1
|
Imyanitov EN, Kuligina ES, Sokolenko AP, Suspitsin EN, Yanus GA, Iyevleva AG, Ivantsov AO, Aleksakhina SN. Hereditary cancer syndromes. World J Clin Oncol 2023; 14:40-68. [PMID: 36908677 PMCID: PMC9993141 DOI: 10.5306/wjco.v14.i2.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Hereditary cancer syndromes (HCSs) are arguably the most frequent category of Mendelian genetic diseases, as at least 2% of presumably healthy subjects carry highly-penetrant tumor-predisposing pathogenic variants (PVs). Hereditary breast-ovarian cancer and Lynch syndrome make the highest contribution to cancer morbidity; in addition, there are several dozen less frequent types of familial tumors. The development of the majority albeit not all hereditary malignancies involves two-hit mechanism, i.e. the somatic inactivation of the remaining copy of the affected gene. Earlier studies on cancer families suggested nearly fatal penetrance for the majority of HCS genes; however, population-based investigations and especially large-scale next-generation sequencing data sets demonstrate that the presence of some highly-penetrant PVs is often compatible with healthy status. Hereditary cancer research initially focused mainly on cancer detection and prevention. Recent studies identified multiple HCS-specific drug vulnerabilities, which translated into the development of highly efficient therapeutic options.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Ekaterina S Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Evgeny N Suspitsin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Grigoriy A Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Alexandr O Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| |
Collapse
|
2
|
Tsyganov MM, Tsydenova IA, Markovich VA, Ibragimova MK, Rodionov EO, Tuzikov SA, Litvyakov NV. Expression heterogeneity of ABC-transporter family genes and chemosensitivity genes in gastric tumor, carcinomatosis and lymph node metastases. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-78-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. Metastatic tumors (particularly gastric cancer) have been found to be characterized by heterogeneity between the primary tumor and metastases. This type of heterogeneity comes to the fore when treating primary-metastatic forms of tumor and is an important reason for the low effectiveness of their treatment. In this regard, comparative analysis of ABC-transporter gene expression and chemosensitivity genes will allow to characterize to a certain extent the resistance and sensitivity of primary tumor, carcinomatosis and metastases to therapy and provide the basis for personalized treatment approach.Aim. To evaluate expression heterogeneity of ABC-transporter genes and chemosensitivity genes in gastric tumor, carcinomatosis and lymph node metastases.Materials and methods. Overall 41 patients with disseminated gastric cancer stage IV with carcinomatosis of peritoneum were included in the investigation. All patients underwent surgery according to Roux palliative gastrectomy. After surgery patients underwent chemotherapy depending on indications. RNA was isolated using RNeasy Plus mini kit (Qiagen, Germany). The expression level of ABC transporter genes (ABCB1, ABCC1, ABCC2, ABCC5, ABCG1, ABCG2) and chemosensitivity genes (BRCA1, RRM1, ERCC1, TOP1, TOP2α, TUBβ3, TYMS, GSTP1) was assessed by reverse transcription polymerase chain reaction (RT-PCR) in primary tumor, carcinomatosis and lymph node metastases.Results. The expression levels of the genes under study were shown to vary widely. For ABC transporter genes, ABCG1 (3.1 ± 1.1; max 32.0), ABCG2 (7.9 ± 2.3; max 54.1), ABCG2 (9.6 ± 3.8; max 101.0) were the most expressed genes in gastric tumor tissue, carcinomatosis and lymph node metastasis, respectively. Hyperexpression among chemosensitivity genes at all three sites was characteristic only of TOP2α (17.2 ± 6.0; max. 161.9; 10.8 ± 4.1; max. 105.1; 35.3 ± 0.8; max. 439.6, respectively). We found that TOP2α and BRCA1 gene expression levels were higher in lymph node metastasis compared with gastric tumor tissue and carcinomatosis (at p = 0.005 and p = 0.001). Whereas ABCC1 gene expression was statistically significantly higher in carcinomatosis (p = 0.03).Conclusion. Thus, a high level of expression heterogeneity is observed in gastric cancer, which affects the expression patterns of various genes in different localizations. The expression profile can be used to determine the level of heterogeneity and approach to personalized therapy tactics.
Collapse
Affiliation(s)
- M. M. Tsyganov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University, Ministry of Health of Russia
| | - I. A. Tsydenova
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - V. A. Markovich
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - M. K. Ibragimova
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University, Ministry of Health of Russia; National Research Tomsk State University
| | - E. O. Rodionov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - S. A. Tuzikov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - N. V. Litvyakov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| |
Collapse
|
3
|
Gastric Cancer Risk and Pathogenesis in BRCA1 and BRCA2 Carriers. Cancers (Basel) 2022; 14:cancers14235953. [PMID: 36497436 PMCID: PMC9736932 DOI: 10.3390/cancers14235953] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Carriers of a pathogenic germline variant (PV) in BRCA1 or BRCA2 are at increased risk for a number of malignancies, including breast, ovarian, pancreatic, and prostate cancer. In this review, we discuss emerging evidence that BRCA2 PV carriers, and likely also BRCA1 PV carriers, are also at increased risk for gastric cancer (GC), highlighting that GC may be part of the BRCA1/2 cancer risk spectrum. While the pathogenesis of GC among BRCA1/2 PV carriers remains unclear, increasing evidence reveals that GCs are often enriched with mutations in homologous recombination-associated genes such as BRCA1/2, and that GC prognosis and response to certain therapies can depend on BRCA1/2 expression. Given the strength of data published to date, a risk management strategy for GC among BRCA1/2 PV carriers is needed, and herein we also propose a potential strategy for GC risk management in this population. Moving forward, further study is clearly warranted to define the mechanistic relationship between BRCA1/2 PVs and development of GC as well as to determine how GC risk management should be factored into the clinical care of BRCA1/2 carriers.
Collapse
|
4
|
Imyanitov EN, Iyevleva AG. Molecular tests for prediction of tumor sensitivity to cytotoxic drugs. Cancer Lett 2022; 526:41-52. [PMID: 34808283 DOI: 10.1016/j.canlet.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022]
Abstract
Chemotherapy constitutes the backbone of cancer treatment. Several predictive assays assist personalized administration of cytotoxic drugs and are recommended for use in a clinical setting. The deficiency of DNA repair by homologous recombination (HRD), which is caused by inactivation of BRCA1/2 genes or other genetic events, is associated with high tumor responsiveness to platinum compounds, bifunctional alkylating agents and topoisomerase II poisons. Low activity of MGMT predicts the efficacy of nitrosoureas and tetrazines. Some clinically established pharmacogenetic tests allow for the adjustment of drug dosage, for example, the analysis of DPYD allelic variants for administration of fluoropyrimidines and UGT1A1 genotyping for the use of irinotecan. While there are promising molecular predictors of tumor sensitivity to pemetrexed, gemcitabine and taxanes, they remain in the investigational stage and require additional validation. Comprehensive molecular analysis of tumors obtained from drug responders and non-responders is likely to reveal new clinically useful predictive markers for cytotoxic therapy.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia.
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia
| |
Collapse
|
5
|
Radmilović Varga L, Dedić Plavetić N, Podolski P, Mijatović D, Kulić A, Vrbanec D. PROGNOSTIC VALUE OF TOPOISOMERASE 2-ALPHA AND B-MYB IN EARLY BREAST CANCER TREATED WITH ADJUVANT CHEMOTHERAPY. Acta Clin Croat 2021; 60:16-24. [PMID: 34588717 PMCID: PMC8305358 DOI: 10.20471/acc.2021.60.01.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/12/2021] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is the most common malignancy in females. Despite its well-established prognostic factors, our prognostic ability at an individual patient level remains limited. In this study, the immunohistochemical expression of B-Myb and DNA topoisomerase 2-alpha (Topo2a) was analyzed in primary tumors to identify patients with a higher risk of disease recurrence after adjuvant chemotherapy for early invasive breast cancer. We analyzed a cohort of 215 early invasive breast cancer patients having undergone surgery from 2002 to 2003 at the Zagreb University Hospital Centre, including 153 patients treated with adjuvant chemotherapy. All of them were followed-up prospectively for at least ten years according to routine institutional practice. Statistically significant correlations were found between B-Myb and Topo2a expression levels and particular well-established prognostic factors. B-Myb expression was lower in estrogen receptor (ER)-positive tumors (p=0.0773), whereas larger tumors and those with positive lymphovascular invasion displayed a statistically significantly higher B-Myb expression (p=0.0409 and p=0.0196). Higher tumor grade indicated higher Topo2a values (p=0.0102 and p=0.0069). The subgroup with the expression of both proteins above the median value had an almost statistically significantly (p=0.0613) inferior prognosis compared to the rest of the cohort. Study results showed the B-Myb and Topo2a expression to have a prognostic value in breast cancer patients after adjuvant chemotherapy, which should be additionally explored in future studies in a larger patient cohort.
Collapse
Affiliation(s)
| | - Natalija Dedić Plavetić
- 1Department of Pulmonology, Varaždin General Hospital, Klenovnik, Croatia; 2Department of Oncology, Division of Medical Oncology, Zagreb University Hospital Centre, Zagreb, Croatia; 3School of Medicine, University of Zagreb, Zagreb, Croatia; 4Department of Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 5Department of Pathophysiology, Zagreb University Hospital Centre, Zagreb, Croatia; 6Juraj Dobrila University of Pula, Pula, Croatia
| | - Paula Podolski
- 1Department of Pulmonology, Varaždin General Hospital, Klenovnik, Croatia; 2Department of Oncology, Division of Medical Oncology, Zagreb University Hospital Centre, Zagreb, Croatia; 3School of Medicine, University of Zagreb, Zagreb, Croatia; 4Department of Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 5Department of Pathophysiology, Zagreb University Hospital Centre, Zagreb, Croatia; 6Juraj Dobrila University of Pula, Pula, Croatia
| | - Davor Mijatović
- 1Department of Pulmonology, Varaždin General Hospital, Klenovnik, Croatia; 2Department of Oncology, Division of Medical Oncology, Zagreb University Hospital Centre, Zagreb, Croatia; 3School of Medicine, University of Zagreb, Zagreb, Croatia; 4Department of Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 5Department of Pathophysiology, Zagreb University Hospital Centre, Zagreb, Croatia; 6Juraj Dobrila University of Pula, Pula, Croatia
| | - Ana Kulić
- 1Department of Pulmonology, Varaždin General Hospital, Klenovnik, Croatia; 2Department of Oncology, Division of Medical Oncology, Zagreb University Hospital Centre, Zagreb, Croatia; 3School of Medicine, University of Zagreb, Zagreb, Croatia; 4Department of Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 5Department of Pathophysiology, Zagreb University Hospital Centre, Zagreb, Croatia; 6Juraj Dobrila University of Pula, Pula, Croatia
| | - Damir Vrbanec
- 1Department of Pulmonology, Varaždin General Hospital, Klenovnik, Croatia; 2Department of Oncology, Division of Medical Oncology, Zagreb University Hospital Centre, Zagreb, Croatia; 3School of Medicine, University of Zagreb, Zagreb, Croatia; 4Department of Surgery, Zagreb University Hospital Centre, Zagreb, Croatia; 5Department of Pathophysiology, Zagreb University Hospital Centre, Zagreb, Croatia; 6Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
6
|
Avanesyan AA, Sokolenko AP, Ivantsov AO, Kleshchev MA, Maydin MA, Bizin IV, Raskin GA, Shelekhova KV, Gorodnova TV, Bessonov AA, Anisimova EI, Volynshchikova OA, Romanko AA, Ni VI, Broyde RV, Tkachenko OB, Whitehead AJ, Scherbakov AM, Imyanitov EN. Gastric Cancer in BRCA1 Germline Mutation Carriers: Results of Endoscopic Screening and Molecular Analysis of Tumor Tissues. Pathobiology 2020; 87:367-374. [PMID: 33161400 DOI: 10.1159/000511323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION There is some evidence suggesting a link between BRCA1/2 germline mutations and increased risk of gastric cancer. METHODS Endoscopic screening for stomach malignancies was performed in 120 BRCA1 mutation carriers in order to evaluate the probability of detecting the tumor disease. RESULTS No instances of gastric cancer were revealed at the first visit. The analysis of atrophic changes performed by OLGA (Operative Link for Gastritis Assessment) criteria revealed that OLGA stages I-IV alterations were observed in 26 of 41 (63%) subjects aged >50 years as compared to 29 of 79 (37%) in younger subjects (p = 0.007, χ2 test). One BRCA1 mutation carrier developed gastric cancer 4 years after the first visit for endoscopic examination. We performed next-generation sequencing analysis for this tumor and additional 4 archival gastric cancers obtained from BRCA1/2 mutation carriers. Somatic loss of the remaining BRCA1/2 allele was observed in 3 out of 5 tumors analyzed; all of these carcinomas, but none of the malignancies with the retained BRCA1/2 copy, showed chromosomal instability. CONCLUSION Taken together, these data justify further studies on the relationships between the BRCA1/2 and gastric cancer.
Collapse
Affiliation(s)
- Albina A Avanesyan
- Department of Endoscopy, City Cancer Center, Saint Petersburg, Russian Federation.,Department of Endoscopy, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation, .,Department of Medical Genetics, St. Petersburg Pediatric Medical University, Saint Petersburg, Russian Federation,
| | - Alexandr O Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Maxim A Kleshchev
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Mikhail A Maydin
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Ilya V Bizin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Grigory A Raskin
- A.M. Granov Center for Radiology and Surgical Technologies, Saint Petersburg, Russian Federation
| | - Ksenia V Shelekhova
- Department of Pathology, City Cancer Center, Saint Petersburg, Russian Federation
| | - Tatiana V Gorodnova
- Department of Oncogynecology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Alexandr A Bessonov
- Department of Mammology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Elena I Anisimova
- Leningrad Regional Oncology Hospital, Saint Petersburg, Russian Federation
| | - Olga A Volynshchikova
- Department of Clinical Management and Control, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Alexandr A Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Valeria I Ni
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Robert V Broyde
- Department of Endoscopy, City Cancer Center, Saint Petersburg, Russian Federation
| | - Oleg B Tkachenko
- Department of Endoscopy, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Aldon J Whitehead
- Medicine Internal Medicine Residency Program, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Alexandr M Scherbakov
- Department of Endoscopy, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint Petersburg, Russian Federation.,Department of Medical Genetics, St. Petersburg Pediatric Medical University, Saint Petersburg, Russian Federation.,Department of Oncology, I.I. Mechnikov North-Western Medical University, Saint Petersburg, Russian Federation
| |
Collapse
|
7
|
Di Bartolomeo M, Raimondi A, Cecchi F, Catenacci DVT, Schwartz S, Sellappan S, Tian Y, Miceli R, Pellegrinelli A, Giommoni E, Aitini E, Spada F, Rosati G, Marchet A, Pucci F, Zaniboni A, Tamberi S, Pressiani T, Sanna G, Cantore M, Mosconi S, Bolzoni P, Pinto C, Landi L, Soto Parra HJ, Cavanna L, Corallo S, Martinetti A, Hembrough TA, Pietrantonio F. Association of high TUBB3 with resistance to adjuvant docetaxel-based chemotherapy in gastric cancer: translational study of ITACA-S. TUMORI JOURNAL 2020; 107:150-159. [PMID: 32522106 DOI: 10.1177/0300891620930803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND No predictive markers for chemotherapy activity have been validated in gastric cancer (GC). The potential value of class III β-tubulin (TUBB3) as biomarker for prognosis and resistance to taxane-based therapy was reported. METHODS We analyzed GC samples of patients enrolled in the Intergroup Trial of Adjuvant Chemotherapy in Adenocarcinoma of the Stomach (ITACA-S), a randomized adjuvant study comparing 5-fluorouracil/leucovorin (5-FU/LV) and docetaxel-based sequential chemotherapy. TUBB3 was quantitated by selected reaction monitoring mass spectrometry and patients were stratified using a threshold of 750 attomoles per microgram (amol/µg). Cox proportional modeling and Kaplan-Meier survival analysis were used to assess the impact of TUBB3 expression on overall survival (OS) and disease-free survival. RESULTS Patients with TUBB3 protein levels >750 and <750 amol/µg were 21.9% and 78.1%, respectively, and were well-balanced between treatment arms. TUBB3 protein levels were not prognostic. Whereas no survival differences according to the 2 arms were observed in the subgroup with low TUBB3 expression (5-year OS 47% vs 40%; p = 0.44), patients with high TUBB3 had a clinically meaningful poorer OS when receiving docetaxel-based versus 5-FU/LV chemotherapy (5-year OS 31% vs 54%; p = 0.09), with a statistically significant interaction between TUBB3 and treatment (p = 0.049). CONCLUSIONS The quantification of TUBB3 might be considered as a negative predictive biomarker of benefit from taxane-based therapy in GC. Studies are needed to evaluate its role in the neoadjuvant setting.
Collapse
Affiliation(s)
- Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | - Rosalba Miceli
- Department of Medical Statistics, Biometry, and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Elisa Giommoni
- Medical Oncology, Azienda Ospedaliera-Università Careggi, Firenze, Italy
| | - Enrico Aitini
- Medical Oncology, Ospedale di Suzzara, Mantova, Italy
| | - Francesca Spada
- Gastrointestinal Oncology and Neuroendocrine Tumors, Istituto Oncologico Europeo, Milan, Italy
| | - Gerardo Rosati
- Medical Oncology, Azienda Ospedaliera "San Carlo," Potenza, Italy
| | - Alberto Marchet
- Surgery, Oncology and Gastroenterology Department, Azienda Ospedaliera di Padova, Padova, Italy
| | - Francesca Pucci
- Medical Oncology, Azienda Ospedaliera di Parma, Parma, Italy
| | - Alberto Zaniboni
- Oncology Department, Istituto Ospedaliero Fondazione Poliambulanza, Brescia, Italy
| | | | - Tiziana Pressiani
- Medical Oncology and Hematology, Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | - Gianni Sanna
- Medical Oncology, Istituto Ospedaliero dell'Università di Sassari, Sassari, Italy
| | - Maurizio Cantore
- Medical Oncology, Azienda Ospedaliera "Carlo Poma," Mantova, Italy
| | | | - Paola Bolzoni
- Medical Oncology, Presidio Ospedaliero "Serbelloni" di Gorgonzola, Melegnano, Italy
| | - Carmine Pinto
- Medical Oncology, Arcispedale Santa Maria Nuova Azienda Ospedaliera di Reggio Emilia, Reggio Emilia, Italy
| | - Lorenza Landi
- Medical Oncology, Presidio Ospedaliero di Livorno, Livorno, Italy
| | - Hector Josè Soto Parra
- Medical Oncology, Policlinico Vittorio Emanuele, Presidio Gaspare Rodolico, Catania, Italy
| | - Luigi Cavanna
- Oncology-Hematology Department, Ospedale Civile "Guglielmo da Saliceto," Piacenza, Italy
| | - Salvatore Corallo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonia Martinetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Kashyap VK, Wang Q, Setua S, Nagesh PKB, Chauhan N, Kumari S, Chowdhury P, Miller DD, Yallapu MM, Li W, Jaggi M, Hafeez BB, Chauhan SC. Therapeutic efficacy of a novel βIII/βIV-tubulin inhibitor (VERU-111) in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:29. [PMID: 30674344 PMCID: PMC6343279 DOI: 10.1186/s13046-018-1009-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Background The management of pancreatic cancer (PanCa) is exceptionally difficult due to poor response to available therapeutic modalities. Tubulins play a major role in cell dynamics, thus are important molecular targets for cancer therapy. Among various tubulins, βIII and βIV-tubulin isoforms have been primarily implicated in PanCa progression, metastasis and chemo-resistance. However, specific inhibitors of these isoforms that have potent anti-cancer activity with low toxicity are not readily available. Methods We determined anti-cancer molecular mechanisms and therapeutic efficacy of a novel small molecule inhibitor (VERU-111) using in vitro (MTS, wound healing, Boyden chamber and real-time xCELLigence assays) and in vivo (xenograft studies) models of PanCa. The effects of VERU-111 treatment on the expression of β-tubulin isoforms, apoptosis, cancer markers and microRNAs were determined by Western blot, immunohistochemistry (IHC), confocal microscopy, qRT-PCR and in situ hybridization (ISH) analyses. Results We have identified a novel small molecule inhibitor (VERU-111), which preferentially represses clinically important, βIII and βIV tubulin isoforms via restoring the expression of miR-200c. As a result, VERU-111 efficiently inhibited tumorigenic and metastatic characteristics of PanCa cells. VERU-111 arrested the cell cycle in the G2/M phase and induced apoptosis in PanCa cell lines via modulation of cell cycle regulatory (Cdc2, Cdc25c, and Cyclin B1) and apoptosis - associated (Bax, Bad, Bcl-2, and Bcl-xl) proteins. VERU-111 treatment also inhibited tumor growth (P < 0.01) in a PanCa xenograft mouse model. Conclusions This study has identified an inhibitor of βIII/βIV tubulins, which appears to have excellent potential as monotherapy or in combination with conventional therapeutic regimens for PanCa treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-1009-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivek K Kashyap
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Saini Setua
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Prashanth K B Nagesh
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| | - Bilal Bin Hafeez
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
9
|
Sokolenko AP, Imyanitov EN. Molecular Diagnostics in Clinical Oncology. Front Mol Biosci 2018; 5:76. [PMID: 30211169 PMCID: PMC6119963 DOI: 10.3389/fmolb.2018.00076] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
There are multiple applications of molecular tests in clinical oncology. Mutation analysis is now routinely utilized for the diagnosis of hereditary cancer syndromes. Healthy carriers of cancer-predisposing mutations benefit from tight medical surveillance and various preventive interventions. Cancers caused by germ-line mutations often require significant modification of the treatment strategy. Personalized selection of cancer drugs based on the presence of actionable mutations has become an integral part of cancer therapy. Molecular tests underlie the administration of EGFR, BRAF, ALK, ROS1, PARP inhibitors as well as the use of some other cytotoxic and targeted drugs. Tumors almost always shed their fragments (single cells or their clusters, DNA, RNA, proteins) into various body fluids. So-called liquid biopsy, i.e., the analysis of circulating DNA or some other tumor-derived molecules, holds a great promise for non-invasive monitoring of cancer disease, analysis of drug-sensitizing mutations and early cancer detection. Some tumor- or tissue-specific mutations and expression markers can be efficiently utilized for the diagnosis of cancers of unknown primary origin (CUPs). Systematic cataloging of tumor molecular portraits is likely to uncover a multitude of novel medically relevant DNA- and RNA-based markers.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg, Russia.,Department of Oncology, I.I. Mechnikov North-Western Medical University, St. Petersburg, Russia.,Department of Oncology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
10
|
Kamran SC, Mouw KW. Applying Precision Oncology Principles in Radiation Oncology. JCO Precis Oncol 2018; 2:PO.18.00034. [PMID: 32914000 PMCID: PMC7446508 DOI: 10.1200/po.18.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Radiation therapy is a critical component in the curative management of many solid tumor types, and advances in radiation delivery techniques during the past decade have led to improved disease control and quality of life for patients. During the same period, remarkable advances have also been made in understanding the genomic landscape of tumors; however, treatment decisions in radiation oncology continue to depend primarily on clinical and histopathologic characteristics rather than on the genetic features of the tumor or the patient. With the development of novel genomic techniques and their increasing use in clinical practice, radiation oncology is uniquely positioned to leverage these advances to identify novel biomarkers that could inform radiation dose, field, and the use of concurrent systemic agents. Here, we summarize efforts to use genomic techniques to guide radiation decisions, and we highlight some of the current opportunities and challenges that exist in attempting to apply precision oncology principles in radiation oncology.
Collapse
Affiliation(s)
- Sophia C. Kamran
- Sophia C. Kamran and Kent W. Mouw, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School; and Sophia C. Kamran, Harvard Radiation Oncology Program, Boston, MA
| | - Kent W. Mouw
- Sophia C. Kamran and Kent W. Mouw, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School; and Sophia C. Kamran, Harvard Radiation Oncology Program, Boston, MA
| |
Collapse
|
11
|
The Impact of the Expression Level of Intratumoral Dihydropyrimidine Dehydrogenase on Chemotherapy Sensitivity and Survival of Patients in Gastric Cancer: A Meta-Analysis. DISEASE MARKERS 2017; 2017:9202676. [PMID: 28255193 PMCID: PMC5307138 DOI: 10.1155/2017/9202676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 01/19/2023]
Abstract
The potential impact that the intratumoral expression level of dihydropyrimidine dehydrogenase (DPD) has on chemotherapy sensitivity and long-term survival for gastric cancer (GC) patients remains controversial; therefore, this study seeks to clarify this issue. Our meta-analysis was performed using Review Manager (RevMan) 5.3 software. In vitro drug sensitivity tests, correlation coefficients between sensitivity to 5-fluorouracil (5-FU), and expression levels of intratumoral DPD were used as effective indexes to analyse. Overall survival (OS) and progression-free survival (PFS) were used as endpoints for patient outcome, and hazard ratios (HRs) and 95% confidence intervals (CIs) were noted as measures of effect. There were 15 eligible studies including 1805 patients for the final analysis. The analysis revealed a statistically significant difference between the expression level of intratumoral DPD activity, DPD mRNA levels, and sensitivity to 5-FU in GC patients, with high expression levels of intratumoral DPD resulting in low sensitivity to 5-FU. However, no matter what therapeutic regimens were used, there was no significant difference for patient outcomes between high and low DPD expression groups, either in OS or in PFS. In conclusion, high levels of intratumoral DPD expression have a negative impact on sensitivity to 5-FU in GC patients, but no prognostic value for long-term survival was uncovered.
Collapse
|
12
|
Zheng H, Li X, Chen C, Chen J, Sun J, Sun S, Jin L, Li J, Sun S, Wu X. Quantum dot-based immunofluorescent imaging and quantitative detection of TOP2A and prognostic value in triple-negative breast cancer. Int J Nanomedicine 2016; 11:5519-5529. [PMID: 27799773 PMCID: PMC5085300 DOI: 10.2147/ijn.s111594] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Topoisomerase 2 alpha (TOP2A) is a key enzyme in DNA replication and a target of various cytotoxic agents including anthracyclines. Previous studies evaluating the predictive and prognostic values of TOP2A in breast cancer are contradictory, likely secondary to the use of both different detection methods and different cutoff thresholds for positive status. Our own studies have previously confirmed the advantages of quantum dot-based nanotechnology for quantitative analysis of biomarkers relative to conventional immunohistochemistry (IHC). This study was designed to 1) assess the expression of TOP2A, 2) investigate the relationship between TOP2A expression and major clinical pathological parameters, and 3) evaluate the prognostic value of TOP2A by quantum dot-based immunofluorescent imaging and quantitative analytical system (QD-IIQAS) in triple-negative breast cancer (TNBC). Patients and methods TOP2A expression in 145 TNBC specimens was detected using IHC and QD-IIQAS, and a comparative analysis of the two methods was conducted, including an exploration of the relationship between TOP2A expression and major clinical pathological parameters in TNBC. The prognostic value of TOP2A in TNBC was assessed. Results A similar antigen localization, a high correlation of staining rates (r=0.79), and a high agreement of measurements (κ=0.763) of TOP2A expression in TNBC were found by QD-IIQAS and conventional IHC (cutoff: 45.0 and 0.45, respectively). TOP2A was significantly higher in larger tumors (P=0.002), higher grade tumors (P=0.005), and lymph node positive patients (P<0.001). The 5-year disease-free survival (5-DFS) of the high and low TOP2A subgroups was significantly different for both QD-IIQAS and IHC (P<0.001, log-rank test for both). TOP2A expression was an independent predictor of survival in TNBC (P=0.001). Conclusion QD-IIQAS was an easy and accurate method for detecting and assessing TOP2A. The TOP2A expression was an independent prognostic indicator of 5-DFS in TNBC. Our study provides a good foundation for future studies exploring the relationship between TOP2A expression and response to anthracyclines.
Collapse
Affiliation(s)
| | - Xiang Li
- Department of Breast Surgery, Hubei Cancer Hospital
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University
| | - Jian Chen
- Department of Head and Neck Surgery, Hubei Cancer Hospital
| | - Jinzhong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Liting Jin
- Department of Breast Surgery, Hubei Cancer Hospital
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University
| | - Xinhong Wu
- Department of Breast Surgery, Hubei Cancer Hospital
| |
Collapse
|
13
|
Iyevleva AG, Imyanitov EN. Cytotoxic and targeted therapy for hereditary cancers. Hered Cancer Clin Pract 2016; 14:17. [PMID: 27555886 PMCID: PMC4994296 DOI: 10.1186/s13053-016-0057-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
There is a number of drugs demonstrating specific activity towards hereditary cancers. For example, tumors in BRCA1/2 mutation carriers usually arise via somatic inactivation of the remaining BRCA allele, which makes them particularly sensitive to platinum-based drugs, PARP inhibitors (PARPi), mitomycin C, liposomal doxorubicin, etc. There are several molecular assays for BRCA-ness, which permit to reveal BRCA-like phenocopies among sporadic tumors and thus extend clinical indications for the use of BRCA-specific therapies. Retrospective data on high-dose chemotherapy deserve consideration given some unexpected instances of cure from metastatic disease among BRCA1/2-mutated patients. Hereditary non-polyposis colorectal cancer (HNPCC) is characterized by high-level microsatellite instability (MSI-H), increased antigenicity and elevated expression of immunosuppressive molecules. Recent clinical trial demonstrated tumor responses in HNPCC patients treated by the immune checkpoint inhibitor pembrolizumab. There are successful clinical trials on the use of novel targeted agents for the treatment or rare cancer syndromes, e.g. RET inhibitors for hereditary medullary thyroid cancer, mTOR inhibitors for tumors arising in patients with tuberous sclerosis (TSC), and SMO inhibitors for basal-cell nevus syndrome. Germ-line mutation tests will be increasingly used in the future for the choice of the optimal therapy, therefore turnaround time for these laboratory procedures needs to be significantly reduced to ensure proper treatment planning.
Collapse
Affiliation(s)
- Aglaya G Iyevleva
- N.N. Petrov Institute of Oncology, Pesochny-2, St. Petersburg, 197758 Russia ; St. Petersburg Pediatric Medical University, St. Petersburg, 194100 Russia
| | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, Pesochny-2, St. Petersburg, 197758 Russia ; St. Petersburg Pediatric Medical University, St. Petersburg, 194100 Russia ; I.I. Mechnikov North-Western Medical University, St. Petersburg, 191015 Russia ; St. Petersburg State University, St. Petersburg, 199034 Russia
| |
Collapse
|
14
|
Wang S, Yuan L. Predictive biomarkers for targeted and cytotoxic agents in gastric cancer for personalized medicine. Biosci Trends 2016; 10:171-80. [PMID: 27251446 DOI: 10.5582/bst.2016.01078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer. The treatment of GC remains challenging as the outcomes achieved with surgery alone or adjuvant or neoadjuvant chemotherapy and radiotherapy are relatively poor. New treatment strategies are emerging and are being tested in solid tumors including GC. Over the past few years, the treatment of metastatic colorectal cancer (CRC) has made great advances, but strategies to manage GC have improved little. Multiple drug resistance is common in GC chemotherapy and targeted therapy; some patients appear to receive treatment that is suboptimal or even inefficacious. Unfortunately, there are few validated predictive biomarkers to guide the tailored treatment of GC. ToGA and AVAGAST are two phase III trials that tested the efficacy and safety of targeted agents in advanced gastric cancer (AGC), and results clearly indicated that patients need to be selected and that targeted agents are the best hope for better results. This review aims to provide an overview of potential predictive biomarkers for cytotoxic and targeted agents in GC.
Collapse
Affiliation(s)
- Shalong Wang
- Geriatric Surgery Department, Second Xiangya Hospital Affiliated with Central South University
| | | |
Collapse
|
15
|
Evidence for a pathogenic role of BRCA1 L1705P and W1837X germ-line mutations. Mol Biol Rep 2016; 43:335-8. [DOI: 10.1007/s11033-016-3968-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
|
16
|
The c.*229C > T gene polymorphism in 3′UTR region of the topoisomerase IIβ binding protein 1 gene and LOH in BRCA1/2 regions and their effect on the risk and progression of human laryngeal carcinoma. Tumour Biol 2015; 37:4541-57. [DOI: 10.1007/s13277-015-4276-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
|
17
|
Gorodnova TV, Sokolenko AP, Ivantsov AO, Iyevleva AG, Suspitsin EN, Aleksakhina SN, Yanus GA, Togo AV, Maximov SY, Imyanitov EN. High response rates to neoadjuvant platinum-based therapy in ovarian cancer patients carrying germ-line BRCA mutation. Cancer Lett 2015; 369:363-7. [PMID: 26342406 DOI: 10.1016/j.canlet.2015.08.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
Preoperative therapy provides an advantage for clinical drug assessment, as it involves yet untreated patients and facilitates access to the post-treatment biological material. Testing for Slavic founder BRCA mutations was performed for 225 ovarian cancer (OC) patients, who were treated by platinum-based neoadjuvant therapy. 34 BRCA1 and 1 BRCA2 mutation carriers were identified. Complete clinical response was documented in 12/35 (34%) mutation carriers and 8/190 (4%) non-carriers (P = 0.000002). Histopathologic response was observed in 16/35 (46%) women with the germ-line mutation versus 42/169 (25%) patients with the wild-type genotype (P = 0.02). Somatic loss of heterozygosity (LOH) for the remaining wild-type BRCA1 allele was detected only in 7/24 (29%) post-neoadjuvant therapy residual tumor tissues as compared to 9/11 (82%) BRCA1-associated OC, which were not exposed to systemic treatment before the surgery (P = 0.009). Furthermore, comparison of pre- and post-treatment tumor material obtained from the same patients revealed restoration of BRCA1 heterozygosity in 2 out of 3 sample pairs presenting with LOH at diagnosis. The obtained data confirm high sensitivity of BRCA-driven OC to platinating agents and provide evidence for a rapid selection of tumor cell clones without LOH during the course of therapy.
Collapse
Affiliation(s)
- Tatiana V Gorodnova
- Department of Gynecology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia
| | - Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Alexandr O Ivantsov
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia; Department of Pathology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Evgeny N Suspitsin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia
| | - Grigory A Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Alexandr V Togo
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia
| | - Sergey Ya Maximov
- Department of Gynecology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg 197758, Russia; Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St. Petersburg 191015, Russia; Department of Oncology, St. Petersburg State University, St. Petersburg 199034, Russia.
| |
Collapse
|
18
|
Lin WH. Breast cancer susceptibility gene 1 expression in gastric cancer: Correlations with curative effect of oxaliplatin-based adjuvant chemotherapy and prognosis. Shijie Huaren Xiaohua Zazhi 2015; 23:2440-2444. [DOI: 10.11569/wcjd.v23.i15.2440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of breast cancer susceptibility gene 1 (BRCA1) in gastric carcinoma tissue, and to analyze its correlation with curative effect of oxaliplatin-based adjuvant chemotherapy and prognosis.
METHODS: One hundred and ten surgically treated gastric cancer patients who received oxaliplatin-based adjuvant chemotherapy at Armed Police Corps Hospital of Sichuan from January 2010 to December 2011 were included. Immunohistochemical method was used for the determination of BRCA1 expression in gastric cancer, and the correlation between BRCA1 expression and clinical efficacy of chemotherapy and prognosis was then analyzed.
RESULTS: The effective rate of treatment in patients with positive expression of BRCA1 vs those with negative expression was 35.9% vs 60.6% (P < 0.05), the 3-year disease-free survival (DFS) rate and overall survival (OS) rate were 30.8% vs 56.3% and 38.5% vs 64.8%, respectively (P < 0.05).
CONCLUSION: BRCA1 expression in gastric cancer can be used as a predictive index for efficacy of oxaliplatin-based adjuvant chemotherapy and as an important indicator of prognosis in patients after radical operation for gastric carcinoma.
Collapse
|
19
|
Qiao JH, Jiao DC, Lu ZD, Yang S, Liu ZZ. Clinical significance of topoisomerase 2A expression and gene change in operable invasive breast cancer. Tumour Biol 2015; 36:6833-8. [DOI: 10.1007/s13277-015-3390-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/24/2015] [Indexed: 12/20/2022] Open
|
20
|
McCarroll JA, Sharbeen G, Liu J, Youkhana J, Goldstein D, McCarthy N, Limbri LF, Dischl D, Ceyhan GO, Erkan M, Johns AL, Biankin AV, Kavallaris M, Phillips PA. βIII-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer. Oncotarget 2015; 6:2235-49. [PMID: 25544769 PMCID: PMC4385848 DOI: 10.18632/oncotarget.2946] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a leading cause of cancer-related deaths in Western societies. This poor prognosis is due to chemotherapeutic drug resistance and metastatic spread. Evidence suggests that microtubule proteins namely, β-tubulins are dysregulated in tumor cells and are involved in regulating chemosensitivity. However, the role of β-tubulins in pancreatic cancer are unknown. We measured the expression of different β-tubulin isotypes in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Next, we used RNAi to silence βIII-tubulin expression in pancreatic cancer cells, and measured cell growth in the absence and presence of chemotherapeutic drugs. Finally, we assessed the role of βIII-tubulin in regulating tumor growth and metastases using an orthotopic pancreatic cancer mouse model. We found that βIII-tubulin is highly expressed in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Further, we demonstrated that silencing βIII-tubulin expression reduced pancreatic cancer cell growth and tumorigenic potential in the absence and presence of chemotherapeutic drugs. Finally, we demonstrated that suppression of βIII-tubulin reduced tumor growth and metastases in vivo. Our novel data demonstrate that βIII-tubulin is a key player in promoting pancreatic cancer growth and survival, and silencing its expression may be a potential therapeutic strategy to increase the long-term survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Joshua A. McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Jie Liu
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, NSW, Australia
| | - Nigel McCarthy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
| | - Lydia F. Limbri
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Dominic Dischl
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Güralp O. Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Mert Erkan
- Department of Surgery Koc University School of Medicine, Istanbul, Turkey
| | - Amber L. Johns
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, Australia
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| |
Collapse
|
21
|
Double heterozygotes among breast cancer patients analyzed for BRCA1, CHEK2, ATM, NBN/NBS1, and BLM germ-line mutations. Breast Cancer Res Treat 2014; 145:553-62. [DOI: 10.1007/s10549-014-2971-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
|
22
|
Kim HK, Green JE. Predictive biomarker candidates for the response of gastric cancer to targeted and cytotoxic agents. Pharmacogenomics 2014; 15:375-84. [PMID: 24533716 PMCID: PMC7670597 DOI: 10.2217/pgs.13.250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer is the second most common cause of cancer death worldwide. Recent development of targeted agents provides clinicians with additional systemic treatment options to conventional cytotoxic agents. Predictive markers are undoubtedly important for guiding the appropriate use of targeted and cytotoxic agents. Currently, however, HER2 is the only predictive biomarker validated for gastric cancer. In this review, candidate predictive markers for response to other targeted agents and cytotoxic chemotherapeutic agents are discussed.
Collapse
Affiliation(s)
- Hark Kyun Kim
- Center for Gastric Cancer, National Cancer Center, Goyang, 410-769, Republic of Korea.
| | | |
Collapse
|
23
|
Abstract
Chemotherapy occupies an important position in the treatment of gastric cancer. Platinum drugs are commonly chemotherapy drugs for gastric cancer; however, sensitivity to these drugs varies among different patients. The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene that is associated with sensitivity to platinum drugs. At present, the research on the BRCA1 gene is mainly focused on breast cancer, and there have been fewer studies on gastric cancer. This paper will give an overview of the structure and function of the BRCA1 gene and the relationship between BRCA1 and gastric cancer.
Collapse
|