1
|
Li H, Liu J, Lai J, Su X, Wang X, Cao J, Mao S, Zhang T, Gu Q. The HHEX-ABI2/SLC17A9 axis induces cancer stem cell-like properties and tumorigenesis in HCC. J Transl Med 2024; 22:537. [PMID: 38844969 PMCID: PMC11155165 DOI: 10.1186/s12967-024-05324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
Accumulating evidence indicated that HHEX participated in the initiation and development of several cancers, but the potential roles and mechanisms of HHEX in hepatocellular carcinoma (HCC) were largely unclear. Cancer stem cells (CSCs) are responsible for cancer progression owing to their stemness characteristics. We reported that HHEX was a novel CSCs target for HCC. We found that HHEX was overexpressed in HCC tissues and high expression of HHEX was associated with poor survival. Subsequently, we found that HHEX promoted HCC cell proliferation, migration, and invasion. Moreover, bioinformatics analysis and experiments verified that HHEX promoted stem cell-like properties in HCC. Mechanistically, ABI2 serving as a co-activator of transcriptional factor HHEX upregulated SLC17A9 to promote HCC cancer stem cell-like properties and tumorigenesis. Collectively, the HHEX-mediated ABI2/SLC17A9 axis contributes to HCC growth and metastasis by maintaining the CSC population, suggesting that HHEX serves as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Huizi Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Jin Liu
- Department of Radiology, University of California, San Diego, The, USA
| | - Jie Lai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinyao Su
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiaqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengxun Mao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Tong Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Actuated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China.
- Department of General Surgery, School of Medicine, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China.
- Department of Organ Transplantation, School of Medicine, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Qiuping Gu
- Department of Gastroenterology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, People's Republic of China.
| |
Collapse
|
2
|
Xu Z, Feng Y, Yan Y, Jin H, Chen Y, Han Y, Huang S, Feng F, Fu H, Yin Y, Huang Y, Wang H, Cheng W. HHEX suppresses advanced thyroid cancer by interacting with TLE3. Mol Cell Endocrinol 2023; 574:111988. [PMID: 37302518 DOI: 10.1016/j.mce.2023.111988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Haematopoietically Expressed Homeobox (HHEX) gene is highly expressed in the thyroid gland and plays critical roles in the development and differentiation of the thyroid gland. While it has been indicated to be downregulated in thyroid cancer, its function and the underlying mechanism remain unclear. Herein, we observed low expression and aberrant cytoplasmic localization of HHEX in thyroid cancer cell lines. Knockdown of HHEX significantly enhanced cell proliferation, migration and invasion, while overexpression of HHEX showed the opposite effects in vitro and in vivo. These data provide evidence that HHEX is a tumor suppressor in thyroid cancer. Additionally, our results showed that HHEX overexpression upregulated the expression of sodium iodine symporter (NIS) mRNA and also enhanced NIS promoter activity, suggesting a favorable effect of HHEX in promoting thyroid cancer differentiation. Mechanistically, HHEX exerted a regulatory effect on the expression of transducin-like enhancer of split 3 (TLE3) protein, which inhibited the Wnt/β-catenin signaling pathway. Nuclear localized HHEX bound to and upregulated TLE3 expression by preventing TLE3 protein from being distributed to the cytoplasm and being ubiquitinated. In conclusion, our study suggested that restoring HHEX expression has the potential to be a new strategy in the treatment of advanced thyroid cancer.
Collapse
Affiliation(s)
- Zhongyun Xu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yiyuan Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yeqing Yan
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Hongfu Jin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yali Han
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Shuo Huang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Fang Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Hongliang Fu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yueye Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Reolizo LM, Williams H, Wadey K, Frankow A, Li Z, Gaston K, Jayaraman PS, Johnson JL, George SJ. Inhibition of Intimal Thickening By PRH (Proline-Rich Homeodomain) in Mice. Arterioscler Thromb Vasc Biol 2023; 43:456-473. [PMID: 36700427 PMCID: PMC9944393 DOI: 10.1161/atvbaha.122.318367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Late vein graft failure is caused by intimal thickening resulting from endothelial cell (EC) damage and inflammation which promotes vascular smooth muscle cell (VSMC) dedifferentiation, migration, and proliferation. Nonphosphorylatable PRH (proline-rich homeodomain) S163C:S177C offers enhanced stability and sustained antimitotic effect. Therefore, we investigated whether adenovirus-delivered PRH S163C:S177C protein attenuates intimal thickening via VSMC phenotype modification without detrimental effects on ECs. METHODS PRH S163C:S177C was expressed in vitro (human saphenous vein-VSMCs and human saphenous vein-ECs) and in vivo (ligated mouse carotid arteries) by adenoviruses. Proliferation, migration, and apoptosis were quantified and phenotype was assessed using Western blotting for contractile filament proteins and collagen gel contraction. EC inflammation was quantified using VCAM (vascular cell adhesion protein)-1, ICAM (intercellular adhesion molecule)-1, interleukin-6, and monocyte chemotactic factor-1 measurement and monocyte adhesion. Next Generation Sequencing was utilized to identify novel downstream mediators of PRH action and these and intimal thickening were investigated in vivo. RESULTS PRH S163C:S177C inhibited proliferation, migration, and apoptosis and promoted contractile phenotype (enhanced contractile filament proteins and collagen gel contraction) compared with virus control in human saphenous vein-VSMCs. PRH S163C:S177C expression in human saphenous vein-ECs significantly reduced apoptosis, without affecting cell proliferation and migration, while reducing TNF (tumor necrosis factor)-α-induced VCAM-1 and ICAM-1 and monocyte adhesion and suppressing interleukin-6 and monocyte chemotactic factor-1 protein levels. PRH S163C:S177C expression in ligated murine carotid arteries significantly impaired carotid artery ligation-induced neointimal proliferation and thickening without reducing endothelial coverage. Next Generation Sequencing revealed STAT-1 (signal transducer and activator of transcription 1) and HDAC-9 (histone deacetylase 9) as mediators of PRH action and was supported by in vitro and in vivo analyses. CONCLUSIONS We observed PRH S163C:S177C attenuated VSMC proliferation, and migration and enhanced VSMC differentiation at least in part via STAT-1 and HDAC-9 signaling while promoting endothelial repair and anti-inflammatory properties. These findings highlight the potential for PRH S163C:S177C to preserve endothelial function whilst suppressing intimal thickening, and reducing late vein graft failure.
Collapse
Affiliation(s)
- Lien M. Reolizo
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Helen Williams
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kerry Wadey
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Aleksandra Frankow
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Ze Li
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kevin Gaston
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Padma-Sheela Jayaraman
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Jason L. Johnson
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Sarah J. George
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| |
Collapse
|
5
|
Yamazaki K, Kato T, Tsuboi Y, Miyauchi E, Suda W, Sato K, Nakajima M, Yokoji-Takeuchi M, Yamada-Hara M, Tsuzuno T, Matsugishi A, Takahashi N, Tabeta K, Miura N, Okuda S, Kikuchi J, Ohno H, Yamazaki K. Oral Pathobiont-Induced Changes in Gut Microbiota Aggravate the Pathology of Nonalcoholic Fatty Liver Disease in Mice. Front Immunol 2021; 12:766170. [PMID: 34707622 PMCID: PMC8543001 DOI: 10.3389/fimmu.2021.766170] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background & Aims Periodontitis increases the risk of nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanisms are unclear. Here, we show that gut dysbiosis induced by oral administration of Porphyromonas gingivalis, a representative periodontopathic bacterium, is involved in the aggravation of NAFLD pathology. Methods C57BL/6N mice were administered either vehicle, P. gingivalis, or Prevotella intermedia, another periodontopathic bacterium with weaker periodontal pathogenicity, followed by feeding on a choline-deficient, l-amino acid-defined, high-fat diet with 60 kcal% fat and 0.1% methionine (CDAHFD60). The gut microbial communities were analyzed by pyrosequencing the 16S ribosomal RNA genes. Metagenomic analysis was used to determine the relative abundance of the Kyoto Encyclopedia of Genes and Genomes pathways encoded in the gut microbiota. Serum metabolites were analyzed using nuclear magnetic resonance-based metabolomics coupled with multivariate statistical analyses. Hepatic gene expression profiles were analyzed via DNA microarray and quantitative polymerase chain reaction. Results CDAHFD60 feeding induced hepatic steatosis, and in combination with bacterial administration, it further aggravated NAFLD pathology, thereby increasing fibrosis. Gene expression analysis of liver samples revealed that genes involved in NAFLD pathology were perturbed, and the two bacteria induced distinct expression profiles. This might be due to quantitative and qualitative differences in the influx of bacterial products in the gut because the serum endotoxin levels, compositions of the gut microbiota, and serum metabolite profiles induced by the ingested P. intermedia and P. gingivalis were different. Conclusions Swallowed periodontopathic bacteria aggravate NAFLD pathology, likely due to dysregulation of gene expression by inducing gut dysbiosis and subsequent influx of gut bacteria and/or bacterial products.
Collapse
Affiliation(s)
- Kyoko Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yuuri Tsuboi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keisuke Sato
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mayuka Nakajima
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji-Takeuchi
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Miki Yamada-Hara
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Tsuzuno
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aoi Matsugishi
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Medical AI Center, Niigata University School of Medicine, Niigata, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
6
|
Yaglova NV, Tsomartova DA, Obernikhin SS, Nazimova SV, Ivanova MY, Chereshneva EV, Yaglov VV, Lomanovskaya TA. Transcription factors β-catenin and Hex in postnatal development of the rat adrenal cortex: implication in proliferation control. Heliyon 2021; 7:e05932. [PMID: 33490685 PMCID: PMC7809185 DOI: 10.1016/j.heliyon.2021.e05932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Transcriptional regulation of growth, maturation, and cell turnover in adrenal cortex during postnatal development has been significantly less studied than in embryonic period, while elucidation of factors mediating its normal postnatal morphogenesis could clarify mechanisms of tumorigenesis in adrenal cortex. Expression of transcription factors Hex, β-catenin, and Wnt signaling in the adrenal cortex of male pubertal and postpubertal Wistar rats were examined. Adrenal cortex morphology and hormone production during postnatal development were also studied. Adrenocortical zones demonstrated similar reduction of Ki-67-expressing cells, but different patterns of morphological and functional changes. Age-dependent decrease in percentage of cells with membrane localization of β-catenin and stable rate of cells with nuclear β-catenin, indicative of Wnt signaling activation, were revealed in each cortical zone. Nuclear β-catenin was not observed in immature areas of zona fasciculata. No association between Wnt signaling activation and rates of proliferation as well as changes in secretion of adrenocortical hormones was observed in postnatal development of rat adrenal cortex. Hex, known as antiproliferative factor, showed up-regulation of expression after puberty. Strong inverse correlations between ratio of Hex-positive cells and proliferating cells were found in zona glomerulosa and zona fasciculata. Zona reticularis demonstrated moderate correlation. Thus, these findings suggest a role for Hex in proliferation control during postnatal development of the rat adrenal cortex and possible implication of Hex down-regulation in adrenocortical dysplasia and neoplasia, which requires further study. Evaluation of Hex expression may also be considered a potent tool in assessment of cell proliferation in rat adrenal cortex.
Collapse
Affiliation(s)
- Natalya V Yaglova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Dibakhan A Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia.,Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey S Obernikhin
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Svetlana V Nazimova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Marina Y Ivanova
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elizaveta V Chereshneva
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valentin V Yaglov
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Tatiana A Lomanovskaya
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Zhang K, Zhao Q, Li Z, Fu F, Zhang H, Fu J, Zheng M, Zhang S. Clinicopathological Significances of Cancer Stem Cell-Associated HHEX Expression in Breast Cancer. Front Cell Dev Biol 2020; 8:605744. [PMID: 33425911 PMCID: PMC7785851 DOI: 10.3389/fcell.2020.605744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the transcription factor hematopoietic ally expressed homeobox/proline-rich homeodomain (HHEX/PRH) is implicated in numerous cancers. However, the association of HHEX with breast cancer (BC) remains unclear. In this study, HHEX mRNA and protein expression were analyzed using the Oncomine, UALCAN, GEPIA, TCGAportal, and HPA databases. We evaluated the effect of HHEX on clinicopathological parameters using Kaplan-Meier plotter, OncoLnc, TCGAportal, PROGgeneV2, and BC-GenExMiner. Western blotting was performed to compare the level of HHEX in breast samples of Tientsin Albino 2 mice, human breast precancerous lesions, benign breast tumors, and BC. The correlation between HHEX and cancer stem cells was investigated using the GEO (GSE52327 and GSE94865) and GEPIA datasets. Networks between HHEX and survival-related gene marker sets and microRNAs were analyzed using GEPIA, StarBase, and Cytoscape. Results of this study showed that HHEX expression in BC was significantly lower than those in breast precancerous lesions and benign breast tumors at both mRNA and protein levels. BC patients with lower HHEX expression had significantly worse overall survival and disease-free survival. Moreover, HHEX significantly affected the clinicopathology of BC. Specifically, low HHEX expression was correlated with the following groups of patients: age ≤51 years, ER-negative or PR-negative patients, HER-2 positive, triple-negative breast cancer, and basal-like BC. Immunohistochemical analysis of the breast samples showed significant differences of HHEX staining index (P < 0.001) among the three groups. To further investigate the mechanism, we determined the intersection of differentially expressed genes related to BC stem cells and those genes after HHEX expression was altered. This led to the identification of four potentially regulated genes-CXL12, BLNK, PAG1, and LPXN. Using StarBase and km-plotter, the negative regulation of HHEX expression and survival trends, including miR-130b, miR-30e, and miR-301b were joined into miRNA-HHEX-mRNA potential regulatory network. The abilities of proliferation, migration and invasion increased in MDA-MB-231 and BT-549 breast cancer cell lines after HHEX down expression and decreased after HHEX overexpression compared them in the control cells. In conclusion, these data suggest that HHEX expression is downregulated in BC and HHEX may regulate the development of BC through the stem cell-related genes.
Collapse
Affiliation(s)
- Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Nankai University School of Medicine, Nankai University, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
8
|
Liu J, Nie S, Li S, Meng H, Sun R, Yang J, Cheng W. Methylation-driven genes and their prognostic value in cervical squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:868. [PMID: 32793712 DOI: 10.21037/atm-19-4577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Abnormal gene methylation is crucial for tumor progression. This study explored a cluster of methylation-driven genes involved in cervical squamous cell carcinoma (CESC). Methods The data on RNA expression, methylation and clinical outcomes of CESC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Protein-protein interaction (PPI) network was constructed. Gene Ontology (GO) and KEGG analyses were performed to identify the biological functions of methylation-driven genes, and univariable and multivariate Cox analyses to screen out the key prognostic genes. A risk signature was established and its predictive value was evaluated with Kaplan-Meier and ROC curves. The key genes were further investigated by Cox regression analyses, gene set enrichment analysis (GSEA), and methylation site analysis. Additionally, "rms" package was used for establishing nomogram and calibrate curve. Results We found 144 differentially expressed methylation-driven genes. A risk model was constructed with three key prognostic genes (ITGA5, HHEX and S1PR4). The risk score was an independent risk factor for CESC prognosis. Lowly-expressed and hypermethylated ITGA5, highly-expressed and hypomethylated HHEX and S1PR4 were associated with better CESC prognosis. The methylation sites and biological functions enriched in ITGA5, HHEX and S1PR4 were uncovered. Additionally, the nomogram also validated the performance of risk model. Conclusions Methylation-driven ITGA5, HHEX and S1PR4 are associated with CESC development. The three genes might serve as potential targets in the treatment of CESC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sipei Nie
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyue Li
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huangyang Meng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Sun
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Blood platelets stimulate cancer extravasation through TGFβ-mediated downregulation of PRH/HHEX. Oncogenesis 2020; 9:10. [PMID: 32019914 PMCID: PMC7000753 DOI: 10.1038/s41389-020-0189-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells go through a process known as epithelial–mesenchymal transition (EMT) during which they acquire the ability to migrate and invade extracellular matrix. Some cells also acquire the ability to move across a layer of endothelial cells to enter and exit the bloodstream; intra- and extravasation, respectively. The transcription factor PRH/HHEX (proline-rich homeodomain/haematopoietically expressed homeobox) controls cell proliferation and cell migration/invasion in a range of cell types. Our previous work showed that PRH activity is downregulated in prostate cancer cells owing to increased inhibitory PRH phosphorylation and that this increases cell proliferation and invasion. PRH inhibits migration and invasion by prostate and breast epithelial cells in part by activating the transcription of Endoglin, a transforming growth factor β (TGFβ) co-receptor. Here we show that depletion of PRH in immortalised prostate epithelial cells results in increased extravasation in vitro. We show that blood platelets stimulate extravasation of cells with depleted PRH and that inhibition of TGFβ signalling blocks the effects of platelets on these cells. Moreover, TGFβ induces changes characteristic of EMT including decreased E-Cadherin expression and increased Snail expression. We show that in prostate cells PRH regulates multiple genes involved in EMT and TGFβ signalling. However, both platelets and TGFβ increase PRH phosphorylation. In addition, TGFβ increases binding of its effector pSMAD3 to the PRH/HHEX promoter and downregulates PRH protein and mRNA levels. Thus, TGFβ signalling downregulates PRH activity by multiple mechanisms and induces an EMT that facilitates extravasation and sensitises cells to TGFβ.
Collapse
|
10
|
Kitchen P, Lee KY, Clark D, Lau N, Lertsuwan J, Sawasdichai A, Satayavivad J, Oltean S, Afford S, Gaston K, Jayaraman PS. A Runaway PRH/HHEX-Notch3-Positive Feedback Loop Drives Cholangiocarcinoma and Determines Response to CDK4/6 Inhibition. Cancer Res 2019; 80:757-770. [PMID: 31843982 DOI: 10.1158/0008-5472.can-19-0942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/16/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Aberrant Notch and Wnt signaling are known drivers of cholangiocarcinoma (CCA), but the underlying factors that initiate and maintain these pathways are not known. Here, we show that the proline-rich homeodomain protein/hematopoietically expressed homeobox (PRH/HHEX) transcription factor forms a positive transcriptional feedback loop with Notch3 that is critical in CCA. PRH/HHEX expression is elevated in CCA, and depletion of PRH reduces CCA tumor growth in a xenograft model. Overexpression of PRH in primary human biliary epithelial cells is sufficient to increase cell proliferation and produce an invasive phenotype. Interrogation of the gene networks regulated by PRH and Notch3 reveals that unlike Notch3, PRH directly activates canonical Wnt signaling. These data indicate that hyperactivation of Notch and Wnt signaling is independent of the underlying mutational landscape and has a common origin in dysregulation of PRH. Moreover, they suggest new therapeutic options based on the dependence of specific Wnt, Notch, and CDK4/6 inhibitors on PRH activity. SIGNIFICANCE: The PRH/HHEX transcription factor is an oncogenic driver in cholangiocarcinoma that confers sensitivity to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Philip Kitchen
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ka Ying Lee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Danielle Clark
- Department of Biochemistry, Medical School, University of Bristol, Bristol, United Kingdom
| | - Nikki Lau
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jomnarong Lertsuwan
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Anyaporn Sawasdichai
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Simon Afford
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Padma-Sheela Jayaraman
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
11
|
Pradhan D, Jour G, Milton D, Vasudevaraja V, Tetzlaff MT, Nagarajan P, Curry JL, Ivan D, Long L, Ding Y, Ezhilarasan R, Sulman EP, Diab A, Hwu WJ, Prieto VG, Torres-Cabala CA, Aung PP. Aberrant DNA Methylation Predicts Melanoma-Specific Survival in Patients with Acral Melanoma. Cancers (Basel) 2019; 11:cancers11122031. [PMID: 31888295 PMCID: PMC6966546 DOI: 10.3390/cancers11122031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Acral melanoma (AM) is a rare, aggressive type of cutaneous melanoma (CM) with a distinct genetic profile. We aimed to identify a methylome signature distinguishing primary acral lentiginous melanoma (PALM) from primary non-lentiginous AM (NALM), metastatic ALM (MALM), primary non-acral CM (PCM), and acral nevus (AN). A total of 22 PALM, nine NALM, 10 MALM, nine PCM, and three AN were subjected to genome-wide methylation analysis using the Illumina Infinium Methylation EPIC array interrogating 866,562 CpG sites. A prominent finding was that the methylation profiles of PALM and NALM were distinct. Four of the genes most differentially methylated between PALM and NALM or MALM were HHEX, DIPK2A, NELFB, and TEF. However, when primary AMs (PALM + NALM) were compared with MALM, IFITM1 and SIK3 were the most differentially methylated, highlighting their pivotal role in the metastatic potential of AMs. Patients with NALM had significantly worse disease-specific survival (DSS) than patients with PALM. Aberrant methylation was significantly associated with aggressive clinicopathologic parameters and worse DSS. Our study emphasizes the importance of distinguishing the two epigenetically distinct subtypes of AM. We also identified novel epigenetic prognostic biomarkers that may serve to risk-stratify patients with AM and may be leveraged for the development of targeted therapies.
Collapse
Affiliation(s)
- Dinesh Pradhan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
| | - George Jour
- Department of Pathology and Dermatology, NYU Langone Medical Center, New York, NY 10016, USA; (G.J.); (V.V.)
| | - Denái Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Varshini Vasudevaraja
- Department of Pathology and Dermatology, NYU Langone Medical Center, New York, NY 10016, USA; (G.J.); (V.V.)
| | - Michael T. Tetzlaff
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
| | - Jonathan L. Curry
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Doina Ivan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lihong Long
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yingwen Ding
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, NY 10016, USA; (Y.D.); (R.E.); (E.P.S.)
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, NY 10016, USA; (Y.D.); (R.E.); (E.P.S.)
| | - Erik P. Sulman
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, NY 10016, USA; (Y.D.); (R.E.); (E.P.S.)
| | - Adi Diab
- Department of Melanoma Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.D.); (W.-J.H.)
| | - Wen-Jen Hwu
- Department of Melanoma Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.D.); (W.-J.H.)
| | - Victor G. Prieto
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Antonio Torres-Cabala
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (C.A.T.-C.); (P.P.A.); Tel.: +713-752-2351 (C.A.T.-C.); +713-794-4951 (P.P.A.)
| | - Phyu P. Aung
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Correspondence: (C.A.T.-C.); (P.P.A.); Tel.: +713-752-2351 (C.A.T.-C.); +713-794-4951 (P.P.A.)
| |
Collapse
|
12
|
Homeobox Genes and Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11050621. [PMID: 31058850 PMCID: PMC6562709 DOI: 10.3390/cancers11050621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, and is the third leading cause of cancer-related deaths each year. It involves a multi-step progression and is strongly associated with chronic inflammation induced by the intake of environmental toxins and/or viral infections (i.e., hepatitis B and C viruses). Although several genetic dysregulations are considered to be involved in disease progression, the detailed regulatory mechanisms are not well defined. Homeobox genes that encode transcription factors with homeodomains control cell growth, differentiation, and morphogenesis in embryonic development. Recently, more aberrant expressions of Homeobox genes were found in a wide variety of human cancer, including HCC. In this review, we summarize the currently available evidence related to the role of Homeobox genes in the development of HCC. The objective is to determine the roles of this conserved transcription factor family and its potential use as a therapeutic target in future investigations.
Collapse
|
13
|
Proline-Rich Homeodomain protein (PRH/HHEX) is a suppressor of breast tumour growth. Oncogenesis 2017; 6:e346. [PMID: 28604763 PMCID: PMC5519192 DOI: 10.1038/oncsis.2017.42] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/23/2017] [Accepted: 04/20/2017] [Indexed: 12/27/2022] Open
Abstract
Breast tumours progress from hyperplasia to ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). PRH/HHEX (proline-rich homeodomain/haematopoietically expressed homeobox) is a transcription factor that displays both tumour suppressor and oncogenic activity in different disease contexts; however, the role of PRH in breast cancer is poorly understood. Here we show that nuclear localization of the PRH protein is decreased in DCIS and IBC compared with normal breast. Our previous work has shown that PRH phosphorylation by protein kinase CK2 prevents PRH from binding to DNA and regulating the transcription of multiple genes encoding growth factors and growth factor receptors. Here we show that transcriptionally inactive phosphorylated PRH is elevated in DCIS and IBC compared with normal breast. To determine the consequences of PRH loss of function in breast cancer cells, we generated inducible PRH depletion in MCF-7 cells. We show that PRH depletion results in increased MCF-7 cell proliferation in part at least due to increased vascular endothelial growth factor signalling. Moreover, we demonstrate that PRH depletion increases the formation of breast cancer cells with cancer stem cell-like properties. Finally, and in keeping with these findings, we show that PRH overexpression inhibits the growth of mammary tumours in mice. Collectively, these data indicate that PRH plays a tumour suppressive role in the breast and they provide an explanation for the finding that low PRH mRNA levels are associated with a poor prognosis in breast cancer.
Collapse
|
14
|
Abstract
Primary sclerosing cholangitis (PSC) is a chronic disease leading to fibrotic scarring of the intrahepatic and extrahepatic bile ducts, causing considerable morbidity and mortality via the development of cholestatic liver cirrhosis, concurrent IBD and a high risk of bile duct cancer. Expectations have been high that genetic studies would determine key factors in PSC pathogenesis to support the development of effective medical therapies. Through the application of genome-wide association studies, a large number of disease susceptibility genes have been identified. The overall genetic architecture of PSC shares features with both autoimmune diseases and IBD. Strong human leukocyte antigen gene associations, along with several susceptibility genes that are critically involved in T-cell function, support the involvement of adaptive immune responses in disease pathogenesis, and position PSC as an autoimmune disease. In this Review, we survey the developments that have led to these gene discoveries. We also elaborate relevant interpretations of individual gene findings in the context of established disease models in PSC, and propose relevant translational research efforts to pursue novel insights.
Collapse
|
15
|
Bresler SC, Min L, Rodig SJ, Walls AC, Xu S, Geng S, Hodi FS, Murphy GF, Lian CG. Gene expression profiling of anti-CTLA4-treated metastatic melanoma in patients with treatment-induced autoimmunity. J Transl Med 2017; 97:207-216. [PMID: 27918555 DOI: 10.1038/labinvest.2016.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 12/28/2022] Open
Abstract
Ipilimumab (IPI) is a monoclonal antibody that targets the inhibitory CTLA4 receptor of T cells, enhancing T-cell-driven antitumor responses. IPI therapy in metastatic melanoma results in significant improvement in disease-free and overall survival, although after initial responses disease progression generally ensues. Identification of specific responses in tissue where melanoma tumor cells are subjected to IPI-driven immune attack may reveal mechanisms of treatment efficacy or resistance, permitting refinement of targeted therapeutic approaches. We used NanoString digital barcoding chemistry to identify changes in the transcriptome of metastatic melanoma cells before and after IPI treatment using two comprehensive panels containing a total of 1330 unique genes. Only patients who developed autoimmune disorders following treatment, signifying a robust immune response, were included. Despite evidence of an enhanced immune response, most patients eventually exhibited disease progression. Overall, data from five pre-IPI tumors and four post-IPI tumor samples (from three patients) permitted identification of several candidate genes that showed increased expression based on normalized counts after therapy. These included TTK (~3.1-fold, P=1.18e-4), which encodes a dual-specificity protein tyrosine kinase, a known cell cycle regulator, and BIRC5 (~3.0-fold, P=9.36e-4), which encodes the antiapoptotic protein survivin. Both TTK (MPS1) and survivin are targetable proteins against which a number of pharmacologic agents have been developed. CDK1, which encodes a protein tyrosine kinase known to phosphorylate survivin, was also upregulated (~3.2-fold, P=2.80-3). Tumor cell expression of TTK and survivin proteins was confirmed using immunohistochemistry in an expanded patient cohort. Differences in gene expression for several commonly encountered immune antigens, such as CD3, CD4, CD8, and CTLA4, were not statistically significant, likely reflecting the long length of time (average 323 days) between the last IPI dose and post-treatment biopsies. Although our sample size is limited, these results for the first time identify targetable genes that are significantly altered by interaction between a highly activated, IPI-treated immune system and melanoma cells.
Collapse
Affiliation(s)
- Scott C Bresler
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Le Min
- Harvard Medical School, Boston, MA, USA.,Endocrinology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott J Rodig
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Andrew C Walls
- Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shuyun Xu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Songmei Geng
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - F Stephen Hodi
- Harvard Medical School, Boston, MA, USA.,Dana Farber Cancer Institute, Boston, MA, USA
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Barber A, Farmer K, Martin KR, Smith PD. Retinal regeneration mechanisms linked to multiple cancer molecules: A therapeutic conundrum. Prog Retin Eye Res 2016; 56:19-31. [PMID: 27586058 DOI: 10.1016/j.preteyeres.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022]
Abstract
Over the last decade, a large number of research articles have been published demonstrating regeneration and/or neuroprotection of retinal ganglion cells following manipulation of specific genetic and molecular targets. Interestingly, of the targets that have been identified to promote repair following visual system damage, many are genes known to be mutated in different types of cancer. This review explores recent literature on the potential for modulating cancer genes as a therapeutic strategy for visual system repair and looks at the potential clinical challenges associated with implementing this type of therapy. We also discuss signalling mechanisms that have been implicated in cancer and consider how similar mechanisms may improve axonal regeneration in the optic nerve.
Collapse
Affiliation(s)
- Amanda Barber
- John van Geest Centre for Brain Repair, University of Cambridge, UK
| | - Kyle Farmer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Keith R Martin
- John van Geest Centre for Brain Repair, University of Cambridge, UK; Medical Research Council - Wellcome Trust Cambridge Stem Cell Institute, Cambridge, UK; Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
17
|
Gaston K, Tsitsilianos MA, Wadey K, Jayaraman PS. Misregulation of the proline rich homeodomain (PRH/HHEX) protein in cancer cells and its consequences for tumour growth and invasion. Cell Biosci 2016; 6:12. [PMID: 26877867 PMCID: PMC4752775 DOI: 10.1186/s13578-016-0077-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
The proline rich homeodomain protein (PRH), also known as haematopoietically expressed homeobox (HHEX), is an essential transcription factor in embryonic development and in the adult. The PRH protein forms oligomeric complexes that bind to tandemly repeated PRH recognition sequences within or at a distance from PRH-target genes and recruit a variety of PRH-interacting proteins. PRH can also bind to other transcription factors and co-regulate specific target genes either directly through DNA binding, or indirectly through effects on the activity of its partner proteins. In addition, like some other homeodomain proteins, PRH can regulate the translation of specific mRNAs. Altered PRH expression and altered PRH intracellular localisation, are associated with breast cancer, liver cancer and thyroid cancer and some subtypes of leukaemia. This is consistent with the involvement of multiple PRH-interacting proteins, including the oncoprotein c-Myc, translation initiation factor 4E (eIF4E), and the promyelocytic leukaemia protein (PML), in the control of cell proliferation and cell survival. Similarly, multiple PRH target genes, including the genes encoding vascular endothelial growth factor (VEGF), VEGF receptors, Endoglin, and Goosecoid, are known to be important in the control of cell proliferation and cell survival and/or the regulation of cell migration and invasion. In this review, we summarise the evidence that implicates PRH in tumourigenesis and we review the data that suggests PRH levels could be useful in cancer prognosis and in the choice of treatment options.
Collapse
Affiliation(s)
- Kevin Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | | | - Kerry Wadey
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | - Padma-Sheela Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|