of pathways involving NO production can lead to HHcy and elevated ADMA concentrations, causing neurodegeneration through various mechanisms, while vitamin supplementation has been shown to reduce Hcy levels, although with conflicting results about the improvement in clinical symptoms. Further studies are needed to develop optimal combined therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (C.S.); (M.C.); (R.I.); (D.C.)
| |
Collapse
|
2
|
Andrade S, Nunes D, Dabur M, Ramalho MJ, Pereira MC, Loureiro JA. Therapeutic Potential of Natural Compounds in Neurodegenerative Diseases: Insights from Clinical Trials. Pharmaceutics 2023; 15:pharmaceutics15010212. [PMID: 36678841 PMCID: PMC9860553 DOI: 10.3390/pharmaceutics15010212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases are caused by the gradual loss of neurons' function. These neurological illnesses remain incurable, and current medicines only alleviate the symptoms. Given the social and economic burden caused by the rising frequency of neurodegenerative diseases, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compounds' therapeutic effects for neurodegenerative disease treatment have been investigated in numerous in vitro and in vivo studies, only few have moved to clinical trials. This article provides the first systematic review of the clinical trials evaluating natural compounds' safety and efficacy for the treatment of the five most prevalent neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Meghna Dabur
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J. Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (M.C.P.); (J.A.L.)
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (M.C.P.); (J.A.L.)
| |
Collapse
|
3
|
The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238402. [PMID: 36500494 PMCID: PMC9740750 DOI: 10.3390/molecules27238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease. Although its pathogenesis is rather vague in some aspects, it is well known to be an inflammatory process characterized by inflammatory cytokine release and oxidative burden, resulting in demyelination and reduced remyelination and axonal survival together with microglial activation. Antioxidant compounds are gaining interest towards the manipulation of MS, since they offer, in most of the cases, many benefits, due to their pleiotropical activity, that mainly derives from the oxidative stress decrease. This review analyzes research articles, of the last decade, which describe biological in vitro, in vivo and clinical evaluation of various categories of the most therapeutically applied natural antioxidant compounds, and some of their derivatives, with anti-MS activity. It also summarizes some of the main characteristics of MS and the role the reactive oxygen and nitrogen species may have in its progression, as well as their relation with the other mechanistic aspects of the disease, in order for the multi-targeting potential of those antioxidants to be defined and the source of origination of such activity explained. Antioxidant compounds with specific characteristics are expected to affect positively some aspects of the disease, and their potential may render them as effective candidates for neurological impairment reduction in combination with the MS treatment regimen. However, more studies are needed in order such antioxidants to be established as recommended treatment to MS patients.
Collapse
|
4
|
Guo X, Wang H, Xu J, Hua H. Impacts of vitamin A deficiency on biological rhythms: Insights from the literature. Front Nutr 2022; 9:886244. [PMID: 36466383 PMCID: PMC9718491 DOI: 10.3389/fnut.2022.886244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/02/2022] [Indexed: 03/21/2024] Open
Abstract
Vitamin A is essential for brain function, in addition to its important roles in vision, immunity, and reproduction. Previous studies have shown that retinoic acid (RA), the bioactive form of vitamin A, is involved in the regulation of various intracellular responses related to biological rhythms. RA is reported to affect the circadian rhythm by binding to RA receptors, such as receptors in the circadian feedback loops in the mammalian suprachiasmatic nucleus. However, evidence of the impacts of vitamin A deficiency (VAD) on biological rhythms is limited, and most of the related studies were conducted on animals. In this review, we described the physiological functions of biological rhythms and physiological pathways/molecular mechanisms regulating the biological rhythms. We then discussed the current understanding of the associations of VAD with biological rhythm disorders/diseases (sleep disorders, impairments in learning/memory, emotional disorders, and other immune or metabolism diseases) and summarized the currently proposed mechanisms (mainly by retinoid nuclear receptors and related proteins) for the associations. This review may help recognize the role of VAD in biological rhythm disorders and stimulate clinical or epidemiological studies to confirm the findings of related animal studies.
Collapse
Affiliation(s)
- Xiangrong Guo
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Hua
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Firouzi S, Malekahmadi M, Djalali M, Javanbakht MH, Shokuhi N, Yaseri M, Abdolahi M, Zarezadeh M, Navashenaq JG, Honarvar NM, Pahlavani N. Are levels of adipokines and micronutrients different in male adult smokers and non-smokers? A case-control study. ENDOCRINOLOGIA, DIABETES Y NUTRICION 2022; 69:554-560. [PMID: 36446483 DOI: 10.1016/j.endien.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/12/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Smoking is a common public problem leading to increases in oxidative stress and decreases in the levels of some micronutrients, finally affecting adipokine levels. The aim of this study was to compare the serum levels of omentin (intelectin-1), chemerin, TNF-α, and some micronutrient intakes in male smokers and non-smokers. METHODS 40 male smokers and 40 male non-smokers with a mean age of 38.6±14.1 years were included in this study. Serum levels of omentin, chemerin, and TNF-α were measured. To calculate the daily intake of energy, carbohydrate, protein, fat, and some of the micronutrients, the 24-h recall and semi-quantitative food frequency questionnaire (FFQ) was used. RESULTS Omentin, chemerin, and TNF-α levels in male smokers were lower than non-smokers, but these differences were not statistically significant. However, after adjustment for total and saturated fat intakes and age, omentin (β=138.4, p=0.027) and TNF-α (β=144.5, p=0.015) revealed significant differences. CONCLUSION The serum levels of omentin, chemerin, TNF-α, and some micronutrient intakes were not significantly different between smokers and non-smokers. Further population studies are needed to clarify this subject.
Collapse
Affiliation(s)
- Safieh Firouzi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Malekahmadi
- Research Center for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nilufar Shokuhi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abdolahi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Obesity Institute, AmirAlam Hospital Complex, Marvasti Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Zarezadeh
- Department of Clinical Nutrition, Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Clinical Biochemistry and Nutrition, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Firouzi S, Malekahmadi M, Djalali M, Javanbakht MH, Shokuhi N, Yaseri M, Abdolahi M, Zarezadeh M, Navashenaq JG, Honarvar NM, Pahlavani N. Are levels of adipokines and micronutrients different in male adult smokers and non-smokers? A case–control study. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Amon U, Yaguboglu R, Ennis M, Holick MF, Amon J. Safety Data in Patients with Autoimmune Diseases during Treatment with High Doses of Vitamin D3 According to the “Coimbra Protocol”. Nutrients 2022; 14:nu14081575. [PMID: 35458137 PMCID: PMC9033096 DOI: 10.3390/nu14081575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022] Open
Abstract
Background: In 2013, the group of Cicero Coimbra, Brazil, reported the clinical efficacy of high doses of vitamin D3 in patients suffering from autoimmune skin disorders (“Coimbra protocol”, CP). However, hypercalcemia and the subsequent impaired renal function may be major concerns raised against this protocol. Methods: We report for the first time for a broad spectrum of autoimmune diseases in 319 patients (mean age (±SD) 43.3 ± 14.6 years, 65.5% female, 34.5% male) safety data for high doses of orally applied vitamin D3 (treatment period: up to 3.5 years) accompanied by a strict low-calcium diet and regular daily fluid intake of at least 2.5 L. Results: Mean vitamin D3 dose was 35,291 ± 21,791 IU per day. The measurement of more than 6100 single relevant laboratory parameters showed all mean values (±SD) within the normal range for total serum calcium (2.4 ± 0.1 mmol/L), serum creatinine (0.8 ± 0.2 mg/dL), serum creatinine associated estimated GFR (92.5 ± 17.3 mL/min), serum cystatin C (0.88 ± 0.19 mg/L), serum TSH (1.8 ± 1 mIU/L), and for 24 h urinary calcium secretion (6.9 ± 3.3 mmol/24 h). We found a very weak relationship between the dosage of oral vitamin D3 and the subsequent calcium levels, both in serum and in urinary excretion over 24 h, respectively. Conclusions: Our data show the reliable safety of the CP in autoimmune patients under appropriate supervision by experienced physicians.
Collapse
Affiliation(s)
- Ulrich Amon
- International Centre for Skin Diseases DermAllegra, Coimbra Protocol Certified Center, Am Markgrafenpark 6, 91224 Pommelsbrunn-Hohenstadt, Germany; (R.Y.); (J.A.)
- Correspondence: ; Tel.: +49-9154-914056; Fax: +49-9154-914058
| | - Raul Yaguboglu
- International Centre for Skin Diseases DermAllegra, Coimbra Protocol Certified Center, Am Markgrafenpark 6, 91224 Pommelsbrunn-Hohenstadt, Germany; (R.Y.); (J.A.)
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, Queens University of Belfast, Belfast BT7 1NN, UK;
| | - Michael F. Holick
- Endocrinology, Diabetes, Nutrition & Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Julian Amon
- International Centre for Skin Diseases DermAllegra, Coimbra Protocol Certified Center, Am Markgrafenpark 6, 91224 Pommelsbrunn-Hohenstadt, Germany; (R.Y.); (J.A.)
| |
Collapse
|
8
|
Ledesma J, Puttagunta PP, Torabi S, Berube K, Tamrazian E, Garcia D, Mehta BK. Presenting Symptoms and Disease Severity in Multiple Sclerosis Patients. Neurol Int 2021; 13:18-24. [PMID: 33430058 PMCID: PMC7838821 DOI: 10.3390/neurolint13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022] Open
Abstract
Introduction: The study aims to determine an association between presenting symptoms in multiple sclerosis and measures of disease severity, including the expanded disability status score (EDSS) and MRI based lesion volumes. Methods: Data was collected as part of a larger 3 year MS study, from 2014 to 2017, to compare Vitamin A levels and MS progression. All data was collected from a single clinical site. Demographic data as well as date of diagnosis and use of disease modifying therapies. Patients not able to obtain MRIs or lab tests and histories of vitamin abnormalities were excluded from the study. 29 patients met inclusion criteria. We chose presenting symptoms of vision, balance, sensory function, and motor function as these represented the most common manifestations of the disease and mirror the domains of the EDSS, which is the most commonly used scale for MS disease severity. We also included neuroimaging based lesion volume as another objective measure for comparison. Results: Although duration of disease was different between comparator groups, no significant difference was found between them when EDSS and lesion volumes were compared. There was a difference in lesion volumes when comparing those patients that had presenting symptoms of visual changes or balance symptoms with those presenting with sensory changes. Conclusions: This study supports the notion that presenting symptoms are not associated with EDSS independent disease duration. It also verifies that severity of disease is not associated with lesion volumes. However, sensory symptoms as a presenting symptom was associated with less lesion volumes in our study.
Collapse
Affiliation(s)
- Jason Ledesma
- Department of Neurology, The Lundquist Institute, Torrance, CA 90504, USA; (P.P.P.); (S.T.); (K.B.); (E.T.); (D.G.); (B.K.M.)
- Correspondence:
| | - Padma Priya Puttagunta
- Department of Neurology, The Lundquist Institute, Torrance, CA 90504, USA; (P.P.P.); (S.T.); (K.B.); (E.T.); (D.G.); (B.K.M.)
| | - Shayan Torabi
- Department of Neurology, The Lundquist Institute, Torrance, CA 90504, USA; (P.P.P.); (S.T.); (K.B.); (E.T.); (D.G.); (B.K.M.)
| | - Kristen Berube
- Department of Neurology, The Lundquist Institute, Torrance, CA 90504, USA; (P.P.P.); (S.T.); (K.B.); (E.T.); (D.G.); (B.K.M.)
| | - Eric Tamrazian
- Department of Neurology, The Lundquist Institute, Torrance, CA 90504, USA; (P.P.P.); (S.T.); (K.B.); (E.T.); (D.G.); (B.K.M.)
- Los Angeles County Harbor-UCLA Medical Center, Department of Neurology, David Geffen School of Medicine at UCLA, Torrance, CA 90509, USA
| | - Diamond Garcia
- Department of Neurology, The Lundquist Institute, Torrance, CA 90504, USA; (P.P.P.); (S.T.); (K.B.); (E.T.); (D.G.); (B.K.M.)
| | - Bijal Kirit Mehta
- Department of Neurology, The Lundquist Institute, Torrance, CA 90504, USA; (P.P.P.); (S.T.); (K.B.); (E.T.); (D.G.); (B.K.M.)
- Los Angeles County Harbor-UCLA Medical Center, Department of Neurology, David Geffen School of Medicine at UCLA, Torrance, CA 90509, USA
| |
Collapse
|
9
|
Sedighiyan M, Djafarian K, Dabiri S, Abdolahi M, Shab-Bidar S. The Effects of Omega-3 Supplementation on the Expanded Disability Status Scale and Inflammatory Cytokines in Multiple Sclerosis Patients: A Systematic Review and Meta-Analysis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:523-529. [PMID: 31096898 DOI: 10.2174/1871527318666190516083008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022]
Abstract
Recent trial studies have shown that omega-3 supplementation can beneficially improve scores on the Expanded Disability Status Scale (EDSS), which is considered a gold standard for measuring disability and disease severity in Multiple Sclerosis (MS) patients, as well as reducing neuroinflammation. The present systematic review and meta-analysis aimed to evaluate the effect of omega-3 supplementation on EDSS and cytokines in MS. A systematic search was performed on Pubmed, Scopus and Cochrane Library up to October 2018. Studies were reviewed based on the Cochrane handbook, and the preferred reporting items for systematic reviews and meta-analyses (PRISMA). Weighted Mean Difference (WMD) with 95% Confidence Intervals (CI) were pooled using a random effects model in order to compare the effects of omega-3 with placebos. Among 4 trials, omega-3 supplementation had no significant effect on EDSS scale (WMD: -0.07; 95% CI: -0.27 to 0.13; P=0.50), as well as serum levels of IL-1β (WMD: -7.67; 95% CI: -23.31 to 7.97; P=0.34) and IL-6 (WMD: -153.57; 95% CI: -455.36 to 148.23; P=0.32). However, omega-3 significantly reduced TNF-α concentration (WMD: -16.76; 95% CI: -18.63 to -14.88; P < 0.00001) compared to placebo. Overall, omega-3 supplementation may not have a clinically considerable impact on EDSS or proinflammatory markers. However, the existing trials are limited in this context, and further clinical trials are required to confirm the potential effects of the omega-3 supplement on MS disease management.
Collapse
Affiliation(s)
- Mohsen Sedighiyan
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Dabiri
- Amir Alam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abdolahi
- Amir Alam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
How Dietary Deficiency Studies Have Illuminated the Many Roles of Vitamin A During Development and Postnatal Life. Subcell Biochem 2020; 95:1-26. [PMID: 32297294 DOI: 10.1007/978-3-030-42282-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vitamin A deficiency studies have been carried out since the early 1900s. Initially, these studies led to the identification of fat soluble A as a unique and essential component of the diet of rodents, birds, and humans. Continuing work established that vitamin A deficiency produces biochemical and physiological dysfunction in almost every vertebrate organ system from conception to death. This chapter begins with a review of representative historical and current studies that used the nutritional vitamin A deficiency research model to gain an understanding of the many roles vitamin A plays in prenatal and postnatal development and well-being. This is followed by a discussion of recent studies that show specific effects of vitamin A deficiency on prenatal development and postnatal maintenance of the olfactory epithelium, brain, and heart. Vitamin A deficiency studies have helped define the necessity of vitamin A for the health of all vertebrates, including farm animals, but the breadth of deficient states and their individual effects on health have not been fully determined. Future work is needed to develop tools to assess the complete vitamin A status of an organism and to define the levels of vitamin A that optimally support molecular and systems level processes during all ages and stages of life.
Collapse
|
11
|
Miller ED, Dziedzic A, Saluk-Bijak J, Bijak M. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients 2019; 11:nu11071528. [PMID: 31284389 PMCID: PMC6682972 DOI: 10.3390/nu11071528] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS). The etiology of this multifactorial disease has not been clearly defined. Conventional medical treatment of MS has progressed, but is still based on symptomatic treatment. One of the key factors in the pathogenesis of MS is oxidative stress, enhancing inflammation and neurodegeneration. In MS, both reactive oxygen and nitrogen species are formed in the CNS mainly by activated macrophages and microglia structures, which can lead to demyelination and axon disruption. The course of MS is associated with the secretion of many inflammatory and oxidative stress mediators, including cytokines (IL-1b, IL-6, IL-17, TNF-α, INF-γ) and chemokines (MIP-1a, MCP-1, IP10). The early stage of MS (RRMS) lasts about 10 years, and is dominated by inflammatory processes, whereas the chronic stage is associated with neurodegenerative axon and neuron loss. Since oxidative damage has been known to be involved in inflammatory and autoimmune-mediated processes, antioxidant therapy could contribute to the reduction or even prevention of the progression of MS. Further research is needed in order to establish new aims for novel treatment and provide possible benefits to MS patients. The present review examines the roles of oxidative stress and non-pharmacological anti-oxidative therapies in MS.
Collapse
Affiliation(s)
- Elzbieta Dorota Miller
- Department of Physical Medicine, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland
- Neurorehabilitation Ward, General Hospital no III, Milionowa 14, 90-001 Lodz, Poland
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
12
|
|
13
|
Nunes ACDF, Piuvezam G. Nutritional supplementation of vitamin A and health-related outcomes in patients with multiple sclerosis: A protocol for a systematic review and meta-analysis of randomized clinical trials. Medicine (Baltimore) 2019; 98:e16043. [PMID: 31232938 PMCID: PMC6636979 DOI: 10.1097/md.0000000000016043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune mediated disease which affects the central nervous system (CNS), having a substantial financial, functional, and quality of life (QOL) impact on these people. The vitamin A supplementation has been studied as a therapeutic possibility for in MS. Therefore, the objective of this protocol is to build an outline for a future systematic review, which will provide up-to-date available evidence about the clinical impact of nutritional supplementation of vitamin A in the outcomes related to the symptoms in patients with this pathology. METHODS The search will be performed in the following databases: PubMed, Embase, Scopus, cinahl, Scielo, Web of Science, the Cochrane Library and Science Direct, randomized clinical trials published until May 2019 that evaluate the relationship of the supplementation of vitamin A and health-related outcomes in patients with MS will be included. Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) will be used to outline the protocol, and PRISMA to the systematic review. Undergraduate handbook of quality of evidence and strength of recommendations for decision making in health (GRADE) will be used to assess the quality of evidence and the strength of the recommendation, and the JADAD scale to assess the internal validity of selected studies. For the extraction of all the data found a database in Microsoft Excel will be created. For the summary of the findings the Cochrane Collaboration Handbook recommendations will be used, and for the meta-analysis standard statistical techniques the RevMan software will be used. RESULTS In this study, we hope to find a considerable number of articles presenting evidence about the effectiveness of vitamin A supplementation in patients with MS. CONCLUSION Currently, many lines of evidence have been produced when it comes to the use of food supplements. This systematic review proposal might provide recent, important, and trusted information for better treatment of patients. RECORD OF SYSTEMATIC REVIEW This review was recorded in the International Register of Prospective Systematic Reviews (PROSPERO) on the January 30, 2019 (registration: CRD42019121757). Available at: http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42019121757.
Collapse
|
14
|
Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients 2019; 11:nu11051076. [PMID: 31096592 PMCID: PMC6566411 DOI: 10.3390/nu11051076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The gut-microbiome-brain axis is now recognized as an essential part in the regulation of systemic metabolism and homeostasis. Accumulating evidence has demonstrated that dietary patterns can influence the development of metabolic alterations and inflammation through the effects of nutrients on a multitude of variables, including microbiome composition, release of microbial products, gastrointestinal signaling molecules, and neurotransmitters. These signaling molecules are, in turn, implicated in the regulation of the immune system, either promoting or inhibiting the production of pro-inflammatory cytokines and the expansion of specific leukocyte subpopulations, such as Th17 and Treg cells, which are relevant in the development of neuroinflammatory and neurodegenerative conditions. Metabolic diseases, like obesity and type 2 diabetes mellitus, are related to inadequate dietary patterns and promote variations in the aforementioned signaling pathways in patients with these conditions, which have been linked to alterations in neurological functions and mental health. Thus, maintenance of adequate dietary patterns should be an essential component of any strategy aiming to prevent neurological pathologies derived from systemic metabolic alterations. The present review summarizes current knowledge on the role of nutrition in the modulation of the immune system and its impact in the development of neuroinflammation and neurological disease.
Collapse
|
15
|
Hatami M, Abdolahi M, Soveyd N, Djalali M, Togha M, Honarvar NM. Molecular Mechanisms of Curcumin in Neuroinflammatory Disorders: A Mini Review of Current Evidences. Endocr Metab Immune Disord Drug Targets 2019; 19:247-258. [PMID: 30488803 DOI: 10.2174/1871530319666181129103056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Neuroinflammatory disease is a general term used to denote the progressive loss of neuronal function or structure. Many neuroinflammatory diseases, including Alzheimer's, Parkinson's, and multiple sclerosis (MS), occur due to neuroinflammation. Neuroinflammation increases nuclear factor-κB (NF-κB) levels, cyclooxygenase-2 enzymes and inducible nitric oxide synthase, resulting in the release of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). It could also lead to cellular deterioration and symptoms of neuroinflammatory diseases. Recent studies have suggested that curcumin (the active ingredient in turmeric) could alleviate the process of neuroinflammatory disease. Thus, the present mini-review was conducted to summarize studies regarding cellular and molecular targets of curcumin relevant to neuroinflammatory disorders. METHODS A literature search strategy was conducted for all English-language literature. Studies that assessed the various properties of curcuminoids in respect of neuroinflammatory disorders were included in this review. RESULTS The studies have suggested that curcuminoids have significant anti- neuroinflammatory, antioxidant and neuroprotective properties that could attenuate the development and symptom of neuroinflammatory disorders. Curcumin can alleviate neurodegeneration and neuroinflammation through multiple mechanisms, by reducing inflammatory mediators (such as TNF-α, IL-1β, nitric oxide and NF-κB gene expression), and affect mitochondrial dynamics and even epigenetic changes. CONCLUSION It is a promising subject of study in the prevention and management of the neuroinflammatory disease. However, controlled, randomized clinical trials are needed to fully evaluate its clinical potential.
Collapse
Affiliation(s)
- Mahsa Hatami
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abdolahi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Amir Alam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Soveyd
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Iranian Center of Neurological Research, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Catani MV, Gasperi V, Bisogno T, Maccarrone M. Essential Dietary Bioactive Lipids in Neuroinflammatory Diseases. Antioxid Redox Signal 2018; 29:37-60. [PMID: 28637354 PMCID: PMC5984567 DOI: 10.1089/ars.2016.6958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Under physiological conditions, neurons and glia are in a healthy, redox-balanced environment; when injury perturbs this equilibrium, a neuroinflammatory state is established by activated microglia that triggers pro-inflammatory responses and alters the oxidant/antioxidant balance, thus leading to neuronal loss and neurodegeneration. In neurodegenerative diseases (such as Alzheimer's disease, Parkinson's disease, amyothrophic lateral sclerosis, and multiple sclerosis), the brain is in a constitutively self-sustaining cycle of inflammation and oxidative stress that prompts and amplifies brain damage. Recent Advances: Recently, an increasing amount of scientific data highlight the ability of specific nutrients to cross the blood-brain barrier, and to modulate inflammatory and oxidative pathways. Therefore, nutritional approaches may contribute to restore the lost equilibrium among factors accounting for neurodegeneration. CRITICAL ISSUES Herein, we critically examine how essential lipids (including fatty acids, liposoluble vitamins and phytosterols) might contribute to accelerate or prevent the onset and progression of such pathologies. In particular, we highlight that experimental and clinical findings, although promising, are still inadequate to draw definitive conclusions. FUTURE DIRECTIONS More research is warranted in order to establish the real impact of lipid intake on brain health, especially when redox balance and inflammatory responses have been already compromised. In the future, it would be hoped to gain a detailed knowledge of chemical modifications and dynamic properties of such nutrients, before planning to exploit them as potential therapeutics. Antioxid. Redox Signal. 29, 37-60.
Collapse
Affiliation(s)
- Maria Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
17
|
Mousavi Nasl-Khameneh A, Mirshafiey A, Naser Moghadasi A, Chahardoli R, Mahmoudi M, Parastouei K, Yekaninejad MS, Saboor-Yaraghi AA. Combination treatment of docosahexaenoic acid (DHA) and all-trans-retinoic acid (ATRA) inhibit IL-17 and RORγt gene expression in PBMCs of patients with relapsing-remitting multiple sclerosis. Neurol Res 2018; 40:11-17. [PMID: 29155646 DOI: 10.1080/01616412.2017.1382800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a demyelinating disorder with a complex autoimmune pathophysiology. Its initiation and progression correlate with IL-17 and the related transcription factor, RORγt. All-trans retinoic acid (ATRA) is a bioactive derivative of vitamin A, and docosahexaenoic acid (DHA) is an active metabolite of omega-3 fatty acid; both have immunomodulatory effects in many immune disorders. This study investigated the effects of DHA and ATRA individually and in combination on IL-17 and RORγt gene expression in peripheral blood mononuclear cells (PBMCs) of relapsing-remitting MS (RRMS) patients who were receiving interferon beta (IFN-β). METHODS The PBMCs of 15 RRMS patients were treated in vitro with 1 μM of ATRA and 15 μM of DHA as single and combination treatments for assessing probable additive or synergistic effects. RESULTS The results showed that single treatment of ATRA (p = 0.05) could significantly decrease the expression of IL-17 gene and single treatment of ATRA (p = 0.04) and single treatment of DHA (p = 0.05) induced significant inhibition on the expression of RORγt gene. The suppressive effect of combined treatment with ATRA and DHA on IL-17 (p = 0.02) and RORγt (p = 0.01) was also found significant showing that the combined treatments can have additive effects. DISCUSSION These results indicate that both DHA and ATRA might help control disease progression in IFN-β treated RRMS patients with the strongest effects produced by a combination of the two compounds.
Collapse
MESH Headings
- Adult
- Disability Evaluation
- Docosahexaenoic Acids/pharmacology
- Dose-Response Relationship, Drug
- Drug Combinations
- Female
- Gene Expression/drug effects
- Humans
- Interferon-beta/therapeutic use
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Leukocytes, Mononuclear/drug effects
- Male
- Middle Aged
- Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Multiple Sclerosis, Relapsing-Remitting/pathology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- RNA, Messenger/metabolism
- Tretinoin/pharmacology
- Young Adult
Collapse
Affiliation(s)
- Ateke Mousavi Nasl-Khameneh
- a Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, International Campus , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Abdorreza Naser Moghadasi
- c Department of Neurology and MS Research Center, Neuroscience Institute , Sina Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Reza Chahardoli
- d Endocrine Research Center, Research Institute for Endocrine Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Maryam Mahmoudi
- e Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran
| | - Karim Parastouei
- e Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran
| | - Mir Saeed Yekaninejad
- f Department of Epidemiology and Biostatistics, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Ali Akbar Saboor-Yaraghi
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
- e Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
18
|
Mohammadzadeh Honarvar N, Saedisomeolia A, Abdolahi M, Shayeganrad A, Taheri Sangsari G, Hassanzadeh Rad B, Muench G. Molecular Anti-inflammatory Mechanisms of Retinoids and Carotenoids in Alzheimer's Disease: a Review of Current Evidence. J Mol Neurosci 2016; 61:289-304. [PMID: 27864661 DOI: 10.1007/s12031-016-0857-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is considered as one of the most prevalent neurodegenerative disorders characterized by progressive loss of mental function and ability to learn. AD is a multifactorial disorder. Various hypotheses are suggested for the pathophysiology of AD including "Aβ hypothesis," "tau hypothesis," and "cholinergic hypothesis." Recently, it has been demonstrated that neuroinflammation is involved in the pathogenesis of AD. Neuroinflammation causes synaptic dysfunction and neuronal death within the brain. Excessive production of pro-inflammatory mediators induces Aβ peptide production/accumulation and hyperphosphorylated tau generating inflammatory molecules and cytokines. These inflammatory molecules disrupt blood-brain barrier integrity and increase the production of Aβ42 oligomers. Retinoids and carotenoids are potent antioxidants and anti-inflammatory agents having neuroprotective properties. They are able to prevent disease progression through several mechanisms such as suppression of Aβ peptide production/accumulation, oxidative stress, and pro-inflammatory mediator's secretion as well as improvement of cognitive performance. These observations, therefore, confirm the neuroprotective role of retinoids and carotenoids through multiple pathways. Therefore, the administration of these nutrients is considered as a promising approach to the prevention and/or treatment of AD in the future. The aim of this review is to present existing evidences regarding the beneficial effects of retinoids and carotenoids on AD's risk and outcomes, seeking the mechanism of their action.
Collapse
Affiliation(s)
- Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, Western Sydney University, NSW, Australia. .,School of Molecular Bioscience, Charles Perkins Centre, University of Sydney, NSW, Australia.
| | - Mina Abdolahi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shayeganrad
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Gerald Muench
- Department of Pharmacology, School of Medicine, Western Sydney University, NSW, Australia
| |
Collapse
|