1
|
Liao JX, Huang QM, Pan ZC, Wu J, Zhang WJ. The anti-inflammatory and immunomodulatory effects of olfactory ensheathing cells transplantation in spinal cord injury and concomitant pathological pain. Eur J Pharmacol 2024; 982:176950. [PMID: 39214270 DOI: 10.1016/j.ejphar.2024.176950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling injury that is often accompanied by neuropathic pain (NeP), which severely affects patients' motor and sensory functions and reduces their quality of life. Currently, there is no specific treatment for treating SCI and relieving the accompanying pain, and we can only rely on medication and physical rehabilitation, both of which are ineffective. Researchers have recently identified a novel class of glial cells, olfactory ensheathing cells (OECs), which originate from the olfactory system. Transplantation of OECs into damaged spinal cords has demonstrated their capacity to repair damaged nerves, improve the microenvironment at the point of injury, and They can also restore neural connectivity and alleviate the patient's NeP to a certain extent. Although the effectiveness of OECs transplantation has been confirmed in experiments, the specific mechanisms by which it repairs the spinal cord and relieves pain have not been articulated. Through a review of the literature, it has been established that the ability of OECs to repair and relieve pain is inextricably linked to its anti-inflammatory and immunomodulatory effects. In this regard, it is imperative to gain a deeper understanding of how OECs exert their anti-inflammatory and immunomodulatory effects. The objective of this paper is to provide a comprehensive overview of the mechanisms by which OECs exert anti-inflammatory and immunomodulatory effects. We aim to manipulate the immune microenvironment at the transplantation site through the intervention of cytokines and immune cells, with the goal of enhancing OECs' function or creating a conducive microenvironment for OECs' survival. This approach is expected to improve the therapeutic efficacy of OECs in clinical settings. However, numerous fundamental and clinical challenges remain to be addressed if OEC transplantation therapy is to become a standardized treatment in clinical practice.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qi-Ming Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Zhi-Cheng Pan
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Jie Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China.
| |
Collapse
|
2
|
Chang K, Lin L, Cui T, Zhao H, Li J, Liu C, Gao D, Lu S. Zinc-a2-Glycoprotein Acts as a Component of PNN to Protect Hippocampal Neurons from Apoptosis. Mol Neurobiol 2024; 61:3607-3618. [PMID: 38001359 DOI: 10.1007/s12035-023-03771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
In the adult mouse brain, perineuronal net (PNN), a highly structured extracellular matrix, surrounds subsets of neurons. The AZGP1 gene encodes zinc-2-glycoprotein (ZAG) is a lipid-mobilizing factor. However, its expression and distribution in the adult brain have been controversial. Here, for the first time, we demonstrate that the secreted ZAG is localized to Wisteria floribunda agglutinin (WFA)-positive PNNs around parvalbumin (PV)-expressing interneurons in the hippocampus, cortex, and a number of other PNN-bearing neurons and co-localizes with aggrecan, one of the components of PNNs. Few ZAG-positive nets were seen in the area without WFA staining by chondroitinase ABC (ChABC) which degrades glycosaminoglycans (GAGs) from the chondroitin sulfate proteoglycans (CSPGs) in the PNN. Reanalysis of single-cell sequencing data revealed that ZAG mRNA was mainly expressed in oligodendrocyte lineages, specifically in olfactory sheathing cells. The ZAG receptor β3 adrenergic receptor (β3AR) is also selectively co-localized with PV interneurons and CA2 pyramidal neurons in the hippocampus. In addition, molecular docking provides valuable new insights on how GAGs interfere with ZAG and ZAG/β3AR complex. Finally, our results indicated that human recombinant ZAG could significantly inhibit serum derivation-induced cell apoptosis in HT22 cells. Our combined experimental and theoretical approach raises a unique hypothesis namely that ZAG may be a crucial functional attribute of PNNs in the brain to protect neuronal cell from apoptosis.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hao Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jiaxin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Chang Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Liu MC, Guo QF, Zhang WW, Luo HL, Zhang WJ, Hu HJ. Olfactory ensheathing cells as candidate cells for chronic pain treatment. J Chem Neuroanat 2024; 137:102413. [PMID: 38492895 DOI: 10.1016/j.jchemneu.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.
Collapse
Affiliation(s)
- Mei-Chen Liu
- The Second Clinical Medical College, Nanchang University, China
| | - Qing-Fa Guo
- The Second Clinical Medical College, Nanchang University, China
| | - Wei-Wei Zhang
- The Second Clinical Medical College, Nanchang University, China
| | - Hong-Liang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Jun Hu
- Anesthesiology Department, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Liao JX, Zhu FQ, Liu YY, Liu SC, Liu ZX, Zhang WJ. The role of olfactory ensheathing cells in the repair of nerve injury. Eur J Pharmacol 2024; 966:176346. [PMID: 38246329 DOI: 10.1016/j.ejphar.2024.176346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Zeng-Xu Liu
- School of Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
5
|
Li H, Yin Z, Yue S, An Y, Wang X, Zhou S, Meng L, Jin B. Effect of valproic acid combined with transplantation of olfactory ensheathing cells modified by neurotrophic 3 gene on nerve protection and repair after traumatic brain injury. Neuropeptides 2024; 103:102389. [PMID: 37945445 DOI: 10.1016/j.npep.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) often leads to cognitive and neurological dysfunction. Valproic acid (VPA) has a neuroprotective effect in acute central nervous system diseases; the neurotrophin 3 gene (NT-3) can maintain the survival of neurons, and olfactory ensheathing cells (OECs) can promote the growth of nerve axons. This study aimed to evaluate the restorative effect of VPA combined with NT-3 modified OECs (NT-3-OECs) on neurological function after TBI. METHODS The neurological severity score (NSS) of rats was evaluated on the 1st, 7th, 14th, and 28th day after TBI modeling and corresponding intervention. Hematoxylin-eosin (HE) staining, p75 nerve growth factor receptor (P75), glial fibrillary acidic protein (GFAP), and neurofilament protein (NF)staining, and argyrophilic staining were used to observe the morphology of brain tissue 28 days after modeling. Moreover, TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptosis rate of neurons. The changes in synapses and mitochondria in the injured area were observed by electron microscope. RESULTS NT-3-OECs transplantation can increase the content of NT-3 in brain tissue, and NT-3-OECs can survive for >28 days. The NSS score of the TBI-VPA-NT-3-OECs group 28 days after cell transplantation was significantly lower than that of the other model treatment groups (P < 0.05). The morphological structure of the brain tissue was more complete, and the neurofilament fibers were neatly arranged, achieving better results than those of the other groups. The apoptosis rate of nerve cells in the TBI-VPA-NT-3-OECs group was significantly lower than in the other treatment groups (P < 0.05). Furthermore, the number of synapses in the combined intervention group was significantly higher than in the other treatment groups, and the mitochondrial structure was more complete. CONCLUSION NT-3-OECs have good biological function, and VPA combined with NT-3-OECs transplantation can effectively improve the prognosis of TBI rats.
Collapse
Affiliation(s)
- Haiming Li
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Zhijie Yin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Shuangzhu Yue
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Yunying An
- Department of Clinical Laboratory, Xinxiang Central Hospital, Xinxiang 453000, Henan, China
| | - Xiaoyin Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Shifang Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Lei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Baozhe Jin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| |
Collapse
|
6
|
Liu Y, Wang Y, Wang Y, Zhou J, Ding W. The growth status and functions of olfactory ensheathing cells cultured on randomly oriented and aligned type-I-collagen-based nanofibrous scaffolds. NANOTECHNOLOGY 2023; 35:035101. [PMID: 37905427 DOI: 10.1088/1361-6528/ad02a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Aim. The potential of olfactory ensheathing cells (OECs) as a cell therapy for spinal cord reconstruction and regeneration after injury has drawn significant attention in recent years. This study attempted to investigate the influences of nano-fibrous scaffolds on the growth status and functional properties of OECs.Methods.The ultra-morphology of the scaffolds was visualized using scanning electron microscopy (SEM). To culture OECs, donated cells were subcultured and identified with p75. Cell proliferation, apoptosis, and survival rates were measured through MTT assay, Annexin-V/PI staining, and p75 cell counting, respectively. The adhesion of cells cultured on scaffolds was observed using SEM. Additionally, the functions of OECs cultured on scaffolds were assessed by testing gene expression levels through real time polymerase chain reaction.Results.The electrospun type I collagen-based nano-fibers exhibited a smooth surface and uniform distribution. It was indicated that the proliferation and survival rates of OECs cultured on both randomly oriented and aligned type I collagen-based nano-fibrous scaffolds were higher than those observed in the collagen-coated control. Conversely, apoptosis rates were lower in cells cultured on scaffolds. Furthermore, OEC adhesion was better on the scaffolds than on the control. The expression levels of target genes were significantly elevated in cells cultured on scaffolds versus the controls.Conclusion.As a whole, the utilization of aligned collagen nanofibers has demonstrated significant advantages in promoting cell growth and improving cell function. These findings have important implications for the field of regenerative medicine and suggest that the approach may hold promise for the future therapeutic applications.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, People's Republic of China
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, 056002, People's Republic of China
| | - Yansong Wang
- Department of Spine Surgery, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Ying Wang
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, 056002, People's Republic of China
| | - Jihui Zhou
- Department of Spine Surgery, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Wenyuan Ding
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, People's Republic of China
| |
Collapse
|
7
|
Zhang LP, Liao JX, Liu YY, Luo HL, Zhang WJ. Potential therapeutic effect of olfactory ensheathing cells in neurological diseases: neurodegenerative diseases and peripheral nerve injuries. Front Immunol 2023; 14:1280186. [PMID: 37915589 PMCID: PMC10616525 DOI: 10.3389/fimmu.2023.1280186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Neurological diseases are destructive, mainly characterized by the failure of endogenous repair, the inability to recover tissue damage, resulting in the increasing loss of cognitive and physical function. Although some clinical drugs can alleviate the progression of these diseases, but they lack therapeutic effect in repairing tissue injury and rebuilding neurological function. More and more studies have shown that cell therapy has made good achievements in the application of nerve injury. Olfactory ensheathing cells (OECs) are a special type of glial cells, which have been proved to play an important role as an alternative therapy for neurological diseases, opening up a new way for the treatment of neurological problems. The functional mechanisms of OECs in the treatment of neurological diseases include neuroprotection, immune regulation, axon regeneration, improvement of nerve injury microenvironment and myelin regeneration, which also include secreted bioactive factors. Therefore, it is of great significance to better understand the mechanism of OECs promoting functional improvement, and to recognize the implementation of these treatments and the effective simulation of nerve injury disorders. In this review, we discuss the function of OECs and their application value in the treatment of neurological diseases, and position OECs as a potential candidate strategy for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Li-peng Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- The Second Affiliated hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jun-xiang Liao
- The Second Affiliated hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-yi Liu
- The Second Affiliated hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hong-lang Luo
- The Second Affiliated hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|