1
|
Zheng Q, Ji W, Sun R, Dai K. Prognostic value of blood GRHL2 in patients with non-small-cell lung cancer after radiotherapy and chemotherapy. Biomark Med 2024; 18:611-617. [PMID: 39073846 PMCID: PMC11370899 DOI: 10.1080/17520363.2024.2366161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: We aimed to investigate the predictive value of the Grainyhead-like 2 (GRHL2) expression from circulating blood for recurrence, metastasis and overall death on patients with non-small-cell lung cancer (NSCLC).Materials & Methods: We collected blood samples from 122 patients who were admitted to our hospital for NSCLC.Results: Multivariable Cox proportional-hazards analysis in adjusted Model II showed that compared with GRHL2-negative expression, positive expression in patients with NSCLC was associated with increased death risk (HR = 7.0, 95% CI: 2.1-20.9, p = 0.03) and risk for composite end point (HR = 8.2, 95% CI: 4.0-27.1, p <0.01).Conclusion: This study supported that elevated circulating GRHL2 expression might be considered as a candidate prognostic biomarker for poor prognosis among these NSCLC patients.
Collapse
Affiliation(s)
- Qian Zheng
- Changzhou Cancer Hospital, Changzhou City, Jiangsu Province, 213000, P.R. China
| | - Wenjing Ji
- Changzhou Cancer Hospital, Changzhou City, Jiangsu Province, 213000, P.R. China
| | - Ruirui Sun
- Changzhou Cancer Hospital, Changzhou City, Jiangsu Province, 213000, P.R. China
| | - Kejun Dai
- Changzhou Cancer Hospital, Changzhou City, Jiangsu Province, 213000, P.R. China
| |
Collapse
|
2
|
Hua J, Chu M, Wang C, Zhang H, Luan J, Zhang Y, Li Q, Xiao T, Zhu C, Li X, Fu B. Digital PCR-based GRHL2 methylation testing in acute myeloid leukemia: diagnosis, prognosis and monitoring. Epigenomics 2024; 16:233-247. [PMID: 38343387 DOI: 10.2217/epi-2023-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Background: Acute myeloid leukemia (AML) is a challenging disease with high rates of recurrence. The role of the cancer-related gene GRHL2 in AML has not been widely studied. Methods: Peripheral blood samples were collected from 73 AML patients and 68 healthy controls. Droplet digital PCR was used to detect GRHL2 methylation levels to explore the value of GRHL2 methylation in the diagnosis, treatment response and prognosis of AML. Result: GRHL2 methylation was significantly increased in AML patients (p < 0.01), with high diagnostic accuracy (area under the curve: 0.848; p < 0.001). GRHL2 methylation was correlated with chemotherapy response (p < 0.05) and is an independent prognostic factor for AML (p < 0.05). Conclusion: GRHL2 methylation is expected to serve as a biomarker for diagnosing AML patients and predicting prognosis.
Collapse
Affiliation(s)
- Jing Hua
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University
- Department of Hematology, Liaocheng People's Hospital
| | - Miaomiao Chu
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital
| | - Chaohui Wang
- Department of Hematology, Hematology, Qingdao Haici Medical Group
| | - Hangfan Zhang
- Department of Hematology, Liaocheng People's Hospital
| | - Jing Luan
- Department of Hematology, Liaocheng People's Hospital
| | - Yifei Zhang
- Department of Hematology, Liaocheng People's Hospital
| | - Qiang Li
- Department of Hematology, Liaocheng People's Hospital
| | - Taiwu Xiao
- Department of Hematology, Liaocheng People's Hospital
| | - Chuansheng Zhu
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University
| | - Xuan Li
- The Key Laboratory of Molecular Pharmacology, Liaocheng People's Hospital, Liaocheng
| | - Bo Fu
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital
| |
Collapse
|
3
|
Wang Z, Coban B, Wu H, Chouaref J, Daxinger L, Paulsen MT, Ljungman M, Smid M, Martens JWM, Danen EHJ. GRHL2-controlled gene expression networks in luminal breast cancer. Cell Commun Signal 2023; 21:15. [PMID: 36691073 PMCID: PMC9869538 DOI: 10.1186/s12964-022-01029-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
Grainyhead like 2 (GRHL2) is an essential transcription factor for development and function of epithelial tissues. It has dual roles in cancer by supporting tumor growth while suppressing epithelial to mesenchymal transitions (EMT). GRHL2 cooperates with androgen and estrogen receptors (ER) to regulate gene expression. We explore genome wide GRHL2 binding sites conserved in three ER⍺/GRHL2 positive luminal breast cancer cell lines by ChIP-Seq. Interaction with the ER⍺/FOXA1/GATA3 complex is observed, however, only for a minor fraction of conserved GRHL2 peaks. We determine genome wide transcriptional dynamics in response to loss of GRHL2 by nascent RNA Bru-seq using an MCF7 conditional knockout model. Integration of ChIP- and Bru-seq pinpoints candidate direct GRHL2 target genes in luminal breast cancer. Multiple connections between GRHL2 and proliferation are uncovered, including transcriptional activation of ETS and E2F transcription factors. Among EMT-related genes, direct regulation of CLDN4 is corroborated but several targets identified in other cells (including CDH1 and ZEB1) are ruled out by both ChIP- and Bru-seq as being directly controlled by GRHL2 in luminal breast cancer cells. Gene clusters correlating positively (including known GRHL2 targets such as ErbB3, CLDN4/7) or negatively (including TGFB1 and TGFBR2) with GRHL2 in the MCF7 knockout model, display similar correlation with GRHL2 in ER positive as well as ER negative breast cancer patients. Altogether, this study uncovers gene sets regulated directly or indirectly by GRHL2 in luminal breast cancer, identifies novel GRHL2-regulated genes, and points to distinct GRHL2 regulation of EMT in luminal breast cancer cells. Video Abstract.
Collapse
Affiliation(s)
- Zi Wang
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Haoyu Wu
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jihed Chouaref
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
4
|
Bai X, Li Y, Li Y, Li F, Che N, Ni C, Zhao N, Zhao X, Liu T. GRHL2 Expression Functions in Breast Cancer Aggressiveness and Could Serve as Prognostic and Diagnostic Biomarker for Breast Cancer. Clin Med Insights Oncol 2022; 16:11795549221109511. [PMID: 35898391 PMCID: PMC9310218 DOI: 10.1177/11795549221109511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/06/2022] [Indexed: 01/26/2023] Open
Abstract
Background Breast cancer (BC) is the most frequent malignancy in women worldwide and the leading cause of female cancer-associated death in the world. Grainyhead-like 2 (GRHL2) is an important gene involved in human cancer progression. However, the role of GRHL2 in BC is unknown. Methods In this study, we used in vitro experiments to verify the role of GRHL2 expression in BC progression. We used 14 databases to analyse the expression level of GRHL2 in BC and its prognostic and diagnostic value. In addition, the correlation between GRHL2 expression and immune cell infiltration and DNA methylation was also analysed. Results At the cellular level, overexpression of GRHL2 induced E-cadherin expression in BC cells with a mesenchymal phenotype and resulted in a hybrid epithelial/mesenchymal (E/M) phenotype, which is more strongly correlated with tumour aggressiveness than a pure mesenchymal phenotype. Through analysis of various databases, we found that tumour tissue had a higher expression level of GRHL2. High expression of GRHL2 was associated with worse prognosis of BC patients and indicated that GRHL2 had significant diagnostic value. Grainyhead-like 2 is also related to immune infiltration and regulated by DNA methylation. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that GRHL2-related signalling pathways in BC were related to tumour cell proliferation, invasion, and angiogenesis. Conclusions In summary, evidence indicates that GRHL2 can be used as a prognostic and diagnostic biomarker for BC.
Collapse
Affiliation(s)
- Xiaoyu Bai
- Department of Pathology, Tianjin
Medical University, Tianjin, China
| | - Yue Li
- Department of Pathology, Tianjin
Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin
Medical University, Tianjin, China
| | - Na Che
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Nan Zhao
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Tieju Liu
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China,Tieju Liu, Department of Pathology, Tianjin
Medical University, Qixiangtai Road No. 22, HePing District, Tianjin, 30070,
China.
| |
Collapse
|
5
|
Hua J, Ma C, Wang CH, Wang Y, Feng S, Xiao T, Zhu C. Abnormal GRHL2 Methylation Confers Malignant Progression to Acute Leukemia. Appl Bionics Biomech 2022; 2022:9708829. [PMID: 35855840 PMCID: PMC9288345 DOI: 10.1155/2022/9708829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Abnormal methylation of Grainyhead-like 2 (GRHL2) is associated with a substantial role in the malignant phenotype of tumor patients. Our present research is aimed at studying the abnormal expression of GRHL2 and the association of methylation in patients with acute leukemia and its relationship with prognosis. Materials and Methods We used quantitative real-time polymerase chain reaction (qRT-PCR) for detecting the aberrant expression level of GRHL2 in 60 patients with acute leukemia and 60 normal controls. We analyzed the significant correlation between the expression level of GRHL2 with clinicopathological features and patients' prognosis in acute leukemia using the corresponding statistical methods. Secondly, we employed qRT-PCR and Western blotting to detect the mRNA and protein levels of GRHL2 in leukemia cell lines. Next, we used methylation-specific polymerase chain reaction (MSP) technology for detecting the methylation of GRHL2 in clinical samples with acute leukemia and cell lines. Then we investigated the demethylating effect of arsenic trioxide and 5-azacitidine on the mRNA and protein expression levels of GRHL2 in cell lines of acute leukemia. Finally, we studied the effects of arsenide trioxide and 5-azacitidine on the proliferation of leukemia cells and the TGF-β signaling pathway. Results We found a lower level of GRHL2 expression not only in acute leukemia patients but also in cell lines when compared with normal controls. At the same time, the expression level of GRHL2 in patients with acute leukemia was significantly correlated with leukocyte count, platelet count, and cytogenetic risk grouping. In addition, the lower GRHL2 expression group showed a significantly lower overall survival rate in acute leukemia patients than that of patients with a higher GRHL2 expression group. Univariate and multivariate analyses revealed that the expression of GRHL2 is an independent risk factor in acute leukemia patients. The methylation level of the GRHL2 promoter region in acute leukemia patients and cell lines was significantly higher than the normal control group, and we found the elevated mRNA and protein levels of GRHL2 in acute leukemia cell lines after the use of the demethylation drug arsenic trioxide and 5-azacitidine. At the same time, arsenide trioxide and 5-azacitidine are associated with the inhibition of cellular proliferation of acute leukemia cells and also promote the elevated expression of TGF-β signaling pathway-linked proteins, including TGF-β, Smad2, Smad3, and Smad4. Conclusion Increased expression and methylation level of GRHL2 are closely associated with the prognosis and malignant phenotype of acute leukemia patients and play an irreplaceable role in the occurrence and development of patients with acute leukemia.
Collapse
Affiliation(s)
- Jing Hua
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Congcong Ma
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - Chao Hui Wang
- Department of Hematology, Qingdao Haici Medical Group, China
| | - Yan Wang
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Saran Feng
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Taiwu Xiao
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - ChuanSheng Zhu
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| |
Collapse
|
6
|
Gasperoni JG, Fuller JN, Darido C, Wilanowski T, Dworkin S. Grainyhead-like (Grhl) Target Genes in Development and Cancer. Int J Mol Sci 2022; 23:ijms23052735. [PMID: 35269877 PMCID: PMC8911041 DOI: 10.3390/ijms23052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.
Collapse
Affiliation(s)
- Jemma G. Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Jarrad N. Fuller
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Charbel Darido
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
- Correspondence:
| |
Collapse
|
7
|
Jiangzhou H, Zhang H, Sun R, Fahira A, Wang K, Li Z, Shi Y, Wang Z. Integrative omics analysis reveals effective stratification and potential prognosis markers of pan-gastrointestinal cancers. iScience 2021; 24:102824. [PMID: 34381964 PMCID: PMC8340129 DOI: 10.1016/j.isci.2021.102824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Accepted: 07/05/2021] [Indexed: 12/09/2022] Open
Abstract
Gastrointestinal (GI) tract cancers are the most common malignant cancers with high mortality rate. Pan-cancer multi-omics data fusion provides a powerful strategy to examine commonalities and differences among various cancer types and benefits for the identification of pan-cancer drug targets. Herein, we conducted an integrative omics analysis on The Cancer Genome Atlas pan-GI samples including six carcinomas and stratified into 9 clusters, i.e. 5 single-type-dominant clusters and 4 mixed clusters, the clustering reveals the molecular features of different subtypes, other than the organ and cell-of-origin classifications. Especially the mixed clusters revealed the homogeneity of pan-GI cancers. We demonstrated that the prognosis differences among pan-GI subtypes based on multi-omics integration are more significant than clustering by single-omics. The potential prognostic markers for pan-GI stratification were identified by proportional hazards model, such as PSCA (for colorectal and stomach cancer) and PPP1CB (for liver and pancreatic cancer), which have prominent prognostic power supported by high concordance index. Pan-cancer multi-omics strategy reveals homogeneity and heterogeneity of pan-GI cancers Identify 9 iclusters with significantly different survival and molecular features Potential prognostic markers have prominent power supported by concordance index
Collapse
Affiliation(s)
- Huiting Jiangzhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Renliang Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China.,Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China.,Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
8
|
Liang Y, Liu Y, Zhang Q, Zhang H, Du J. Tumor-derived extracellular vesicles containing microRNA-1290 promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1 axis in gastric cancer. Transl Res 2021; 231:102-112. [PMID: 33321257 DOI: 10.1016/j.trsl.2020.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is a highly prevalent malignancy featured by dismal oncological outcomes. Accumulating pieces of evidence have consensus over the therapeutic significance of extracellular vesicles (EVs) and its role in carcinogenesis. Here, we planned to uncover EVs' role in GC by shuttling microRNA-1290 (miR-1290) and to identify the possible molecular mechanism associated with Grhl2, PD-L1, and ZEB1. Grhl2 was under-expressed in GC tissues, exhibiting a negative correlation with PD-L1 expression. In addition, Grhl2 promoted T cell proliferation by down-regulating PD-L1 via inhibiting ZEB1, while miR-1290 was found to negatively regulate Grhl2. EVs were also isolated from GC cells or normal gastric epithelial cells and identified with the presence of EV markers. miR-1290 expression was determined to be enriched in the EVs derived from GC cells and observed to promote the suppressive action of GC cells on T cell activation by up-regulating PD-L1 via the Grhl2/ZEB1 pathway in the co-culture system of GC cells with or without treatment of EVs with T cells. Moreover, we also developed a mouse model of GC and injected the EVs derived from miR-1290-inhibitor-treated GC cells into the tumor-bearing mice for further validation of mechanism in vivo. Intriguingly, the pivotal role of EVs-shuttled miR-1290 as an oncomiR was demonstrated in vivo. Collectively, we found that miR-1290 in EVs secreted from GC cells contributed to immune escape through the Grhl2/ZEB1/PD-L1 axis.
Collapse
Affiliation(s)
- Yuan Liang
- Medical Oncology Department of Thoracic Cancer(2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, PR China
| | - Yang Liu
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Qingfu Zhang
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Heng Zhang
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Jiang Du
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
9
|
M2 macrophage-derived extracellular vesicles promote gastric cancer progression via a microRNA-130b-3p/MLL3/GRHL2 signaling cascade. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:134. [PMID: 32660626 PMCID: PMC7359233 DOI: 10.1186/s13046-020-01626-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/21/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Transfer of noncoding microRNAs (miRNAs) by extracellular vesicles (EVs) promotes the development of chemoresistance in many tumor types. Additionally, restoration or depletion of several miRNAs has been observed in multiple cancer types including gastric cancer (GC). In this present study, we aimed to investigate the mechanism of miR-130b-3p in M2 macrophage-derived EVs in the development of GC through regulation of mixed lineage leukemia 3 (MLL3) and grainyhead-like 2 (GRHL2). METHODS Expression of miR-130b-3p and GRHL2 was quantified in 63 pairs of cancerous and noncancerous gastric tissues. The predicted binding between miR-130b-3p and MLL3, together with the enrichment of MLL3, H3K4me1, and H3K27ac in gene enhancer region, was verified by luciferase activity assay and chromatin immunoprecipitation. Effects of miR-130b-3p on GC cell proliferation, apoptosis, migration and invasion, as well as tube formation of human umbilical endothelial vein cells (HUEVCs) were further determined by gain- and loss-of function assays in vitro. RESULTS miR-130b-3p was upregulated in GC tissues, and miR-130b-3p promoted survival, metastasis and angiogenesis of GC cells as well as enhanced tumor formation and angiogenesis in GC in vivo. Additionally, miR-130b-3p delivered in M2 macrophage-derived EVs promoted survival, migration, invasion, and angiogenesis of GC cells. Notably, MLL3 inhibited GC cell proliferation, migration, invasion, and vessel-like tube formation of HUEVCs by increasing GRHL2. Furthermore, downregulation of miR-130b-3p in M2 macrophage-derived EVs or upregulation of GRHL2 inhibited tumor formation and angiogenesis in GC. CONCLUSION This study highlights that EVs loaded with the specific miRNA cargo miR-130b-3p mediate communication between M2 macrophages and cancer cells in the tumor microenvironment through the modulation of MLL3 and GRHL2 in GC.
Collapse
|
10
|
Yuan M, Wang J, Fang F. Grainyhead-Like Genes Family May Act as Novel Biomarkers in Colon Cancer. Onco Targets Ther 2020; 13:3237-3245. [PMID: 32368082 PMCID: PMC7173839 DOI: 10.2147/ott.s242763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/22/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The Grainyhead-like (GRHL) genes family were reported to participate in the development of a number of diseases. This study was designed to investigate the role of GRHL genes family in colon cancer (CC). METHODS In this study, the transcriptional levels of GRHL genes family in patients with CC from GEPIA were explored. Meanwhile, the immunohistochemical data of the GRHL genes family were also obtained in the HPA database. Additionally, we re-identified the mRNA of these genes via real-time PCR. Furthermore, the association between the levels of GRHL genes and stage plot as well as survival condition including overall survival and disease-free survival of patients with CC was analyzed. Finally, by transfecting with specific-siRNA, clone formation assay was performed to observe the role of GRHL genes family in the proliferation of SW480 human colon cancer cells. RESULTS We found that the mRNA and protein levels of GRHL1, GRHL2 and GRHL3 were significantly higher in CC tissues than in normal colon tissues. Additionally, GRHL1, GRHL2 and GRHL3 were significantly associated with the stages of CC. The Kaplan-Meier plotter showed that the low levels of GRHL1, GRHL2 and GRHL3 conferred a better overall survival of patients with CC while the high levels of GRHL1 and GRHL3 were associated with poor disease-free survival. Knockdown of GRHL1, GRHL2 and GRH L3 siHgnificantly inhibited the ability of colony formation of human colon cancer cells. CONCLUSION Our study demonstrated that GRHL genes are involved in the prognosis and survival in patients with CC, the inhibition of which may suppress the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Minchi Yuan
- Department of Oncology, The First People’s Hospital of Jiashan, Jiashan, Zhejiang, People’s Republic of China
| | - Jianping Wang
- Department of Anorectal Surgery, Lishui Hospital of Zhejiang University, Zhejiang, People’s Republic of China
| | - Fazhuang Fang
- Department of Abdominal Tumor Surgery, Jinhua Guangfu Hospital, Jinhua, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Shen J, Lv X, Zhang L. GRHL2 Acts as an Anti-Oncogene in Bladder Cancer by Regulating ZEB1 in Epithelial-Mesenchymal Transition (EMT) Process. Onco Targets Ther 2020; 13:2511-2522. [PMID: 32280236 PMCID: PMC7127877 DOI: 10.2147/ott.s239120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE GRHL2 played important roles in different cancers. In this study, we aimed to investigate the roles of GRHL2 in bladder cancer. METHODS The immunohistochemistry assay was performed to detect the expression of GRHL2 in bladder cancer tissues and adjacent noncancerous tissues and the expression levels of GRHL2 and zinc finger E-box binding homeobox (ZEB1) mRNA in tissues were determined by qRT-PCR. In addition, qRT-PCR and Western blotting were applied to detect the expression levels of GRHL2 and ZEB1 in bladder cancer cell lines (RT4, BIU-87, 5637, T24) and immortalized human bladder epithelial cell line (SV-HUC-1). The cell models with up-regulated and down-regulated expression of GRHL2 were constructed using bladder cancer cell lines T24 and 5637 to investigate the underlying roles of GRHL2 on the proliferation, migration, invasion and EMT process of bladder cancer cells. After that, cell proliferation was evaluated by CCK8 assay, cell cycle assay and colony formation assay. Transwell assay and wound healing assay were performed to determine the invasion and migration ability of the bladder cancer cells. The expressions of epithelial-mesenchymal transition (EMT) related proteins (E-cadherin, Vimentin, Slug and Snail) were assessed by Western blot analysis. Moreover, ZEB1 and GRHL2 were co-transfected into T24 and 5637 cells and their effects on EMT process and invasive capacity of cells were examined. RESULTS The expression of GRHL2 was down-regulated in bladder cancer tissues and human bladder cancer cell lines compared with the normal bladder tissues and immortalized human bladder epithelial cell line. Besides, down-regulation of GRHL2 improved the proliferation ability of bladder cancer cells and promoted the EMT process through up-regulation of ZEB1. The overexpression of ZEB1 partially reversed the inhibitory effect of GRHL2 on EMT. CONCLUSION GRHL2 acts as an anti-oncogene to regulate bladder cancer cell proliferation and inhibit EMT by targeting ZEB1. This study may provide a theoretical basis for further research.
Collapse
Affiliation(s)
- Jingang Shen
- Department of Urology, Chengwu County People’s Hospital, Shandong274200, People’s Republic of China
| | - Xianbao Lv
- Department of Urology, Chengwu County People’s Hospital, Shandong274200, People’s Republic of China
| | - Lei Zhang
- Department of Urology, Zoucheng People’s Hospital, Shandong273500, People’s Republic of China
| |
Collapse
|
12
|
Sun X, Chen D, Jin Z, Chen T, Lin A, Jin H, Zhu Y, Lai M. Genome-wide methylation and expression profiling identify methylation-associated genes in colorectal cancer. Epigenomics 2019; 12:19-36. [PMID: 31833403 DOI: 10.2217/epi-2019-0133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To identify methylation-associated genes in the carcinogenesis of colorectal cancer (CRC). Materials & methods: Genome-wide patterns of DNA methylation and gene expression in CRC tissues and adjacent normal tissues were determined and further validated in The Cancer Genome Atlas data and Chinese CRC patients, respectively. Gene overexpression and knockdown cells were constructed to investigate their biological roles in CRC. Results: After validations, hypermethylation of eight genes were found to be correlated with their reduced transcription, and hypomethyaltion of three genes were associated with their upregulation. CADM3, CNRIP1, GRHL2, GRIA4, GSTM2 and NRXN1 were associated with the overall survival of CRC patients. CNRIP1 and GSTM2 were mainly responsible for the proliferation in CRC cells. Conclusion: A total of 11 genes may be promising biomarkers for CRC.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Diyu Chen
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Ziqi Jin
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Tianhui Chen
- Group of Molecular Epidemiology & Cancer Precision Prevention, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Aifen Lin
- Human Tissue Bank/Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, PR China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310020, PR China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.,Department of Respiratory Diseases, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, PR China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
13
|
Meta-Analysis of Grainyhead-Like Dependent Transcriptional Networks: A Roadmap for Identifying Novel Conserved Genetic Pathways. Genes (Basel) 2019; 10:genes10110876. [PMID: 31683705 PMCID: PMC6896185 DOI: 10.3390/genes10110876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022] Open
Abstract
The Drosophila grainyhead (grh) and vertebrate Grainyhead-like (Grhl) transcription factors are among the most critical genes for epithelial development, maintenance and homeostasis, and are remarkably well conserved from fungi to humans. Mutations affecting grh/Grhl function lead to a myriad of developmental and adult onset epithelial disease, such as aberrant skin barrier formation, facial/palatal clefting, impaired neural tube closure, age-related hearing loss, ectodermal dysplasia, and importantly, cancers of epithelial origin. Recently, mutations in the family member GRHL3 have been shown to lead to both syndromic and non-syndromic facial and palatal clefting in humans, particularly the genetic disorder Van Der Woude Syndrome (VWS), as well as spina bifida, whereas mutations in mammalian Grhl2 lead to exencephaly and facial clefting. As transcription factors, Grhl proteins bind to and activate (or repress) a substantial number of target genes that regulate and drive a cascade of transcriptional networks. A multitude of large-scale datasets have been generated to explore the grh/Grhl-dependent transcriptome, following ablation or mis-regulation of grh/Grhl-function. Here, we have performed a meta-analysis of all 41 currently published grh and Grhl RNA-SEQ, and microarray datasets, in order to identify and characterise the transcriptional networks controlled by grh/Grhl genes across disparate biological contexts. Moreover, we have also cross-referenced our results with published ChIP and ChIP-SEQ datasets, in order to determine which of the critical effector genes are likely to be direct grh/Grhl targets, based on genomic occupancy by grh/Grhl genes. Lastly, to interrogate the predictive strength of our approach, we experimentally validated the expression of the top 10 candidate grhl target genes in epithelial development, in a zebrafish model lacking grhl3, and found that orthologues of seven of these (cldn23, ppl, prom2, ocln, slc6a19, aldh1a3, and sod3) were significantly down-regulated at 48 hours post-fertilisation. Therefore, our study provides a strong predictive resource for the identification of putative grh/grhl effector target genes.
Collapse
|
14
|
Reese RM, Harrison MM, Alarid ET. Grainyhead-like Protein 2: The Emerging Role in Hormone-Dependent Cancers and Epigenetics. Endocrinology 2019; 160:1275-1288. [PMID: 30958537 DOI: 10.1210/en.2019-00213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023]
Abstract
In mammals, the grainyhead-like transcription factor (GRHL) family is composed of three nuclear proteins that are responsible for driving epithelial cell fate: GRHL1, GRHL2, and GRHL3. GRHL2 is important in maintaining proper tubulogenesis during development and in suppressing the epithelial-to-mesenchymal transition. Within the last decade, evidence indicates both tumor-suppressive and oncogenic roles for GRHL2 in various types of cancers. Recent studies suggest that GRHL2 may be especially important in hormone-dependent cancers, as correlative relationships exist between GRHL2 and various steroid receptors, such as the androgen and estrogen receptors. Acting as a pioneer factor and coactivator, GRHL2 may directly affect steroid receptor transcriptional activity. This review will highlight recent discoveries of GRHL2 activity in cancer and in maintaining the epithelial state, while also exploring recent literature on the role of GRHL2 in hormone-dependent cancers and epigenetics.
Collapse
Affiliation(s)
- Rebecca M Reese
- Department of Oncology and Carbone Comprehensive Cancer Center, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Elaine T Alarid
- Department of Oncology and Carbone Comprehensive Cancer Center, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
15
|
Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways. Oncogenesis 2018; 7:38. [PMID: 29735981 PMCID: PMC5938237 DOI: 10.1038/s41389-018-0047-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/25/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways.
Collapse
|
16
|
Nishino H, Takano S, Yoshitomi H, Suzuki K, Kagawa S, Shimazaki R, Shimizu H, Furukawa K, Miyazaki M, Ohtsuka M. Grainyhead-like 2 (GRHL2) regulates epithelial plasticity in pancreatic cancer progression. Cancer Med 2017; 6:2686-2696. [PMID: 28960866 PMCID: PMC5673909 DOI: 10.1002/cam4.1212] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/07/2023] Open
Abstract
The epithelial‐mesenchymal transition (EMT) and mesenchymal‐epithelial transition (MET) contribute to cancer metastasis of pancreatic ductal adenocarcinoma (PDAC). We explored the role of grainyhead‐like 2 (GRHL2), a suppressor of EMT, in the progression of PDAC. Expressions of GRHL2 were assessed using surgically resected PDAC tissues by immunohistochemistry analysis, and in vitro using human and mouse PDAC cells. Effects on epithelial plasticity and stemness of GRHL2 were examined in vitro using liver metastatic PDAC cells (CFPAC‐1) with GRHL2 knockdown by specific siRNAs. GRHL2 has a significantly positive correlation with E‐cadherin and CD133 in 155 resected human primary PDAC tissues. GRHL2 is highly expressed in liver metastatic cells than in primary invasive cells of both human and mouse PDAC, accompanied by a positive correlation with E‐cadherin expression. GRHL2 knockdown CFPAC‐1 cells demonstrated morphological changes into mesenchymal appearances and reduced proliferation through EMT. Notably, knockdown studies followed by flow cytometry analysis for a subpopulation of CD133+ showed that GRHL2 facilitates CFPAC‐1 cells to maintain stem‐like characters including self‐renewal capacity and anoikis resistance. GRHL2 regulates epithelial plasticity along with stemness in PDAC, both of which are crucial for metastasis, implicating the possibility of GRHL2 as a therapeutic target for PDAC liver metastasis.
Collapse
Affiliation(s)
- Hitoe Nishino
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kensuke Suzuki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Kagawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Reiri Shimazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Shimizu
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
17
|
Frisch SM, Farris JC, Pifer PM. Roles of Grainyhead-like transcription factors in cancer. Oncogene 2017; 36:6067-6073. [PMID: 28714958 DOI: 10.1038/onc.2017.178] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The mammalian homologs of the D. melanogaster Grainyhead gene, Grainyhead-like 1-3 (GRHL1, GRHL2 and GRHL3), are transcription factors implicated in wound healing, tubulogenesis and cancer. Their induced target genes encode diverse epithelial cell adhesion molecules, while mesenchymal genes involved in cell migration and invasion are repressed. Moreover, GRHL2 suppresses the oncogenic epithelial-mesencyhmal transition, thereby acting as a tumor suppressor. Mechanisms, some involving established cancer-related signaling/transcription factor pathways (for example, Wnt, TGF-β, mir200, ZEB1, OVOL2, p63 and p300) and translational implications of the Grainyhead proteins in cancer are discussed in this review article.
Collapse
Affiliation(s)
- S M Frisch
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - J C Farris
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - P M Pifer
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
18
|
Pawlak M, Kikulska A, Wrzesinski T, Rausch T, Kwias Z, Wilczynski B, Benes V, Wesoly J, Wilanowski T. Potential protective role of Grainyhead-like genes in the development of clear cell renal cell carcinoma. Mol Carcinog 2017; 56:2414-2423. [DOI: 10.1002/mc.22682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/18/2017] [Accepted: 05/19/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Magdalena Pawlak
- Laboratory of Signal Transduction; Department of Cell Biology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Agnieszka Kikulska
- Laboratory of Signal Transduction; Department of Cell Biology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Tomasz Wrzesinski
- Faculty of Biology; Laboratory of High Throughput Technologies; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University; Poznan Poland
| | - Tobias Rausch
- Genomics Core Facility; European Molecular Biology Laboratory; Heidelberg Germany
| | - Zbigniew Kwias
- Department of Urology and Urological Oncology; Poznan University of Medical Sciences; Poznan Poland
| | - Bartek Wilczynski
- Faculty of Mathematics, Informatics and Mechanics; Institute of Informatics; University of Warsaw; Warsaw Poland
| | - Vladimir Benes
- Genomics Core Facility; European Molecular Biology Laboratory; Heidelberg Germany
| | - Joanna Wesoly
- Faculty of Biology; Laboratory of High Throughput Technologies; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University; Poznan Poland
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction; Department of Cell Biology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
19
|
Abstract
Esophageal cancer (EC) is one of the most common causes of cancer-related mortality in the world. Although much effort has been made to improve the 5-year survival rate of patients with EC, it still remains low due to diagnosis at an advanced stage, aggressive local invasion, early metastasis, and resistance to chemotherapy. Although grainyhead-like 2 (GRHL2) has attracted interest since it has been recently identified as a novel suppressor of the epithelial-mesenchymal transition, clinical values of GRHL2 and its relationship with the metastasis-related factors, such as hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF), remain unclear. In order to investigate the expression of GRHL2, HIF-1α, and VEGF, and their correlation with angiogenesis in EC, 63 patients with EC were examined. The expression of GRHL2, HIF-1α, and VEGF in tumor tissues was higher than that in adjacent tissues and was associated with tumor differentiation. GRHL2 expression was significantly correlated with lymph node metastasis and invasion depth, whereas VEGF expression was associated with tumor (TNM) stage. A significant correlation was found between the expression of GRHL2 and HIF-1α. The patients expressing low GRHL2 and high HIF-1α showed significant reduction in both overall survival rate and disease-free survival rate. The results demonstrated that abnormal expression of GRHL2 is common in EC, and low expression of GRHL2 accompanied by a high expression of HIF-1α indicates poor prognosis.
Collapse
Affiliation(s)
| | | | - Xiaoqiu Wang
- Department of Pathology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People’s Republic of China
| | - Bing Hu
- Department of Medical Oncology
| |
Collapse
|
20
|
Faddaoui A, Sheta R, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Gobeil S, Morin C, Ghani K, Bachvarov D. Suppression of the grainyhead transcription factor 2 gene (GRHL2) inhibits the proliferation, migration, invasion and mediates cell cycle arrest of ovarian cancer cells. Cell Cycle 2017; 16:693-706. [PMID: 28278050 DOI: 10.1080/15384101.2017.1295181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously, we have identified the Grainyhead transcription factor 2 gene (GRHL2) as notably hypomethylated in high-grade (HG) serous epithelial ovarian tumors, compared with normal ovarian tissues. GRHL2 is known for its functions in normal tissue development and wound healing. In the context of cancer, the role of GRHL2 is still ambiguous as both tumorigenic and tumor suppressive functions have been reported for this gene, although a role of GRHL2 in maintaining the epithelial status of cancer cells has been suggested. In this study, we report that GRHL2 is strongly overexpressed in both low malignant potential (LMP) and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Suppression of the GRHL2 expression led to a sharp decrease in cell proliferation, migration and invasion and induced G1 cell cycle arrest in epithelial ovarian cancer (EOC) cells displaying either epithelial (A2780s) or mesenchymal (SKOV3) phenotypes. However, no phenotypic alterations were observed in these EOC cell lines following GRHL2 silencing. Gene expression profiling and consecutive canonical pathway and network analyses confirmed these data, as in both these EOC cell lines, GRHL2 ablation was associated with the downregulation of various genes and pathways implicated in cell growth and proliferation, cell cycle control and cellular metabolism. Taken together, our data are indicative for a strong oncogenic potential of the GRHL2 gene in EOC progression and support recent findings on the role of GRHL2 as one of the major phenotypic stability factors (PSFs) that stabilize the highly aggressive/metastatic hybrid epithelial/mesenchymal (E/M) phenotype of cancer cells.
Collapse
Affiliation(s)
- Adnen Faddaoui
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Razan Sheta
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Magdalena Bachvarova
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Marie Plante
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Jean Gregoire
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Marie-Claude Renaud
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Alexandra Sebastianelli
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Stephane Gobeil
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,d Centre de Recherche du CHU de Québec , CHUL , Québec , Canada
| | - Chantale Morin
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Karim Ghani
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Dimcho Bachvarov
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| |
Collapse
|
21
|
Grhl2 reduces invasion and migration through inhibition of TGFβ-induced EMT in gastric cancer. Oncogenesis 2017; 6:e284. [PMID: 28067907 PMCID: PMC5294246 DOI: 10.1038/oncsis.2016.83] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Metastasis is one of the typical features of malignancy that significantly increases cancer-related mortality. Recent studies have shown that epithelial-mesenchymal transition (EMT) is closely related to the invasion and migration of cancer cells. Grainyhead-like 2 (Grhl2), a transcription factor, has been reported to be associated with several tumor processes including EMT. In the previous study, we have reported that Grhl2 functioned as a tumor suppressor in proliferation and apoptosis of gastric cancer. Here we aim to explore the effects of Grhl2 on invasion and migration of gastric cancer and further clarify its possible underlying mechanisms. As a result, in both SGC7901 and MKN45 cells, Grhl2 overexpression significantly inhibited the ability of invasion and migration. In addition, preliminary experiments showed that Grhl2 reduces the protein expression of matrix metalloproteinase-2, -7 and -9 (MMP-2, MMP-7 and MMP-9). Most importantly, Grhl2 antagonizes transforming growth factor-β (TGFβ)-induced EMT, and inhibition of TGFβ signaling pathways can restore Grhl2 expression. Finally, the results of subcutaneous xenograft model indicated that Grhl2 suppresses the growth of gastric cancer and reverses EMT process in vivo. Meanwhile, the metastatic tumor model further confirmed the inhibition of Grhl2 on metastasis of gastric cancer. Taken together, our findings proved that Grhl2, functioned as a tumor suppressor, reduces the invasion and migration through inhibition of TGFβ-induced EMT in gastric cancer.
Collapse
|
22
|
Stable Binding of the Conserved Transcription Factor Grainy Head to its Target Genes Throughout Drosophila melanogaster Development. Genetics 2016; 205:605-620. [PMID: 28007888 DOI: 10.1534/genetics.116.195685] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
It has been suggested that transcription factor binding is temporally dynamic, and that changes in binding determine transcriptional output. Nonetheless, this model is based on relatively few examples in which transcription factor binding has been assayed at multiple developmental stages. The essential transcription factor Grainy head (Grh) is conserved from fungi to humans, and controls epithelial development and barrier formation in numerous tissues. Drosophila melanogaster, which possess a single grainy head (grh) gene, provide an excellent system to study this conserved factor. To determine whether temporally distinct binding events allow Grh to control cell fate specification in different tissue types, we used a combination of ChIP-seq and RNA-seq to elucidate the gene regulatory network controlled by Grh during four stages of embryonic development (spanning stages 5-17) and in larval tissue. Contrary to expectations, we discovered that Grh remains bound to at least 1146 genomic loci over days of development. In contrast to this stable DNA occupancy, the subset of genes whose expression is regulated by Grh varies. Grh transitions from functioning primarily as a transcriptional repressor early in development to functioning predominantly as an activator later. Our data reveal that Grh binds to target genes well before the Grh-dependent transcriptional program commences, suggesting it sets the stage for subsequent recruitment of additional factors that execute stage-specific Grh functions.
Collapse
|
23
|
MicroRNA-194 regulates keratinocyte proliferation and differentiation by targeting Grainyhead-like 2 in psoriasis. Pathol Res Pract 2016; 213:89-97. [PMID: 28040329 DOI: 10.1016/j.prp.2016.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are currently emerged as important regulators in psoriasis. Psoriasis is characterized by hyperproliferation and impaired differentiation of keratinocytes in skin lesions. miR-194 is a well-known regulator of cell proliferation and differentiation. However, the role of miR-194 in psoriasis pathogenesis remains unclear. In this study we aimed to investigate the role of miR-194 in keratinocyte hyperproliferation and differentiation. We found that miR-194 was significantly downregulated in psoriasis lesional skin. Overexpression of miR-194 inhibited the proliferation and promoted the differentiation of primary human keratinocytes, whereas miR-194 suppression promoted the proliferation and inhibited their differentiation. Bioinformatic analysis predicted that the Grainyhead-like 2 (GRHL2) was a target gene of miR-194, which we further validated with a dual-luciferase reporter assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot analysis. The effect of miR-194 on cell proliferation and differentiation was significantly reversed by overexpression of GRHL2. Moreover, the expression of miR-194 and GRHL2 was inversely correlated in psoriasis lesional skin. Taken together, our results suggest that miR-194 inhibits the proliferation and promotes the differentiation of keratinocytes through targeting GRHL2. The downregulation of miR-194 expression may contribute to the pathogenesis of psoriasis and targeting miR-194 may represent a novel and potential therapeutic strategy for psoriasis.
Collapse
|
24
|
Chen W, Yi JK, Shimane T, Mehrazarin S, Lin YL, Shin KH, Kim RH, Park NH, Kang MK. Grainyhead-like 2 regulates epithelial plasticity and stemness in oral cancer cells. Carcinogenesis 2016; 37:500-10. [PMID: 26933170 PMCID: PMC6118232 DOI: 10.1093/carcin/bgw027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 01/06/2016] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
Grainyhead-like 2 (GRHL2) is one of the three mammalian homologues of Drosophila Grainyhead involved in epithelial morphogenesis. We recently showed that GRHL2 also controls normal epithelial cell proliferation and differentiation. In this study, we investigated the role of GRHL2 in oral carcinogenesis and the underlying mechanism. GRHL2 expression was elevated in cells and tissues of oral squamous cell carcinomas (OSCCs) compared with normal counterparts. Knockdown of GRHL2 resulted in the loss of in vivo tumorigenicity, cancer stemness and epithelial phenotype of oral cancer cells. GRHL2 loss also inhibited oral cancer cell proliferation and colony formation. GRHL2 regulated the expression of miR-200 family and Octamer-binding transcription factor 4 (Oct-4) genes through direct promoter DNA binding. Overexpression of miR-200 genes in the oral cancer cells depleted of GRHL2 partially restored the epithelial phenotype, proliferative rate and cancer stemness, indicating that miR-200 genes in part mediate the functional effects of GRHL2. Taken together, this study demonstrates a novel connection between GRHL2 and miR-200, and supports protumorigenic effect of GRHL2 on OSCCs.
Collapse
Affiliation(s)
- Wei Chen
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jin Kyu Yi
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, School of Dentistry, Kyung Hee University, Seoul 130-872, Korea
| | - Tetsu Shimane
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Shebli Mehrazarin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yi-Ling Lin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| | - Reuben H Kim
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| | - No-Hee Park
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Mo K Kang
- School of Dentistry, University of California at Los Angeles, Los Angeles, CA 90095, USA, Jonsson Comprehensive Cancer Center and
| |
Collapse
|
25
|
Trevino V, Cassese A, Nagy Z, Zhuang X, Herbert J, Antzack P, Clarke K, Davies N, Rahman A, Campbell MJ, Guindani M, Bicknell R, Vannucci M, Falciani F. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells. PLoS Comput Biol 2016; 12:e1004884. [PMID: 27124473 PMCID: PMC4849722 DOI: 10.1371/journal.pcbi.1004884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/24/2016] [Indexed: 11/19/2022] Open
Abstract
The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. In the current era of cancer research, stimulated by the release of the entire human genome, it has become increasingly clear that to understand cancer we need to understand how the many thousands of genes and proteins involved interact. Modern techniques have enabled the collection of unprecedented amounts of high quality data describing the state of these molecules during cancer development. In cancer research particularly, this strategy has been particularly successful, leading to the discovery of new drugs able to target key factors promoting cancer growth. However, a large body of research suggests that in complex organs, the interaction between cancer and its surrounding environment is an essential part of the biology of both diseased and healthy tissues, therefore it is of paramount importance that this process is further investigated. Here we report a strategy designed to reveal communication signals between cancer cells and adjacent cell types. We apply the strategy to prostate cancer and find that normal cells surrounding the tumour do exert an anti-tumour activity on prostate cancer cells. By using a statistical model which integrates multiple levels of genetic data, we show that cell-to-cell communication genes are controlled by DNA alterations and have potential prognostic value.
Collapse
Affiliation(s)
- Victor Trevino
- Catedra de Bioinformatica, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Alberto Cassese
- Department of Methodology and Statistics, Maastricht University, Maastricht, Netherlands
| | - Zsuzsanna Nagy
- School of Experimental and Clinical Medicine, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiaodong Zhuang
- School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - John Herbert
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Philipp Antzack
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kim Clarke
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas Davies
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ayesha Rahman
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Moray J. Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michele Guindani
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Roy Bicknell
- School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, Texas, United States of America
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Ray HJ, Niswander LA. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure. Development 2016; 143:1192-204. [PMID: 26903501 DOI: 10.1242/dev.129825] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/16/2016] [Indexed: 12/29/2022]
Abstract
The transcription factor grainyhead-like 2 (GRHL2) is expressed in non-neural ectoderm (NNE) and Grhl2 loss results in fully penetrant cranial neural tube defects (NTDs) in mice. GRHL2 activates expression of several epithelial genes; however, additional molecular targets and functional processes regulated by GRHL2 in the NNE remain to be determined, as well as the underlying cause of the NTDs in Grhl2 mutants. Here, we find that Grhl2 loss results in abnormal mesenchymal phenotypes in the NNE, including aberrant vimentin expression and increased cellular dynamics that affects the NNE and neural crest cells. The resulting loss of NNE integrity contributes to an inability of the cranial neural folds to move toward the midline and results in NTD. Further, we identified Esrp1, Sostdc1, Fermt1, Tmprss2 and Lamc2 as novel NNE-expressed genes that are downregulated in Grhl2 mutants. Our in vitro assays show that they act as suppressors of the epithelial-to-mesenchymal transition (EMT). Thus, GRHL2 promotes the epithelial nature of the NNE during the dynamic events of neural tube formation by both activating key epithelial genes and actively suppressing EMT through novel downstream EMT suppressors.
Collapse
Affiliation(s)
- Heather J Ray
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Lee A Niswander
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
27
|
GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep 2016; 6:19943. [PMID: 26887977 PMCID: PMC4757891 DOI: 10.1038/srep19943] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a biological process by which polarized epithelial cells convert into a mesenchymal phenotype, has been implicated to contribute to the molecular heterogeneity of epithelial ovarian cancer (EOC). Here we report that a transcription factor—Grainyhead-like 2 (GRHL2) maintains the epithelial phenotype. EOC tumours with lower GRHL2 levels are associated with the Mes/Mesenchymal molecular subtype and a poorer overall survival. shRNA-mediated knockdown of GRHL2 in EOC cells with an epithelial phenotype results in EMT changes, with increased cell migration, invasion and motility. By ChIP-sequencing and gene expression microarray, microRNA-200b/a is identified as the direct transcriptional target of GRHL2 and regulates the epithelial status of EOC through ZEB1 and E-cadherin. Our study demonstrates that loss of GRHL2 increases the levels of histone mark H3K27me3 on promoters and GRHL2-binding sites at miR-200b/a and E-cadherin genes. These findings support GRHL2 as a pivotal gatekeeper of EMT in EOC via miR-200-ZEB1.
Collapse
|
28
|
Lin X, Teng Y, Lan J, He B, Sun H, Xu F. GRHL2 genetic polymorphisms may confer a protective effect against sudden sensorineural hearing loss. Mol Med Rep 2016; 13:2857-63. [PMID: 26847018 DOI: 10.3892/mmr.2016.4871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 12/15/2015] [Indexed: 11/06/2022] Open
Abstract
Genetic polymorphisms in grainyhead‑like 2 (GRHL2) variants were examined for their suspected association with sudden sensorineural hearing loss (SSHL). Between January 2009 and April 2014, 190 patients with SSHL, who were diagnosed at the Departments of Otorhinolaryngology Head and Neck Surgery at Kaihua People's Hospital and Hangzhou First People's Hospital, were selected for the present study and defined as the SSHL group. A group of 210 healthy individuals were defined as the control group. Polymerase chain reaction (PCR)‑restriction fragment length polymorphism was used to detect GRHL2 genotypes, using genomic DNA isolated from peripheral blood as PCR templates. GRHL2 rs611419 genetic polymorphisms conferred a protective effect against SSHL (AT+TT vs. AA: OR=0.63, 95% CI=0.41‑0.98, P=0.038). In addition, rs10955255 polymorphisms were associated with a reduced risk of SSHL (AA vs. GG: OR=0.54, 95% CI=0.31‑0.95, P=0.032; GA+AA vs. GG: OR=0.58, 95% CI=0.38‑0.89, P=0.012). Combined genotypes of rs611419, rs10955255 and rs6989650 in the GRHL2 gene are also associated with a reduced risk of SSHL (P=0.035). In subjects who consumed alcohol, co‑occurrence of 3‑8 variant alleles conferred increased resistance to SSHL, compared with the occurrence of 0‑2 variant alleles (OR=0.40, 95% CI=0.21‑0.76, P=0.004). GRHL2 genetic polymorphisms, rs611419 and rs10955255, have a protective role against SSHL and reduce the risk of SSHL. However, rs6989650 is not associated with SSHL.
Collapse
Affiliation(s)
- Xiaojiang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Kaihua People's Hospital, Quzhou, Zhejiang 324300, P.R. China
| | - Yaoshu Teng
- Department of Otorhinolaryngology Head and Neck Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Jinshan Lan
- Department of Otorhinolaryngology, Quzhou People's Hospital, Quzhou, Zhejiang 324300, P.R. China
| | - Benjun He
- Department of Otorhinolaryngology Head and Neck Surgery, Kaihua People's Hospital, Quzhou, Zhejiang 324300, P.R. China
| | - Huijuan Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Kaihua People's Hospital, Quzhou, Zhejiang 324300, P.R. China
| | - Fenglin Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Kaihua People's Hospital, Quzhou, Zhejiang 324300, P.R. China
| |
Collapse
|
29
|
Riethdorf S, Frey S, Santjer S, Stoupiec M, Otto B, Riethdorf L, Koop C, Wilczak W, Simon R, Sauter G, Pantel K, Assmann V. Diverse expression patterns of the EMT suppressor grainyhead-like 2 (GRHL2) in normal and tumour tissues. Int J Cancer 2015; 138:949-63. [PMID: 26355710 DOI: 10.1002/ijc.29841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022]
Abstract
The transcription factor grainyhead-like 2 (GRHL2) plays a crucial role in various developmental processes. Although GRHL2 recently has attracted considerable interest in that it could be identified as a novel suppressor of the epithelial-to-mesenchymal transition, evidence is emerging that GRHL2 also exhibits tumour-promoting activities. Aim of the present study therefore was to help defining the relevance of GRHL2 for human cancers by performing a comprehensive immunohistochemical analysis of GRHL2 expression in normal (n = 608) and (n = 3,143) tumour tissues using tissue microarrays. Consistent with its accepted role in epithelial morphogenesis, GRHL2 expression preferentially but not exclusively was observed in epithelial cells. Regenerative and proliferating epithelial cells with stem cell features showed a strong GRHL2 expression. Highly complex GRHL2 expression patterns indicative of both reduced and elevated GRHL2 expression in tumours, possibly reflecting potential tumour-suppressing as well as oncogenic functions of GRHL2 in distinct human tumours, were observed. A dysregulation of GRHL2 expression for the first time was found in tumours of non-epithelial origin (e.g., astrocytomas, melanomas). We also report GRHL2 copy number gains which, however, did not necessarily translate into increased GRHL2 expression levels in cancer cells. Results obtained by meta-analysis of gene expression microarray data in conjunction with functional assays demonstrating a direct regulation of HER3 expression further point to a potential therapeutic relevance of GRHL2 in ovarian cancer. Hopefully, the results presented in this study may pave the way for a better understanding of the yet largely unknown function of GRHL2 in the initiation, progression and also therapy of cancers.
Collapse
Affiliation(s)
- Sabine Riethdorf
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Frey
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Santjer
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malgorzata Stoupiec
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Otto
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christina Koop
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, Center for Diagnostic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Assmann
- Department of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Mlacki M, Kikulska A, Krzywinska E, Pawlak M, Wilanowski T. Recent discoveries concerning the involvement of transcription factors from the Grainyhead-like family in cancer. Exp Biol Med (Maywood) 2015; 240:1396-401. [PMID: 26069269 DOI: 10.1177/1535370215588924] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/01/2015] [Indexed: 12/17/2022] Open
Abstract
The Grainyhead-like (GRHL) family of transcription factors has three mammalian members, which are currently termed Grainyhead-like 1 (GRHL1), Grainyhead-like 2 (GRHL2), and Grainyhead-like 3 (GRHL3). These factors adopt a DNA-binding immunoglobulin fold homologous to the DNA-binding domain of key tumor suppressor p53. Their patterns of expression are tissue and developmentally specific. Earlier studies of the GRHL proteins focused on their functions in mammalian development. In recent years, these factors have been linked to many different types of cancer: squamous cell carcinoma of the skin, breast cancer, gastric cancer, hepatocellular carcinoma, colorectal cancer, clear cell renal cell carcinoma, neuroblastoma, prostate cancer, and cervical cancer. The roles of GRHL proteins in these various types of cancer are complex, and in some cases appear to be contradictory: they can serve to promote cancer development, or they may act as tumor suppressors, depending on the particular GRHL protein involved and on the cancer type. The reasons for obvious discrepancies in results from different studies remain unclear. At the molecular level, the GRHL transcription factors regulate the expression of genes whose products are involved in cellular proliferation, differentiation, adhesion, and polarity. We herein review the roles of GRHL proteins in cancer development, and we critically examine relevant molecular mechanisms, which were proposed by different authors. We also discuss the significance of recent discoveries implicating the involvement of GRHL transcription factors in cancer and highlight potential future applications of this knowledge in cancer treatment.
Collapse
Affiliation(s)
- Michal Mlacki
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Agnieszka Kikulska
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Krzywinska
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Magdalena Pawlak
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
31
|
Quan Y, Xu M, Cui P, Ye M, Zhuang B, Min Z. Grainyhead-like 2 Promotes Tumor Growth and is Associated with Poor Prognosis in Colorectal Cancer. J Cancer 2015; 6:342-50. [PMID: 25767604 PMCID: PMC4349874 DOI: 10.7150/jca.10969] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/26/2014] [Indexed: 01/05/2023] Open
Abstract
GRHL2 was implicated in regulating cancer development. Our previous study demonstrated that knockdown GRHL2 in colorectal cancer (CRC) cells inhibited cell proliferation by targeting ZEB1. It is unclear whether GRHL2 expression may have diagnostic or prognostic value in colorectal carcinoma. Additionally, how GRHL2 is associated with the clinical features of colorectal carcinoma is not known. In current study, immunohistochemistry stains were performed to examine GRHL2 in 171 colorectal cancers and paired normal colon mucosa. The prognostic value of GRHL2 was investigated in a retrospective cohort study with a five-year follow-up. The effects of GRHL2 on cell growth in vitro and in vivo were explored by GRHL2 over-expressing in HT29 and SW620 CRC cells. Further, the regulation of cell cycle and proliferation proteins by GRHL2 were assessed by flow cytometry and western blot. We found that GRHL2 was over-expressed in CRC tissues, and played an important role in CRC tumorigenesis. GRHL2 expression positively correlated with tumor size and TNM stage. Kaplan-Meier analysis showed that GRHL2 was an independent prognostic factor for both overall survival and recurrence-free survival. Ectopic over-expression of GRHL2 in CRC cell line HT29 and SW620 induced an increase of cellular proliferation in vitro and promoting tumor growth in vivo. The acquisition of GRHL2 regulated cell cycle and modulates the expression of proliferation proteins p21, p27, cyclin A and cyclin D1. Together, our findings reveal GRHL2 can be used as a novel predictive biomarker and represent a potential therapeutic target against CRC.
Collapse
Affiliation(s)
- Yingjun Quan
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Ming Xu
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Peng Cui
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Min Ye
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Biao Zhuang
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhijun Min
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| |
Collapse
|
32
|
Petrof G, Nanda A, Howden J, Takeichi T, McMillan J, Aristodemou S, Ozoemena L, Liu L, South A, Pourreyron C, Dafou D, Proudfoot L, Al-Ajmi H, Akiyama M, McLean W, Simpson M, Parsons M, McGrath J. Mutations in GRHL2 result in an autosomal-recessive ectodermal Dysplasia syndrome. Am J Hum Genet 2014; 95:308-14. [PMID: 25152456 PMCID: PMC4157147 DOI: 10.1016/j.ajhg.2014.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/01/2014] [Indexed: 01/05/2023] Open
Abstract
Grainyhead-like 2, encoded by GRHL2, is a member of a highly conserved family of transcription factors that play essential roles during epithelial development. Haploinsufficiency for GRHL2 has been implicated in autosomal-dominant deafness, but mutations have not yet been associated with any skin pathology. We investigated two unrelated Kuwaiti families in which a total of six individuals have had lifelong ectodermal defects. The clinical features comprised nail dystrophy or nail loss, marginal palmoplantar keratoderma, hypodontia, enamel hypoplasia, oral hyperpigmentation, and dysphagia. In addition, three individuals had sensorineural deafness, and three had bronchial asthma. Taken together, the features were consistent with an unusual autosomal-recessive ectodermal dysplasia syndrome. Because of consanguinity in both families, we used whole-exome sequencing to search for novel homozygous DNA variants and found GRHL2 mutations common to both families: affected subjects in one family were homozygous for c.1192T>C (p.Tyr398His) in exon 9, and subjects in the other family were homozygous for c.1445T>A (p.Ile482Lys) in exon 11. Immortalized keratinocytes (p.Ile482Lys) showed altered cell morphology, impaired tight junctions, adhesion defects, and cytoplasmic translocation of GRHL2. Whole-skin transcriptomic analysis (p.Ile482Lys) disclosed changes in genes implicated in networks of cell-cell and cell-matrix adhesion. Our clinical findings of an autosomal-recessive ectodermal dysplasia syndrome provide insight into the role of GRHL2 in skin development, homeostasis, and human disease.
Collapse
|
33
|
Quan Y, Jin R, Huang A, Zhao H, Feng B, Zang L, Zheng M. Downregulation of GRHL2 inhibits the proliferation of colorectal cancer cells by targeting ZEB1. Cancer Biol Ther 2014; 15:878-87. [PMID: 24756066 PMCID: PMC4100988 DOI: 10.4161/cbt.28877] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 12/19/2022] Open
Abstract
Previous reports have associated GRHL2 with tumor progression. However, the biological role of GRHL2 in human colorectal cancer (CRC) has not been explored. We examined the expression of GRHL2 in 75 CRC samples, as well as the paired non-tumor tissues, by immunohistochemistry, qRT-PCR, and western blot analysis. The association between GRHL2 expression and various clinicopathological parameters including Ki-67, a marker of proliferative activity, was also evaluated. We performed lentivirus-mediated shRNA transfection to knock down GRHL2 gene expression in HT29 and HCT116 CRC cells. Cell proliferation was examined by the CCK-8 (Cell Counting Kit-8) assay, colony formation, and cell cycle assay in vitro. Tumorigenesis in vivo was assessed using a mouse xenograft model. Moreover, we transiently silenced ZEB1 expression in GRHL2-knockdown CRC cells using specific shRNA, and then examined the effects on GRHL2 and E-cadherin expression, as well as cell proliferation. Herein, we demonstrated that enhanced GRHL2 expression was detected in CRC, and correlated with higher levels of Ki-67 staining, larger tumor size, and advanced clinical stage. Knocking down GRHL2 in HT29 and HCT116 CRC cells significantly inhibited cell proliferation by decreasing the number of cells in S phase and increasing that in the G 0/G 1 phaseof the cell cycle. This resulted in inhibition of tumorigenesis in vivo, as well as increased expression of ZEB1. Furthermore, transient ZEB1 knockdown dramatically enhanced cell proliferation and increased GRHL2 and E-cadherin expression. Collectively, our study has identified ZEB1 as a target of GRHL2 and suggested a reciprocal GRHL2-ZEB1 repressive relationship, providing a novel mechanism through which proliferation may be modulated in CRC cells.
Collapse
Affiliation(s)
- Yingjun Quan
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
- Shanghai Institute of Digestive Surgery; Shanghai, PR China
| | - Runsen Jin
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
| | - Ao Huang
- Shanghai Institute of Digestive Surgery; Shanghai, PR China
| | - Hongchao Zhao
- Shanghai Institute of Digestive Surgery; Shanghai, PR China
| | - Bo Feng
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
| | - Lu Zang
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
| | - Minhua Zheng
- Department of Surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, PR China
- Shanghai Minhang District Central Hospital; Shanghai, PR China
| |
Collapse
|