1
|
Xu T, Su T, Soye BJD, Kandi S, Huang CF, Wilkins JT, Castellani RJ, Kafader JO, Patrie SM, Vassar R, Kelleher NL. The Proteoform Landscape of Tau from the Human Brain. J Proteome Res 2025. [PMID: 40395051 DOI: 10.1021/acs.jproteome.5c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Tau is a microtubule-associated protein (MAP) and is critical for maintaining the cytoskeleton of neurons. Tau and its post-translational modifications (PTMs) have been studied for decades, yet the exact composition of intact tau and its truncation products present in the human brain has evaded study at the proteoform level. Here, we show that tau proteoform profiling and exact characterization are possible using immunoprecipitation (IP) and the new approach of individual ion mass spectrometry (I2MS). We provide a first glimpse of the tau proteoform landscape present in the CHAPS-soluble extracts from the temporal cortex of a control subject and a donor with Alzheimer's disease (AD). Profiling and identification of four isoforms (0N3R, 1N3R, 0N4R, and 1N4R), truncated products (e.g., 72-172 derived from the 0N3R/0N4R isoforms), and intact tau proteoforms harboring PTMs include phosphorylation, methylation, and acetylation. The specific tau proteoform identification typically employs proton transfer charge reduction (PTCR) and electron transfer dissociation (ETD) with spectral readout by individual ion tandem mass spectrometry (I2MS2). A precise understanding of the tau proteoform landscape over the course of neurodegeneration is critical to understand AD pathology vs related dementias. The assay approach reported here will advance AD research, gives a sense of what is technologically possible for new biomarker discovery and will assist the development of therapeutics using the most exact kind of compositional information on tau.
Collapse
Affiliation(s)
- Tian Xu
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Taojunfeng Su
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin J Des Soye
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Soumya Kandi
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - John T Wilkins
- Departments of Medicine (Cardiology) and Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jared O Kafader
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert Vassar
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Vacchi E, Ruiz-Barrio I, Melli G. Tau biomarkers for neurodegenerative diseases: Current state and perspectives. Parkinsonism Relat Disord 2025; 134:107772. [PMID: 40185651 DOI: 10.1016/j.parkreldis.2025.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Neurodegenerative diseases, particularly tauopathies, pose significant global health challenges, especially in aging populations. Tauopathies are characterized by progressive neuronal damage and intracellular deposits of hyperphosphorylated tau. Early and accurate diagnosis is hindered by overlapping clinical features and reliance on post-mortem analyses, emphasizing the need for reliable in vivo biomarkers to improve early diagnosis and management. Advances in tau biomarkers and imaging have facilitated targeted Alzheimer's disease therapies, but progress for other tauopathies remains inadequate. Future diagnostic frameworks should integrate multiple biomarkers across different tissues within specific timelines. However, challenges such as co-pathologies and limited understanding of pathogenic mechanisms remain significant obstacles. Emerging ultrasensitive technologies, including seeding amplification assays and minimally invasive sources of biomarkers like skin biopsy, hold promise for biomarker discovery. Here, we present the current clinical classification of tau proteinopathies, the challenges that are posed by the actual diagnostic criteria, followed by the most recent advancements in tau biomarker technologies.
Collapse
Affiliation(s)
- Elena Vacchi
- Neurodegenerative Diseases Group, Laboratory for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Iñigo Ruiz-Barrio
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain; Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Giorgia Melli
- Neurodegenerative Diseases Group, Laboratory for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland; Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.
| |
Collapse
|
3
|
Shukla S, Lastorka SS, Uversky VN. Intrinsic Disorder and Phase Separation Coordinate Exocytosis, Motility, and Chromatin Remodeling in the Human Acrosomal Proteome. Proteomes 2025; 13:16. [PMID: 40407495 PMCID: PMC12101322 DOI: 10.3390/proteomes13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/26/2025] Open
Abstract
Intrinsic disorder refers to protein regions that lack a fixed three-dimensional structure under physiological conditions, enabling conformational plasticity. This flexibility allows for diverse functions, including transient interactions, signaling, and phase separation via disorder-to-order transitions upon binding. Our study focused on investigating the role of intrinsic disorder and liquid-liquid phase separation (LLPS) in the human acrosome, a sperm-specific organelle essential for fertilization. Using computational prediction models, network analysis, Structural Classification of Proteins (SCOP) functional assessments, and Gene Ontology, we analyzed 250 proteins within the acrosomal proteome. Our bioinformatic analysis yielded 97 proteins with high levels (>30%) of structural disorder. Further analysis of functional enrichment identified associations between disordered regions overlapping with SCOP domains and critical acrosomal processes, including vesicle trafficking, membrane fusion, and enzymatic activation. Examples of disordered SCOP domains include the PLC-like phosphodiesterase domain, the t-SNARE domain, and the P-domain of calnexin/calreticulin. Protein-protein interaction networks revealed acrosomal proteins as hubs in tightly interconnected systems, emphasizing their functional importance. LLPS propensity modeling determined that over 30% of these proteins are high-probability LLPS drivers (>60%), underscoring their role in dynamic compartmentalization. Proteins such as myristoylated alanine-rich C-kinase substrate and nuclear transition protein 2 exhibited both high LLPS propensities and high levels of structural disorder. A significant relationship (p < 0.0001, R² = 0.649) was observed between the level of intrinsic disorder and LLPS propensity, showing the role of disorder in facilitating phase separation. Overall, these findings provide insights into how intrinsic disorder and LLPS contribute to the structural adaptability and functional precision required for fertilization, with implications for understanding disorders associated with the human acrosome reaction.
Collapse
Affiliation(s)
- Shivam Shukla
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida-St. Petersburg, 140 7th Ave. South, St. Petersburg, FL 33701, USA;
| | - Sean S. Lastorka
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Mu J, Zhang Z, Jiang C, Geng H, Duan J. Role of Tau Protein Hyperphosphorylation in Diabetic Retinal Neurodegeneration. J Ophthalmol 2025; 2025:3278794. [PMID: 40109357 PMCID: PMC11922625 DOI: 10.1155/joph/3278794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 12/25/2024] [Accepted: 02/22/2025] [Indexed: 03/22/2025] Open
Abstract
Diabetic retinal neurodegeneration (DRN) is an early manifestation of diabetic retinopathy (DR) characterized by neurodegeneration that precedes microvascular abnormalities in the retina. DRN is characterized by apoptosis of retinal ganglion cells (involves alterations in retinal ganglion cells [RGCs], photoreceptors, amacrine cells and bipolar cells and so on), reactive gliosis, and reduced retinal neuronal function. Tau, a microtubule-associated protein, is a key mediator of neurotoxicity in neurodegenerative diseases, with functions in phosphorylation-dependent microtubule assembly and stabilization, axonal transport, and neurite outgrowth. The hyperphosphorylated tau (p-tau) loses its ability to bind to microtubules and aggregates to form paired helical filaments (PHFs), which further form neurofibrillary tangles (NFTs), leading to abnormal cell scaffolding and cell death. Studies have shown that p-tau can cause degeneration of RGCs in DR, making tau pathology a new pathophysiological model for DR. Here, we review the mechanisms by which p-tau contribute to DRN, including insulin resistance or lack of insulin, mitochondrial damage such as mitophagy impairment, mitochondrial axonal transport defects, mitochondrial bioenergetics dysfunction, and impaired mitochondrial dynamics, Abeta toxicity, and inflammation. Therefore, this article proposes that tau protein hyperphosphorylation plays a crucial role in the pathogenesis of DRN and may serve as a novel therapeutic target for combating DRN.
Collapse
Affiliation(s)
- Jingyu Mu
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Zengrui Zhang
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Chao Jiang
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Haoming Geng
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Alhadidy MM, Stemmer PM, Kanaan NM. O-GlcNAc modification differentially regulates microtubule binding and pathological conformations of tau isoforms in vitro. J Biol Chem 2025; 301:108263. [PMID: 39909381 PMCID: PMC11927755 DOI: 10.1016/j.jbc.2025.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Tau proteins undergo several posttranslational modifications in physiological and disease conditions. In Alzheimer's disease, O-GlcNAcylation modification of serine/threonine (S/T) residues in tau is reduced. In mouse models of tauopathy, O-GlcNAcase inhibitors lead to increased O-GlcNAcylation and decreased filamentous aggregates of tau. However, various nonfilamentous tau conformations, linked to toxicity and neurodegeneration in tauopathies, involve processes like oligomerization, misfolding, and greater exposure of the phosphatase-activating domain in the amino terminus of tau. Additionally, it is becoming clearer that posttranslational modifications may differently regulate tau pathobiology in an isoform-dependent manner. Therefore, it is crucial to investigate the effects of O-GlcNAcylation on nonfilamentous conformations of both the four-repeat (4R, e.g., hT40) and three-repeat (3R, e.g., hT39) tau isoforms. In this study, we assessed how O-GlcNAcylation impacts pathological tau conformations of the longest 4R and 3R tau isoforms (hT40 and hT39, respectively) using recombinant proteins. Mass spectrometry showed that tau is modified with O-GlcNAc at multiple S/T residues, primarily in the proline-rich domain and the C-terminal region. O-GlcNAcylation of hT40 and hT39 does not affect microtubule polymerization but has opposite effects on hT40 (increases) and hT39 (decreases) binding to preformed microtubules. Although O-GlcNAcylation interferes with forming filamentous hT40 aggregates, it does not alter the formation of pathological nonfilamentous tau conformations. On the other hand, O-GlcNAcylation increases the formation of pathological nonfilamentous hT39 conformations. These findings suggest that O-GlcNAcylation differentially modulates microtubule binding and the adoption of pathological tau conformations in the longest 4R and 3R tau isoforms.
Collapse
Affiliation(s)
- Mohammed M Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States; Neuroscience Program, Michigan State University, East Lansing, Michigan, United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States; Neuroscience Program, Michigan State University, East Lansing, Michigan, United States.
| |
Collapse
|
6
|
Paul PS, Rathnam M, Khalili A, Cortez LM, Srinivasan M, Planel E, Cho JY, Wille H, Sim VL, Mok SA, Kar S. Temperature-Dependent Aggregation of Tau Protein Is Attenuated by Native PLGA Nanoparticles Under in vitro Conditions. Int J Nanomedicine 2025; 20:1999-2019. [PMID: 39968061 PMCID: PMC11834738 DOI: 10.2147/ijn.s494104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Hyperphosphorylation and aggregation of the microtubule-associated tau protein, which plays a critical role in many neurodegenerative diseases (ie, tauopathies) including Alzheimer's disease (AD), are known to be regulated by a variety of environmental factors including temperature. In this study we evaluated the effects of FDA-approved poly (D,L-lactide-co-glycolic) acid (PLGA) nanoparticles, which can inhibit amyloid-β aggregation/toxicity in cellular/animal models of AD, on temperature-dependent aggregation of 0N4R tau isoforms in vitro. Methods We have used a variety of biophysical (Thioflavin T kinetics, dynamic light scattering and asymmetric-flow field-flow fractionation), structural (fluorescence imaging and transmission electron microscopy) and biochemical (Filter-trap assay and detection of soluble protein) approaches, to evaluate the effects of native PLGA nanoparticles on the temperature-dependent tau aggregation. Results Our results show that the aggregation propensity of 0N4R tau increases significantly in a dose-dependent manner with a rise in temperature from 27°C to 40°C, as measured by lag time and aggregation rate. Additionally, the aggregation of 2N4R tau increases in a dose-dependent manner. Native PLGA significantly inhibits tau aggregation at all temperatures in a concentration-dependent manner, possibly by interacting with the aggregation-prone hydrophobic hexapeptide motifs of tau. Additionally, native PLGA is able to trigger disassembly of preformed 0N4R tau aggregates as a function of temperature from 27°C to 40°C. Conclusion These results, taken together, suggest that native PLGA nanoparticles can not only attenuate temperature-dependent tau aggregation but also promote disassembly of preformed aggregates, which increased with a rise of temperature. Given the evidence that temperature can influence tau pathology, we believe that native PLGA may have a unique potential to regulate tau abnormalities associated with AD-related pathology.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Mallesh Rathnam
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Aria Khalili
- Quantum and Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta, Canada
| | - Leonardo M Cortez
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Mahalashmi Srinivasan
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, University of Laval, Quebec, Canada
| | - Jae-Young Cho
- Quantum and Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L Sim
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| |
Collapse
|
7
|
Dasari S, Kalyaanamoorthy S. Impact of Phosphorylation and O-GlcNAcylation on the Binding Affinity of R4 Tau Peptide to Microtubule and Its Conformational Preference upon Dissociation. J Chem Inf Model 2025; 65:1570-1584. [PMID: 39871444 DOI: 10.1021/acs.jcim.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Tau is a microtubule (MT)-associated protein that binds to and stabilizes the MTs of neurons. Due to its intrinsically disordered nature, it undergoes several post-translational modifications (PTMs) that are intricately linked to both the physiological and pathophysiological roles of Tau. Prior research has shown phosphorylation and O-GlcNAcylation to have contrasting effects on Tau aggregation; however, the precise molecular mechanisms and potential synergistic effects of these modifications remain elusive. In this article, we study the impact of phosphorylation at S352, and S356, as well as the phosphorylation of O-GlcNAcylation at S356, individually and in combination, on the binding of the R4 (336-367) peptide with MTs by performing classical molecular dynamics (MD) simulations. By analyzing the binding free energies of the Tau-MT complex, we found that both individual and combined phosphorylation at S352 and S356 sites decreased the affinity of the R4 peptide toward MT. Surprisingly, O-GlcNAcylation, a likely neuroprotective modification, at S356 also decreased the binding affinity of Tau to MT similar to the single phosphorylation systems (pS352 or pS356) but was observed to maintain major interactions with MT comparable to unmodified R4. Additionally, we investigated the impact of phosphorylation at both sites and the interplay between phosphorylation at S352 and O-GlcNAcylation at S356, which showed that the latter preserved the interactions and affinity of the Tau with MT better than dual phosphorylation, though still not as effectively as single phosphorylation. These findings suggest that O-GlcNAcylation at residue S356 has a moderate destabilizing effect. We also performed replica-exchange MD simulations of the R4 peptide to understand the changes in conformational preferences upon phosphorylation, O-GlcNAcylation, and a combination of both modifications. Both individual and combined phosphorylation of R4 peptide at S352, and S356, sites induced salt-bridge interactions with positively charged side chains of lysine and arginine amino acids. However, O-GlcNAcylation at S356 induced secondary structural changes on the R4 peptide, leading to the formation of a β-sheet structure, consistent with previous experimental observations. Interestingly, simultaneous phosphorylation at S352 and the phosphorylation of O-GlcNAcylation at S356 resulted in conformations promoting salt-bridges and β-sheets. Thus, our study provides atomistic insights into the impact of PTMs on the binding of Tau peptide to MT and its conformational preferences upon dissociation.
Collapse
Affiliation(s)
- Sathish Dasari
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Artificial Intelligence Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
8
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
9
|
Zhuang X, Lin J, Song Y, Ban R, Zhao X, Xia Z, Wang Z, Zhang G. The Interplay Between Accumulation of Amyloid-Beta and Tau Proteins, PANoptosis, and Inflammation in Alzheimer's Disease. Neuromolecular Med 2024; 27:2. [PMID: 39751702 DOI: 10.1007/s12017-024-08815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder, and the vast majority of cases occur in elderly patients. Recently, the accumulation of Aβ and tau proteins has drawn considerable attention in AD research. This review explores the multifaceted interactions between these proteins and their contribution to the pathological landscape of AD, encompassing synaptic dysfunction, neuroinflammation, and PANoptosis. PANoptosis is a collective term for programmed cell death (PCD) modalities that encompass elements of apoptosis, pyroptosis, and necroptosis. The accumulation of Aβ peptides and tau proteins, along with the immune response in brain cells, may trigger PANoptosis, thus advancing the progression of the disease. Recent advancements in molecular imaging and genetics have provided deeper insights into the interactions between Aβ peptides, tau proteins, and the immune response. The review also discusses the role of mitochondrial dysregulation in AD. The exploration of the interplay between neurodegeneration, immune responses, and cell death offers promising avenues for the development of innovative treatments.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Jie Lin
- School of Basic Medicine Sciences, Shandong University, Jinan, China
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Yamin Song
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, 250012, China.
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
10
|
Greally S, Kumar M, Schlaffner C, van der Heijden H, Lawton ES, Biswas D, Berretta S, Steen H, Steen JA. Dementia with lewy bodies patients with high tau levels display unique proteome profiles. Mol Neurodegener 2024; 19:98. [PMID: 39696638 DOI: 10.1186/s13024-024-00782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Clinical studies have long observed that neurodegenerative disorders display a range of symptoms and pathological features and, in some cases, overlap, suggesting that these diseases exist on a spectrum. Dementia with Lewy Bodies (DLB), a synucleinopathy, is a prominent example, where symptomatic similarities with tauopathy, Alzheimer's disease, are observed. Although tau pathology has been observed in DLB, the interplay between tau and α-synuclein is poorly understood at a molecular level. METHODS Quantitative mass spectrometry analysis was used to measure protein abundance in the insoluble fraction from cortical brain tissue from pathologically diagnosed DLB subjects (n = 30) and age-matched controls (n = 29). Using tau abundance, we stratified the DLB subjects into two subgroups termed DLBTau+ (higher abundance) and DLBTau- (lower abundance). We conducted proteomic analysis to characterize and compare the cortical proteome of DLB subjects exhibiting elevated tau, as well as the molecular modifications of tau and α-synuclein to explore the dynamic between tau and α-synuclein pathology in these patients. RESULTS Proteomic analyses revealed distinct global protein dysregulations in DLBTau+ and DLBTau- subjects when compared to controls. Notably, DLBTau+ patients exhibited increased levels of tau, along with ubiquitin, and APOE, indicative of cortical proteome alterations associated with elevated tau. Comparing DLBTau+ and DLBTau- groups, we observed significant upregulation of cytokine signaling and metabolic pathways in DLBTau- patients, while DLBTau+ subjects showed increases in protein ubiquitination processes and regulation of vesicle-mediated transport. Additionally, we examined the post-translational modification patterns of tau and α-synuclein. Our analysis revealed distinct phosphorylation and ubiquitination sites on α-synuclein between groups. Moreover, we observed increased modifications on tau specifically within the DLBTau+ subgroup. CONCLUSION This molecular-level data supports the idea of neurodegenerative disease as a continuum of diseases with distinct PTM profiles DLBTau+ and DLBTau- patients in comparison to AD. These findings further emphasize the importance of identifying specific and tailored therapeutic approaches targeting the involved proteopathies in the neurodegenerative disease spectrum.
Collapse
Affiliation(s)
- Sinead Greally
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christoph Schlaffner
- Digital Engineering Faculty, Hasso Plattner Institute, University of Potsdam, Potsdam, 14482, Germany
| | - Hanne van der Heijden
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elisabeth S Lawton
- Harvard Brain Tissue Resource Center (HBTRC), McLean Hospital, Belmont, MA, 02478, USA
| | - Deeptarup Biswas
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sabina Berretta
- Harvard Brain Tissue Resource Center (HBTRC), McLean Hospital, Belmont, MA, 02478, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Judith A Steen
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Powell W, Nahum M, Pankratz K, Herlory M, Greenwood J, Poliyenko D, Holland P, Jing R, Biggerstaff L, Stowell MHB, Walczak MA. Post-Translational Modifications Control Phase Transitions of Tau. ACS CENTRAL SCIENCE 2024; 10:2145-2161. [PMID: 39634209 PMCID: PMC11613296 DOI: 10.1021/acscentsci.4c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024]
Abstract
The self-assembly of Tau into filaments, which mirror the structures observed in Alzheimer's disease (AD) brains, raises questions about the role of AD-specific post-translational modifications (PTMs) in the formation of paired helical filaments (PHFs). To investigate this, we developed a synthetic approach to produce Tau(291-391) featuring N-acetyllysine, phosphoserine, phosphotyrosine, and N-glycosylation at positions commonly modified in post-mortem AD brains. Using various electron and optical microscopy techniques, we discovered that these modifications generally hinder the in vitro assembly of Tau into PHFs. Interestingly, while acetylation's effect on Tau assembly displayed variability, either promoting or inhibiting phase transitions in cofactor-free aggregation, heparin-induced aggregation, and RNA-mediated liquid-liquid phase separation (LLPS), phosphorylation uniformly mitigated these processes. Our observations suggest that PTMs, particularly those situated outside the rigid core, are pivotal in the nucleation of PHFs. Moreover, with heparin-induced aggregation leading to the formation of heterogeneous aggregates, most AD-specific PTMs appeared to decelerate aggregation. The impact of acetylation on RNA-induced LLPS was notably site-dependent, whereas phosphorylation consistently reduced LLPS across all proteoforms examined. These insights underscore the complex interplay between site-specific PTMs and environmental factors in modulating Tau aggregation kinetics, highlighting the role of PTMs located outside the ordered filament core in driving the self-assembly.
Collapse
Affiliation(s)
- Wyatt
C. Powell
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - McKinley Nahum
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Karl Pankratz
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Morgane Herlory
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - James Greenwood
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Darya Poliyenko
- Department
of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Patrick Holland
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Ruiheng Jing
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Luke Biggerstaff
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Michael H. B. Stowell
- Department
of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Maciej A. Walczak
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Di Lorenzo D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024; 19:e202400180. [PMID: 39031682 DOI: 10.1002/cmdc.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Tau, a microtubule-associated protein (MAP), is essential to maintaining neuronal stability and function in the healthy brain. However, aberrant modifications and pathological aggregations of Tau are implicated in various neurodegenerative disorders, collectively known as tauopathies. The most common Tauopathy is Alzheimer's Disease (AD) counting nowadays more than 60 million patients worldwide. This comprehensive review delves into the multifaceted realm of Tau protein, puzzling out its intricate involvement in both physiological and pathological roles. Emphasis is put on Tau Protein-Protein Interactions (PPIs), depicting its interaction with tubulin, microtubules and its cross-interaction with other proteins such as Aβ1-42, α-synuclein, and the chaperone machinery. In the realm of therapeutic strategies, an overview of diverse possibilities is presented with their relative clinical progresses. The focus is mostly addressed to Tau protein aggregation inhibitors including recent small molecules, short peptides and peptidomimetics with specific focus on compounds that showed a double anti aggregative activity on both Tau protein and Aβ amyloid peptide. This review amalgamates current knowledge on Tau protein and evolving therapeutic strategies, providing a comprehensive resource for researchers seeking to deepen their understanding of the Tau protein and for scientists involved in the development of new peptide-based anti-aggregative Tau compounds.
Collapse
Affiliation(s)
- Davide Di Lorenzo
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| |
Collapse
|
13
|
An X, He J, Xie P, Li C, Xia M, Guo D, Bi B, Wu G, Xu J, Yu W, Ren Z. The effect of tau K677 lactylation on ferritinophagy and ferroptosis in Alzheimer's disease. Free Radic Biol Med 2024; 224:685-706. [PMID: 39307193 DOI: 10.1016/j.freeradbiomed.2024.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and the accumulation of amyloid-beta plaques and hyperphosphorylated tau protein. The role of tau lactylation at the K677 site in AD progression is not well understood. This study explores how tau K677 lactylation affects ferritinophagy, ferroptosis, and their functions in an AD mouse model. Results show that mutating the K677 site to R reduces tau lactylation and inhibits ferroptosis by regulating iron metabolism factors like NCOA4 and FTH1.Tau-mutant mice showed improved memory and learning skills compared to wild-type mice. The mutation also reduced neuronal damage and was associated with decreased tau lactylation at the K677 site, regardless of phosphorylated tau levels. Gene set enrichment analysis showed that lactylation at this site was linked to the MAPK pathway, which was important for ferritinophagy in AD mice. In summary, our research indicates that the K677 mutation in tau protein may protect against AD by influencing ferritinophagy and ferroptosis through MAPK signaling pathways. Understanding these modifications in tau could lead to new treatments for AD.
Collapse
Affiliation(s)
- Xiaoqiong An
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China; Guizhou Provincial Center for Clinical Laboratory, Guiyang, 550002, PR China
| | - Peng Xie
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Chengpeng Li
- College of Pharmacy, Guizhou University, Guiyang, 550025, PR China
| | - Mingyan Xia
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Dongfen Guo
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China
| | - Bin Bi
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Gang Wu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guian New Area, 561113, PR China; Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guian New Area, 561113, PR China.
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550001, Guizhou, PR China; Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Zhenkui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, PR China.
| |
Collapse
|
14
|
Guo Y, Cai C, Zhang B, Tan B, Tang Q, Lei Z, Qi X, Chen J, Zheng X, Zi D, Li S, Tan J. Targeting USP11 regulation by a novel lithium-organic coordination compound improves neuropathologies and cognitive functions in Alzheimer transgenic mice. EMBO Mol Med 2024; 16:2856-2881. [PMID: 39394468 PMCID: PMC11555261 DOI: 10.1038/s44321-024-00146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
Alzheimer's Disease (AD), as the most common neurodegenerative disease worldwide, severely impairs patients' cognitive functions. Although its exact etiology remains unclear, the abnormal aggregations of misfolded β-amyloid peptide and tau protein are considered pivotal in its pathological progression. Recent studies identify ubiquitin-specific protease 11 (USP11) as the key regulator of tau deubiquitination, exacerbating tau aggregation and AD pathology. Thereby, inhibiting USP11 function, via either blocking USP11 activity or lowering USP11 protein level, may serve as an effective therapeutic strategy against AD. Our research introduces IsoLiPro, a unique lithium isobutyrate-L-proline coordination compound, effectively lowers USP11 protein level and enhances tau ubiquitination in vitro. Additionally, long-term oral administration of IsoLiPro dramatically reduces total and phosphorylated tau levels in AD transgenic mice. Moreover, IsoLiPro also significantly lessens β-amyloid deposition and synaptic damage, improving cognitive functions in these animal models. These results indicate that IsoLiPro, as a novel small-molecule USP11 inhibitor, can effectively alleviate AD-like pathologies and improve cognitive functions, offering promise as a potential multi-targeting therapeutic agent against AD.
Collapse
Affiliation(s)
- Yi Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chuanbin Cai
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Bingjie Zhang
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Bo Tan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qinmin Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Department of Pharmacy, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaojiang Zheng
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550025, Guizhou, China
| | - Song Li
- First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China.
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China.
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
15
|
Botella Lucena P, Heneka MT. Inflammatory aspects of Alzheimer's disease. Acta Neuropathol 2024; 148:31. [PMID: 39196440 DOI: 10.1007/s00401-024-02790-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Alzheimer´s disease (AD) stands out as the most common chronic neurodegenerative disorder. AD is characterized by progressive cognitive decline and memory loss, with neurodegeneration as its primary pathological feature. The role of neuroinflammation in the disease course has become a focus of intense research. While microglia, the brain's resident macrophages, have been pivotal to study central immune inflammation, recent evidence underscores the contributions of other cellular entities to the neuroinflammatory process. In this article, we review the inflammatory role of microglia and astrocytes, focusing on their interactions with AD's core pathologies, amyloid beta deposition, and tau tangle formation. Additionally, we also discuss how different modes of regulated cell death in AD may impact the chronic neuroinflammatory environment. This review aims to highlight the evolving landscape of neuroinflammatory research in AD and underscores the importance of considering multiple cellular contributors when developing new therapeutic strategies.
Collapse
Affiliation(s)
- Pablo Botella Lucena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
Xiang J, Chen J, Liu Y, Ye H, Han Y, Li P, Gao M, Huang Y. Tannic acid as a biphasic modulator of tau protein liquid-liquid phase separation. Int J Biol Macromol 2024; 275:133578. [PMID: 38960272 DOI: 10.1016/j.ijbiomac.2024.133578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Tannic acid (TA) is a natural polyphenol that shows great potential in the field of biomedicine due to its anti-inflammatory, anti-oxidant, anti-bacterial, anti-tumor, anti-virus, and neuroprotective activities. Recent studies have revealed that liquid-liquid phase separation (LLPS) is closely associated with protein aggregation. Therefore, modulating LLPS offers new insights into the treatment of neurodegenerative diseases. In this study, we investigated the influence of TA on the LLPS of the Alzheimer's-related protein tau and the underlying mechanism. Our findings indicate that TA affects the LLPS of tau in a biphasic manner, with initial promotion and subsequent suppression as the TA to tau molar ratio increases. TA modulates tau phase separation through a combination of hydrophobic interactions and hydrogen bonds. The balance between TA-tau and tau-tau interactions is found to be relevant to the material properties of TA-induced tau condensates. We further illustrate that the modulatory activity of TA in phase separation is highly dependent on the target proteins. These findings enhance our understanding of the forces driving tau LLPS under different conditions, and may facilitate the identification and optimization of compounds that can rationally modulate protein phase transition in the future.
Collapse
Affiliation(s)
- Jiani Xiang
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jingxin Chen
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yanqing Liu
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Haiqiong Ye
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yue Han
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
17
|
Li M, Zhang J, Li Z, Xu Z, Qian S, Tay LJ, Zhang Z, Yang F, Huang Y. The role and mechanism of SUMO modification in liver disease. Biomed Pharmacother 2024; 177:116898. [PMID: 38878635 DOI: 10.1016/j.biopha.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Liver disease affects millions of people in the world, and China has the highest prevalence of liver disease in the world. Small ubiquitin-related modifier (SUMO) modification is a highly conserved post-translational modification of proteins. They are widely expressed in a variety of tissues, including the heart, liver, kidney and lung. SUMOylation of protein plays a key role in the occurrence and development of liver disease. Therefore, this study reviewed the effects of SUMO protein on non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases to provide novel strategies for targeted treatment of liver disease.
Collapse
Affiliation(s)
- Mengxue Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Jingrong Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zihao Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhou Xu
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Shishun Qian
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Lynn Jia Tay
- School of International Education, Anhui Medical University, Hefei 230032, China
| | - Ziwen Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Furong Yang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; School of International Education, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
18
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
19
|
Powell WC, Nahum M, Pankratz K, Herlory M, Greenwood J, Poliyenko D, Holland P, Jing R, Biggerstaff L, Stowell MHB, Walczak MA. Post-Translational Modifications Control Phase Transitions of Tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583040. [PMID: 38559065 PMCID: PMC10979912 DOI: 10.1101/2024.03.08.583040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The self-assembly of Tau(297-391) into filaments, which mirror the structures observed in Alzheimer's disease (AD) brains, raises questions about the role of AD-specific post-translational modifications (PTMs) in the formation of paired helical filaments (PHFs). To investigate this, we developed a synthetic approach to produce Tau(291-391) featuring N-acetyllysine, phosphoserine, phosphotyrosine, and N-glycosylation at positions commonly modified in post-mortem AD brains, thus facilitating the study of their roles in Tau pathology. Using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and a range of optical microscopy techniques, we discovered that these modifications generally hinder the in vitro assembly of Tau into PHFs. Interestingly, while acetylation's effect on Tau assembly displayed variability, either promoting or inhibiting phase transitions in the context of cofactor free aggregation, heparin-induced aggregation, and RNA-mediated liquid-liquid phase separation (LLPS), phosphorylation uniformly mitigated these processes. Our observations suggest that PTMs, particularly those situated outside the fibril's rigid core are pivotal in the nucleation of PHFs. Moreover, in scenarios involving heparin-induced aggregation leading to the formation of heterogeneous aggregates, most AD-specific PTMs, except for K311, appeared to decelerate the aggregation process. The impact of acetylation on RNA-induced LLPS was notably site-dependent, exhibiting both facilitative and inhibitory effects, whereas phosphorylation consistently reduced LLPS across all proteoforms examined. These insights underscore the complex interplay between site-specific PTMs and environmental factors in modulating Tau aggregation kinetics, enhancing our understanding of the molecular underpinnings of Tau pathology in AD and highlighting the critical role of PTMs located outside the ordered filament core in driving the self-assembly of Tau into PHF structures.
Collapse
Affiliation(s)
- Wyatt C. Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - McKinley Nahum
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Karl Pankratz
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Morgane Herlory
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - James Greenwood
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Darya Poliyenko
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Patrick Holland
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Luke Biggerstaff
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael H. B. Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
20
|
Alhadidy MM, Kanaan NM. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein. Biochem Soc Trans 2024; 52:301-318. [PMID: 38348781 PMCID: PMC10903483 DOI: 10.1042/bst20230596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Tau protein is associated with many neurodegenerative disorders known as tauopathies. Aggregates of tau are thought of as a main contributor to neurodegeneration in these diseases. Increasingly, evidence points to earlier, soluble conformations of abnormally modified monomers and multimeric tau as toxic forms of tau. The biological processes driving tau from physiological species to pathogenic conformations remain poorly understood, but certain avenues are currently under investigation including the functional consequences of various pathological tau changes (e.g. mutations, post-translational modifications (PTMs), and protein-protein interactions). PTMs can regulate several aspects of tau biology such as proteasomal and autophagic clearance, solubility, and aggregation. Moreover, PTMs can contribute to the transition of tau from normal to pathogenic conformations. However, our understating of how PTMs specifically regulate the transition of tau into pathogenic conformations is partly impeded by the relative lack of structured frameworks to assess and quantify these conformations. In this review, we describe a set of approaches that includes several in vitro assays to determine the contribution of PTMs to tau's transition into known pathogenic conformations. The approaches begin with different methods to create recombinant tau proteins carrying specific PTMs followed by validation of the PTMs status. Then, we describe a set of biochemical and biophysical assays that assess the contribution of a given PTM to different tau conformations, including aggregation, oligomerization, exposure of the phosphatase-activating domain, and seeding. Together, these approaches can facilitate the advancement of our understanding of the relationships between PTMs and tau conformations.
Collapse
Affiliation(s)
- Mohammed M. Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
21
|
Shi H, Zhao Y. Modulation of Tau Pathology in Alzheimer's Disease by Dietary Bioactive Compounds. Int J Mol Sci 2024; 25:831. [PMID: 38255905 PMCID: PMC10815728 DOI: 10.3390/ijms25020831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tau is a microtubule-associated protein essential for microtubule assembly and stability in neurons. The abnormal intracellular accumulation of tau aggregates is a major characteristic of brains from patients with Alzheimer's disease (AD) and other tauopathies. In AD, the presence of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau protein, is positively correlated with the severity of the cognitive decline. Evidence suggests that the accumulation and aggregation of tau cause synaptic dysfunction and neuronal degeneration. Thus, the prevention of abnormal tau phosphorylation and elimination of tau aggregates have been proposed as therapeutic strategies for AD. However, currently tau-targeting therapies for AD and other tauopathies are limited. A number of dietary bioactive compounds have been found to modulate the posttranslational modifications of tau, including phosphorylation, small ubiquitin-like modifier (SUMO) mediated modification (SUMOylation) and acetylation, as well as inhibit tau aggregation and/or promote tau degradation. The advantages of using these dietary components over synthetic substances in AD prevention and intervention are their safety and accessibility. This review summarizes the mechanisms leading to tau pathology in AD and highlights the effects of bioactive compounds on the hyperphosphorylation, aggregation and clearance of tau protein. The potential of using these bioactive compounds for AD prevention and intervention is also discussed.
Collapse
Affiliation(s)
- Huahua Shi
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
22
|
Rahman MA, Rahman MDH, Rhim H, Kim B. Drug Target to Alleviate Mitochondrial Dysfunctions in Alzheimer's Disease: Recent Advances and Therapeutic Implications. Curr Neuropharmacol 2024; 22:1942-1959. [PMID: 39234772 PMCID: PMC11333791 DOI: 10.2174/1570159x22666240426091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is a severe progressive neurodegenerative condition associated with neuronal damage and reduced cognitive function that primarily affects the aged worldwide. While there is increasing evidence suggesting that mitochondrial dysfunction is one of the most significant factors contributing to AD, its accurate pathobiology remains unclear. Mitochondrial bioenergetics and homeostasis are impaired and defected during AD pathogenesis. However, the potential of mutations in nuclear or mitochondrial DNA encoding mitochondrial constituents to cause mitochondrial dysfunction has been considered since it is one of the intracellular processes commonly compromised in early AD stages. Additionally, electron transport chain dysfunction and mitochondrial pathological protein interactions are related to mitochondrial dysfunction in AD. Many mitochondrial parameters decline during aging, causing an imbalance in reactive oxygen species (ROS) production, leading to oxidative stress in age-related AD. Moreover, neuroinflammation is another potential causative factor in AD-associated mitochondrial dysfunction. While several treatments targeting mitochondrial dysfunction have undergone preclinical studies, few have been successful in clinical trials. Therefore, this review discusses the molecular mechanisms and different therapeutic approaches for correcting mitochondrial dysfunction in AD, which have the potential to advance the future development of novel drug-based AD interventions.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| |
Collapse
|
23
|
Kalyaanamoorthy S, Opare SK, Xu X, Ganesan A, Rao PPN. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology. Curr Alzheimer Res 2024; 21:24-49. [PMID: 38623984 DOI: 10.2174/0115672050301407240408033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.
Collapse
Affiliation(s)
| | - Stanley Kojo Opare
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Aravindhan Ganesan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Praveen P N Rao
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
24
|
Xie J, Quan L, Wang X, Wu H, Jin Z, Pan D, Chen T, Wu T, Lyu Q. DeepMPSF: A Deep Learning Network for Predicting General Protein Phosphorylation Sites Based on Multiple Protein Sequence Features. J Chem Inf Model 2023; 63:7258-7271. [PMID: 37931253 DOI: 10.1021/acs.jcim.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Phosphorylation, as one of the most important post-translational modifications, plays a key role in various cellular physiological processes and disease occurrences. In recent years, computer technology has been gradually applied to the prediction of protein phosphorylation sites. However, most existing methods rely on simple protein sequence features that provide limited contextual information. To overcome this limitation, we propose DeepMPSF, a phosphorylation site prediction model based on multiple protein sequence features. There are two types of features: sequence semantic features, which comprise protein residue type information and relative position information within protein sequence, and protein background biophysical features, which include global semantic information containing more comprehensive protein background information obtained from pretrained models. To extract these features, DeepMPSF employs two separate subnetworks: the S71SFE module and the BBFE module, which automatically extract high-level semantic features. Our model incorporates a learning strategy for handling imbalanced datasets through ensemble learning during training and prediction. DeepMPSF is trained and evaluated on a well-established dataset of human proteins. Comparing the analysis with other benchmark methods reveals that DeepMPSF outperforms in predicting both S/T residues and Y residues. In particular, DeepMPSF showed excellent generalization performance in cross-species blind test performance, with an average improvement of 5.63%/5.72%, 22.28%/25.94%, 20.11%/17.49%, and 26.40%/28.33% for Mus musculus/Rattus norvegicus test sets in area under curves (AUCs) of ROC curve, AUC of the PR curve, F1-score, and MCC metrics, respectively. Furthermore, it also shows excellent performance in the latest updated case of natural proteins with functional phosphorylation sites. Through an ablation study and visual analysis, we uncover that the design of different feature modules significantly contributes to the accurate classification of DeepMPSF, which provides valuable insights for predicting phosphorylation sites and offers effective support for future downstream research.
Collapse
Affiliation(s)
- Jingxin Xie
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Lijun Quan
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
- Province Key Lab for Information Processing Technologies, Soochow University, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
| | - Xuejiao Wang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Hongjie Wu
- Suzhou University of Science and Technology, Suzhou 215006, China
| | - Zhi Jin
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Deng Pan
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Taoning Chen
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Tingfang Wu
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
- Province Key Lab for Information Processing Technologies, Soochow University, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
| | - Qiang Lyu
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
- Province Key Lab for Information Processing Technologies, Soochow University, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
| |
Collapse
|
25
|
Gholami A. Alzheimer's disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neurosci Lett 2023; 817:137532. [PMID: 37866702 DOI: 10.1016/j.neulet.2023.137532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that affects the central nervous system (CNS), leading to memory and cognitive decline. In AD, the brain experiences three main structural changes: a significant decrease in the quantity of neurons, the development of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein, and the formation of amyloid beta (Aβ) or senile plaques, which are protein deposits found outside cells and surrounded by dystrophic neurites. Genetic studies have identified four genes associated with autosomal dominant or familial early-onset AD (FAD): amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2), and apolipoprotein E (ApoE). The formation of plaques primarily involves the accumulation of Aβ, which can be influenced by mutations in APP, PS1, PS2, or ApoE genes. Mutations in the APP and presenilin (PS) proteins can cause an increased amyloid β peptides production, especially the further form of amyloidogenic known as Aβ42. Apart from genetic factors, environmental factors such as cytokines and neurotoxins may also have a significant impact on the development and progression of AD by influencing the formation of amyloid plaques and intracellular tangles. Exploring the causes and implications of protein aggregation in the brain could lead to innovative therapeutic approaches. Some promising therapy strategies that have reached the clinical stage include using acetylcholinesterase inhibitors, estrogen, nonsteroidal anti-inflammatory drugs (NSAIDs), antioxidants, and antiapoptotic agents. The most hopeful therapeutic strategies involve inhibiting activity of secretase and preventing the β-amyloid oligomers and fibrils formation, which are associated with the β-amyloid fibrils accumulation in AD. Additionally, immunotherapy development holds promise as a progressive therapeutic approach for treatment of AD. Recently, the two primary categories of brain stimulation techniques that have been studied for the treatment of AD are invasive brain stimulation (IBS) and non-invasive brain stimulation (NIBS). In this article, the amyloid proteins that play a significant role in the AD formation, the mechanism of disease formation as well as new drugs utilized to treat of AD will be reviewed.
Collapse
Affiliation(s)
- Amirreza Gholami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
26
|
Davidson R, Krider RI, Borsellino P, Noorda K, Alhwayek G, Vida TA. Untangling Tau: Molecular Insights into Neuroinflammation, Pathophysiology, and Emerging Immunotherapies. Curr Issues Mol Biol 2023; 45:8816-8839. [PMID: 37998730 PMCID: PMC10670294 DOI: 10.3390/cimb45110553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation, a core pathological feature observed in several neurodegenerative diseases, including Alzheimer's disease (AD), is rapidly gaining attention as a target in understanding the molecular underpinnings of these disorders. Glial cells, endothelial cells, peripheral immune cells, and astrocytes produce a variety of pro-inflammatory mediators that exacerbate the disease progression. Additionally, microglial cells play a complex role in AD, facilitating the clearance of pathological amyloid-beta peptide (Aβ) plaques and aggregates of the tau protein. Tau proteins, traditionally associated with microtubule stabilization, have come under intense scrutiny for their perturbed roles in neurodegenerative conditions. In this narrative review, we focus on recent advances from molecular insights that have revealed aberrant tau post-translational modifications, such as phosphorylation and acetylation, serving as pathological hallmarks. These modifications also trigger the activation of CNS-resident immune cells, such as microglia and astrocytes substantially contributing to neuroinflammation. This intricate relationship between tau pathologies and neuroinflammation fosters a cascading impact on neural pathophysiology. Furthermore, understanding the molecular mechanisms underpinning tau's influence on neuroinflammation presents a frontier for the development of innovative immunotherapies. Neurodegenerative diseases have been relatively intractable to conventional pharmacology using small molecules. We further comprehensively document the many alternative approaches using immunotherapy targeting tau pathological epitopes and structures with a wide array of antibodies. Clinical trials are discussed using these therapeutic approaches, which have both promising and disappointing outcomes. Future directions for tau immunotherapies may include combining treatments with Aβ immunotherapy, which may result in more significant clinical outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (R.D.); (R.I.K.); (P.B.); (K.N.); (G.A.)
| |
Collapse
|
27
|
Goldtzvik Y, Sen N, Lam SD, Orengo C. Protein diversification through post-translational modifications, alternative splicing, and gene duplication. Curr Opin Struct Biol 2023; 81:102640. [PMID: 37354790 DOI: 10.1016/j.sbi.2023.102640] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Proteins provide the basis for cellular function. Having multiple versions of the same protein within a single organism provides a way of regulating its activity or developing novel functions. Post-translational modifications of proteins, by means of adding/removing chemical groups to amino acids, allow for a well-regulated and controlled way of generating functionally distinct protein species. Alternative splicing is another method with which organisms possibly generate new isoforms. Additionally, gene duplication events throughout evolution generate multiple paralogs of the same genes, resulting in multiple versions of the same protein within an organism. In this review, we discuss recent advancements in the study of these three methods of protein diversification and provide illustrative examples of how they affect protein structure and function.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neeladri Sen
- Department of Structural and Molecular Biology, University College London, London, United Kingdom. https://twitter.com/@NeeladriSen
| | - Su Datt Lam
- Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
28
|
Kyalu Ngoie Zola N, Balty C, Pyr Dit Ruys S, Vanparys AAT, Huyghe NDG, Herinckx G, Johanns M, Boyer E, Kienlen-Campard P, Rider MH, Vertommen D, Hanseeuw BJ. Specific post-translational modifications of soluble tau protein distinguishes Alzheimer's disease and primary tauopathies. Nat Commun 2023; 14:3706. [PMID: 37349319 PMCID: PMC10287718 DOI: 10.1038/s41467-023-39328-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Tau protein aggregates in several neurodegenerative disorders, referred to as tauopathies. The tau isoforms observed in post mortem human brain aggregates is used to classify tauopathies. However, distinguishing tauopathies ante mortem remains challenging, potentially due to differences between insoluble tau in aggregates and soluble tau in body fluids. Here, we demonstrated that tau isoforms differ between tauopathies in insoluble aggregates, but not in soluble brain extracts. We therefore characterized post-translational modifications of both the aggregated and the soluble tau protein obtained from post mortem human brain tissue of patients with Alzheimer's disease, cortico-basal degeneration, Pick's disease, and frontotemporal lobe degeneration. We found specific soluble signatures for each tauopathy and its specific aggregated tau isoforms: including ubiquitination on Lysine 369 for cortico-basal degeneration and acetylation on Lysine 311 for Pick's disease. These findings provide potential targets for future development of fluid-based biomarker assays able to distinguish tauopathies in vivo.
Collapse
Affiliation(s)
- Nathalie Kyalu Ngoie Zola
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Clémence Balty
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Sébastien Pyr Dit Ruys
- Universite catholique de Louvain (UClouvain) and Louvain Drug Research Institute (LDRI), Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), 1200, Brussels, Belgium
| | - Axelle A T Vanparys
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
| | - Nicolas D G Huyghe
- Université catholique de Louvain (UCLouvain) and Institut de Recherche Expérimentale et Clinique (IREC), 1200, Brussels, Belgium
| | - Gaëtan Herinckx
- Universite catholique de Louvain (UCLouvain), de Duve Institute (DDUV), and MASSPROT Platform, 1200, Brussels, Belgium
| | - Manuel Johanns
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Emilien Boyer
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
- Cliniques universitaires Saint-Luc, Neurology Department, 1200, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
| | - Mark H Rider
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Didier Vertommen
- Universite catholique de Louvain (UCLouvain), de Duve Institute (DDUV), and MASSPROT Platform, 1200, Brussels, Belgium
| | - Bernard J Hanseeuw
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium.
- Cliniques universitaires Saint-Luc, Neurology Department, 1200, Brussels, Belgium.
- Universite catholique de Louvain (UCLouvain), WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
- Harvard Medical School, Massachusetts General Hospital, Department of Radiology, Gordon Center for Medical Imaging, Boston, MA, USA.
| |
Collapse
|
29
|
Alka K, Kumar J, Kowluru RA. Impaired mitochondrial dynamics and removal of the damaged mitochondria in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1160155. [PMID: 37415667 PMCID: PMC10320727 DOI: 10.3389/fendo.2023.1160155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Mitochondrial dynamic plays a major role in their quality control, and the damaged mitochondrial components are removed by autophagy. In diabetic retinopathy, mitochondrial fusion enzyme, mitofusin 2 (Mfn2), is downregulated and mitochondrial dynamic is disturbed resulting in depolarized and dysfunctional mitochondria. Our aim was to investigate the mechanism of inhibition of Mfn2, and its role in the removal of the damaged mitochondria, in diabetic retinopathy. Methods Using human retinal endothelial cells, effect of high glucose (20mM) on the GTPase activity of Mfn2 and its acetylation were determined. Role of Mfn2 in the removal of the damaged mitochondria was confirmed by regulating its acetylation, or by Mfn2 overexpression, on autophagosomes- autolysosomes formation and the mitophagy flux. Results High glucose inhibited GTPase activity and increased acetylation of Mfn2. Inhibition of acetylation, or Mfn2 overexpression, attenuated decrease in GTPase activity and mitochondrial fragmentation, and increased the removal of the damaged mitochondria. Similar phenomenon was observed in diabetic mice; overexpression of sirtuin 1 (a deacetylase) ameliorated diabetes-induced inhibition of retinal Mfn2 and facilitated the removal of the damaged mitochondria. Conclusions Acetylation of Mfn2 has dual roles in mitochondrial homeostasis in diabetic retinopathy, it inhibits GTPase activity of Mfn2 and increases mitochondrial fragmentation, and also impairs removal of the damaged mitochondria. Thus, protecting Mfn2 activity should maintain mitochondrial homeostasis and inhibit the development/progression of diabetic retinopathy.
Collapse
Affiliation(s)
| | | | - Renu A. Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
30
|
Hao Z, Liu K, Zhou L, Chen P. Precious but convenient means of prevention and treatment: physiological molecular mechanisms of interaction between exercise and motor factors and Alzheimer's disease. Front Physiol 2023; 14:1193031. [PMID: 37362440 PMCID: PMC10285460 DOI: 10.3389/fphys.2023.1193031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Disproportionate to the severity of Alzheimer's disease (AD) and the huge number of patients, the exact treatment and prevention of AD is still being explored. With increasing ageing, the search for means to prevent and treat AD has become a high priority. In the search for AD, it has been suggested that exercise may be one of the more effective and less costly means of preventing and treating AD, and therefore a large part of current research is aimed at exploring the effectiveness of exercise in the prevention and treatment of AD. However, due to the complexity of the specific pathogenesis of AD, there are multiple hypotheses and potential mechanisms for exercise interventions in AD that need to be explored. This review therefore specifically summarises the hypotheses of the interaction between exercise and AD from a molecular perspective, based on the available evidence from animal models or human experiments, and explores them categorised according to the pathologies associated with AD: exercise can activate a number of signalling pathways inhibited by AD (e.g., Wnt and PI3K/Akt signalling pathways) and reactivate the effects of downstream factors regulated by these signalling pathways, thus acting to alleviate autophagic dysfunction, relieve neuroinflammation and mitigate Aβ deposition. In addition, this paper introduces a new approach to regulate the blood-brain barrier, i.e., to restore the stability of the blood-brain barrier, reduce abnormal phosphorylation of tau proteins and reduce neuronal apoptosis. In addition, this paper introduces a new concept." Motor factors" or "Exerkines", which act on AD through autocrine, paracrine or endocrine stimulation in response to movement. In this process, we believe there may be great potential for research in three areas: (1) the alleviation of AD through movement in the brain-gut axis (2) the prevention and treatment of AD by movement combined with polyphenols (3) the continued exploration of movement-mediated activation of the Wnt signalling pathway and AD.
Collapse
Affiliation(s)
- Zikang Hao
- Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China
| | - Kerui Liu
- Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai’an, Shandong, China
| | - Lu Zhou
- Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai’an, Shandong, China
| | - Ping Chen
- Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China
| |
Collapse
|
31
|
Li P, Chen J, Wang X, Su Z, Gao M, Huang Y. Liquid - liquid phase separation of tau: Driving forces, regulation, and biological implications. Neurobiol Dis 2023; 183:106167. [PMID: 37230179 DOI: 10.1016/j.nbd.2023.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023] Open
Abstract
The past 15 years have witnessed an explosion in the studies of biomolecular condensates that are implicated in numerous biological processes and play vital roles in human health and diseases. Recent findings demonstrate that the microtubule-associated protein tau forms liquid condensates through liquid-liquid phase separation (LLPS) in in vitro experiments using purified recombinant proteins and cell-based experiments. Although in vivo studies are lacking, liquid condensates have emerged as an important assembly state of physiological and pathological tau and LLPS can regulate the function of microtubules, mediate stress granule formation, and accelerate tau amyloid aggregation. In this review, we summarize recent advances in tau LLPS, aiming to unveiling the delicate interactions driving tau LLPS. We further discuss the association of tau LLPS with physiology and disease in the context of the sophisticated regulation of tau LLPS. Deciphering the mechanisms underlying tau LLPS and the liquid-to-solid transition enables rational design of molecules that inhibit or delay the formation of tau solid species, thus providing novel targeted therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Ping Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Jingxin Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xi Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
32
|
He X, Man VH, Gao J, Wang J. Investigation of the Structure of Full-Length Tau Proteins with Coarse-Grained and All-Atom Molecular Dynamics Simulations. ACS Chem Neurosci 2023; 14:209-217. [PMID: 36563129 PMCID: PMC10236889 DOI: 10.1021/acschemneuro.2c00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tau proteins not only have many important biological functions but also are associated with several neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease (AD). However, it is still a challenge to identify the atomic structure of full-length tau proteins due to their lengthy and disordered characteristics and the factor that there are no crystal structures of full-length tau proteins available. We performed multi- and large-scale molecular dynamics simulations of the full-length tau monomer (the 2N4R isoform and 441 residues) in aqueous solution under biological conditions with coarse-grained and all-atom force fields. The obtained atomic structures produced radii of gyration and chemical shifts that are in excellent agreement with those of experiment. The generated monomer structure ensemble would be very useful for further studying the oligomerization mechanism and discovering tau oligomerization inhibitors, which are important events in AD drug development.
Collapse
Affiliation(s)
- Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
33
|
Wang Y, Yang H, Geerts C, Furtos A, Waters P, Cyr D, Wang S, Mitchell GA. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors. Mol Genet Metab 2023; 138:106966. [PMID: 36528988 DOI: 10.1016/j.ymgme.2022.106966] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Acetyl-coenzyme A (Ac-CoA) is a core metabolite with essential roles throughout cell physiology. These functions can be classified into energetics, biosynthesis, regulation and acetylation of large and small molecules. Ac-CoA is essential for oxidative metabolism of glucose, fatty acids, most amino acids, ethanol, and of free acetate generated by endogenous metabolism or by gut bacteria. Ac-CoA cannot cross lipid bilayers, but acetyl groups from Ac-CoA can shuttle across membranes as part of carrier molecules like citrate or acetylcarnitine, or as free acetate or ketone bodies. Ac-CoA is the basic unit of lipid biosynthesis, providing essentially all of the carbon for the synthesis of fatty acids and of isoprenoid-derived compounds including cholesterol, coenzyme Q and dolichols. High levels of Ac-CoA in hepatocytes stimulate lipid biosynthesis, ketone body production and the diversion of pyruvate metabolism towards gluconeogenesis and away from oxidation; low levels exert opposite effects. Acetylation changes the properties of molecules. Acetylation is necessary for the synthesis of acetylcholine, acetylglutamate, acetylaspartate and N-acetyl amino sugars, and to metabolize/eliminate some xenobiotics. Acetylation is a major post-translational modification of proteins. Different types of protein acetylation occur. The most-studied form occurs at the epsilon nitrogen of lysine residues. In histones, lysine acetylation can alter gene transcription. Acetylation of other proteins has diverse, often incompletely-documented effects. Inborn errors related to Ac-CoA feature a broad spectrum of metabolic, neurological and other features. To date, a small number of studies of animals with inborn errors of CoA thioesters has included direct measurement of acyl-CoAs. These studies have shown that low levels of tissue Ac-CoA correlate with the development of clinical signs, hinting that shortage of Ac-CoA may be a recurrent theme in these conditions. Low levels of Ac-CoA could potentially disrupt any of its roles.
Collapse
Affiliation(s)
- Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Chloé Geerts
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Denis Cyr
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
34
|
Zhu Y, Gandy L, Zhang F, Liu J, Wang C, Blair LJ, Linhardt RJ, Wang L. Heparan Sulfate Proteoglycans in Tauopathy. Biomolecules 2022; 12:1792. [PMID: 36551220 PMCID: PMC9776397 DOI: 10.3390/biom12121792] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, and are characterized by intraneuronal tau inclusion in the brain and the patient's cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer's patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation. This review summarizes the current understanding of the functions and the modulated molecular pathways of heparan sulfate proteoglycans in tauopathies, as well as the implication of dysregulated heparan sulfate proteoglycan expression in tau pathology and the potential of targeting heparan sulfate proteoglycan-tau interaction as a novel therapeutic option.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lauren Gandy
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
35
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
36
|
Trumbore CN, Raghunandan A. An Alzheimer's Disease Mechanism Based on Early Pathology, Anatomy, Vascular-Induced Flow, and Migration of Maximum Flow Stress Energy Location with Increasing Vascular Disease. J Alzheimers Dis 2022; 90:33-59. [PMID: 36155517 DOI: 10.3233/jad-220622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper suggests a chemical mechanism for the earliest stages of Alzheimer's disease (AD). Cerebrospinal fluid (CSF) flow stresses provide the energy needed to induce molecular conformation changes leading to AD by initiating amyloid-β (Aβ) and tau aggregation. Shear and extensional flow stresses initiate aggregation in the laboratory and in natural biophysical processes. Energy-rich CSF flow regions are mainly found in lower brain regions. MRI studies reveal flow stress "hot spots" in basal cisterns and brain ventricles that have chaotic flow properties that can distort molecules such as Aβ and tau trapped in these regions into unusual conformations. Such fluid disturbance is surrounded by tissue deformation. There is strong mapping overlap between the locations of these hot spots and of early-stage AD pathology. Our mechanism creates pure and mixed protein dimers, followed by tissue surface adsorption, and long-term tissue agitation ultimately inducing chemical reactions forming more stable, toxic oligomer seeds that initiate AD. It is proposed that different flow stress energies and flow types in different basal brain regions produce different neurotoxic aggregates. Proliferating artery hardening is responsible for enhanced heart systolic pulses that drive energetic CSF pulses, whose critical maximum systolic pulse energy location migrates further from the heart with increasing vascular disease. Two glymphatic systems, carotid and basilar, are suggested to contain the earliest Aβ and tau AD disease pathologies. A key to the proposed AD mechanism is a comparison of early chronic traumatic encephalopathy and AD pathologies. Experiments that test the proposed mechanism are needed.
Collapse
Affiliation(s)
- Conrad N Trumbore
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Aditya Raghunandan
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|