1
|
Piao J, Chen H, Piao X, Cheng Z, Zhao F, Cui R, Li B. Intermittent fasting produces antidepressant-like effects by modulating dopamine D1 receptors in the medial prefrontal cortex. Neurobiol Dis 2025; 211:106931. [PMID: 40311880 DOI: 10.1016/j.nbd.2025.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Nutritional psychiatry has gained increasing attention, particularly in exploring dietary interventions for depression treatment. As a potential non-drug intervention, intermittent fasting (IF) has gradually attracted the interest of researchers, but its specific neurobiological mechanisms in depression remain unclear. The medial prefrontal cortex (mPFC) dopamine D1 receptors (Drd1) are significant in stress response and serve as a molecular target for rapid-acting antidepressants. Our previous study indicated that 9-h fasting produces an antidepressant-like effect by modulating dopamine (DA) receptors. However, whether IF produces antidepressant-like effects through actions on DA receptor-mediated mechanisms remains unclear. Here, we investigated the effects of IF on improving depression-like behavior induced by Chronic Unpredictable Mild Stress (CUMS) in mice and explored whether these effects are regulated by Drd1. We found that IF alleviated CUMS-induced depression-like behavior, increased c-Fos expression in the mPFC and hippocampus of CUMS mice, and activated the Drd1-cAMP-PKA-DARPP-32-CREB-BDNF signaling pathway. The antidepressant-like effects of IF were reversed by the Drd1 antagonist SCH23390. Additionally, optogenetic activation of Drd1-expressing neurons in the mPFC improved CUMS-induced depression-like behavior, while optogenetic inhibition suppressed the IF-induced antidepressant-like effects. These findings imply that Drd1 plays a crucial role in the antidepressant-like effects of IF and offer valuable insights into the potential application of IF in clinical depression treatment.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Hongyu Chen
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Xinmiao Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Ziqian Cheng
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China; College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, PR China.
| |
Collapse
|
2
|
Cheng Z, Zhao F, Piao J, Yang W, Cui R, Li B. Rasd2 regulates depression-like behaviors via DRD2 neurons in the prelimbic cortex afferent to nucleus accumbens core circuit. Mol Psychiatry 2025; 30:435-449. [PMID: 39097664 PMCID: PMC11746134 DOI: 10.1038/s41380-024-02684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Depressive symptoms, such as anhedonia, decreased social interaction, and lack of motivation, implicate brain reward systems in the pathophysiology of depression. Exposure to chronic stress impairs the function of brain reward circuits and is well-known to be involved in the etiology of depression. A transcriptomic analysis found that stress alters the expression of Rasd2 in mice prefrontal cortex (PFC). Similarly, in our previous study, acute fasting decreased Rasd2 expression in mice PFC, and RASD2 modulated dopamine D2 receptor (DRD2)-mediated antidepressant-like effects in ovariectomized mice. This research suggests the role of RASD2 in stress-induced depression and its underlying neural mechanisms that require further investigation. Here, we show that 5-day unpredictable mild stress (5-d UMS) exposure reduces RASD2 expression in both the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) of mice, while overexpression (but not knock-down) of Rasd2 in the NAc core (NAcc) alleviates 5-d UMS-induced depression-like behaviors and activates the DRD2-cAMP-PKA-DARPP-32 signaling pathway. Further studies investigated neuronal projections between the mPFC (Cg1, PrL, and IL) and NAcc, labeled by the retrograde tracer Fluorogold. Depression-like behaviors induced by 5-d UMS were only related to inhibition of the PrL-NAcc circuit. DREADD (Designer receptors exclusively activated by designer drug) analysis found that the activation of PrL-NAcc glutaminergic projection alleviated depression-like behaviors and increased DRD2- and RASD2-positive neurons in the NAcc. Using Drd2-cre transgenic mice, we constructed mice with Rasd2 overexpression in DRD2PrL-NAcc neurons, finding that Rasd2 overexpression ameliorated 5-d UMS-induced depression-like behaviors. These findings demonstrate a critical role for RASD2 modulation of DRD2PrL-NAcc neurons in 5-d UMS-induced depression-like behaviors. In addition, the study identifies a new potential strategy for precision medical treatment of depression.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| |
Collapse
|
3
|
Li B, Piao J, Piao X, Geng Z, Cheng Z, Zou X, Jiang H. Effect of Kruppel-like factor 4 on PTZ-induced acute seizure mice. J Cell Mol Med 2024; 28:e18578. [PMID: 39234952 PMCID: PMC11375452 DOI: 10.1111/jcmm.18578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
Kruppel-like factor 4 (Klf4) is a transcription factor that is involved in neuronal regeneration and the development of glutamatergic systems. However, it is unknown whether Klf4 is involved in acute seizure. To investigate the potential role of Klf4 in pentylenetetrazol (PTZ)-induced seizure, western blotting, immunofluorescence, behaviour test and electrophysiology were conducted in this study. We found that Klf4 protein and mRNA expression were increased in both the hippocampus (HP) and prefrontal cortex (PFC) after PTZ-induced seizure in mice. HP-specific knockout (KO) of Klf4 in mice decreased protein expression of Klf4 and the down-stream Klf4 target tumour protein 53 (TP53/P53). These molecular changes are accompanied by increased seizure latency, reduced immobility time in the forced swimming test and tail suspension test. Reduced hippocampal protein levels for synaptic proteins, including glutamate receptor 1 (GRIA1/GLUA1) and postsynaptic density protein 95 (DLG4/PSD95), were also observed after Klf4-KO, while increased mRNA levels of complement proteins were observed for complement component 1q subcomponent A (C1qa), complement component 1q subcomponent B (C1qb), complement component 1q subcomponent C (C1qc), complement component 3 (C3), complement component 4A (C4a) and complement component 4B (C4b). Moreover, c-Fos expression induced by PTZ was reduced by hippocampal conditional KO of Klf4. Electrophysiology showed that PTZ-induced action potential frequency was decreased by overexpression of Klf4. In conclusion, these findings suggest that Klf4 plays an important role in regulating PTZ-induced seizures and therefore constitutes a new molecular target that should be explored for the development of antiepileptic drugs.
Collapse
Affiliation(s)
- Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xinmiao Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Zihui Geng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Huiyi Jiang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
4
|
Sun Q, Xu W, Piao J, Su J, Ge T, Cui R, Yang W, Li B. Transcription factors are potential therapeutic targets in epilepsy. J Cell Mol Med 2022; 26:4875-4885. [PMID: 36065764 PMCID: PMC9549512 DOI: 10.1111/jcmm.17518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Academics generally believe that imbalance between excitation and inhibition of the nervous system is the root cause of epilepsy. However, the aetiology of epilepsy is complex, and its pathogenesis remains unclear. Many studies have shown that epilepsy is closely related to genetic factors. Additionally, the involvement of a variety of tumour‐related transcription factors in the pathogenesis of epilepsy has been confirmed, which also confirms the heredity of epilepsy. In this review, we summarize the existing research on a variety of transcription factors and epilepsy and present relevant evidence related to transcription factors that may be targets in epilepsy. This information is of great significance for revealing the in‐depth molecular and cellular mechanisms of epilepsy.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Qiu Y, Sha L, Zhang X, Li G, Zhu W, Xu Q. Induction of A Disintegrin and Metalloproteinase with Thrombospondin motifs 1 by a rare variant or cognitive activities reduces hippocampal amyloid-β and consequent Alzheimer’s disease risk. Front Aging Neurosci 2022; 14:896522. [PMID: 36016856 PMCID: PMC9395645 DOI: 10.3389/fnagi.2022.896522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Amyloid-β (Aβ) derived from amyloid precursor protein (APP) hydrolysis is acknowledged as the predominant hallmark of Alzheimer’s disease (AD) that especially correlates to genetics and daily activities. In 2019, meta-analysis of AD has discovered five new risk loci among which A Disintegrin and Metalloproteinase with Thrombospondin motifs 1 (ADAMTS1) has been further suggested in 2021 and 2022. To verify the association, we re-sequenced ADAMTS1 of clinical AD samples and subsequently identified a novel rare variant c.–2067A > C with watchable relevance (whereas the P-value was not significant after adjustment). Dual-luciferase assay showed that the variant sharply stimulated ADAMTS1 expression. In addition, ADAMTS1 was also clearly induced by pentylenetetrazol-ignited neuronal activity and enriched environment (EE). Inspired by the above findings, we investigated ADAMTS1’s role in APP metabolism in vitro and in vivo. Results showed that ADAMTS1 participated in APP hydrolysis and consequently decreased Aβ generation through inhibiting β-secretase-mediated cleavage. In addition, we also verified that the hippocampal amyloid load of AD mouse model was alleviated by the introduction of ADAMTS1, and thus spatial cognition was restored as well. This study revealed the contribution of ADAMTS1 to the connection of genetic and acquired factors with APP metabolism, and its potential in reducing hippocampal amyloid and consequent risk of AD.
Collapse
Affiliation(s)
- Yunjie Qiu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuneng Zhang
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Guanjun Li
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Qi Xu,
| |
Collapse
|
6
|
Ye H, Huang S, Song Y, Liu H, Zhao X, Zhao D, Mi F, Wang X, Zhang X, Du J, Zhu N, Zhang L, Zhao Y. Gene co-expression analysis identifies modules related to insufficient sleep in humans. Sleep Med 2021; 86:68-74. [PMID: 34464880 DOI: 10.1016/j.sleep.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insufficient sleep and circadian rhythm disruption may cause cancer, obesity, cardiovascular disease, and cognitive impairment. The underlying mechanisms need to be elucidated. METHOD Weighted gene co-expression network analysis (WGCNA) was used to identify co-expressed modules. Connectivity Map tool was used to identify candidate drugs based on top connected genes. R ptestg package was utilized to detected module rhythmicity alteration. A hypergeometric test was used to test the enrichment of insomnia SNP signals in modules. Google Scholar was used to validate the modules and hub genes by literature. RESULTS We identified a total of 45 co-expressed modules. These modules were stable and preserved. Eight modules were correlated with sleep restriction duration. Module rhythmicity was disrupted in sleep restriction subjects. Hub genes that involve in insufficient sleep also play important roles in sleep disorders. Insomnia GWAS signals were enriched in six modules. Finally, eight drugs associated with sleep disorders were identified. CONCLUSION Systems biology method was used to identify sleep-related modules, hub genes, and candidate drugs. Module rhythmicity was altered in sleep insufficient subjects. Thiamphenicol, lisuride, timolol, and piretanide are novel candidates for sleep disorders.
Collapse
Affiliation(s)
- Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Shiliang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yufei Song
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Huiwei Liu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xiaosu Zhao
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Dan Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Fangxia Mi
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xinxue Wang
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Jinman Du
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Na Zhu
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Liangshun Zhang
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yibin Zhao
- Department of Anus & Intestine Surgery, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China.
| |
Collapse
|