1
|
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes (Basel) 2023; 14:1375. [PMID: 37510280 PMCID: PMC10378777 DOI: 10.3390/genes14071375] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to messenger RNAs. miRNAs are important regulators of gene expression, and their dysregulation is implicated in many human and canine diseases. Most cancers tested to date have been shown to express altered miRNA levels, which indicates their potential importance in the oncogenic process. Based on this evidence, numerous miRNAs have been suggested as potential cancer biomarkers for both diagnosis and prognosis. miRNA-based therapies have also been tested in different cancers and have provided measurable clinical benefits to patients. In addition, understanding miRNA biogenesis and regulatory mechanisms in cancer can provide important knowledge about resistance to chemotherapies, leading to more personalized cancer treatment. In this review, we comprehensively summarized the importance of miRNA in human and canine cancer research. We discussed the current state of development and potential for the miRNA as both a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Atonu Chakrabortty
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Daniel J Patton
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Ždralević M, Raonić J, Popovic N, Vučković L, Rovčanin Dragović I, Vukčević B, Todorović V, Vukmirović F, Marzano F, Tullo A, Guaragnella N, Giannattasio S, Radunović M. The role of miRNA in colorectal cancer diagnosis: A pilot study. Oncol Lett 2023; 25:267. [PMID: 37216163 PMCID: PMC10193376 DOI: 10.3892/ol.2023.13853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, colorectal cancer (CRC) remains the third most common cancer worldwide, and has both a poor prognosis and a high recurrence rate, thus indicating the need for new, sensitive and specific biomarkers. MicroRNAs (miRNAs/miRs) are important regulators of gene expression, which are involved in numerous biological processes implicated in tumorigenesis. The objective of the present study was to investigate the expression of miRNAs in plasma and tissue samples from patients with CRC, and to examine their potential as CRC biomarkers. Using reverse transcription-quantitative PCR, it was revealed that miR-29a, miR-101, miR-125b, miR-146a and miR-155 were dysregulated in the formalin-fixed paraffin-embedded tissues of patients with CRC, compared with the surrounding healthy tissue, and these miRNAs were associated with several pathological features of the tumor. Bioinformatics analysis of overlapping target genes identified AGE-RAGE signaling as a putative joint regulatory pathway. miR-146a was also upregulated in the plasma of patients with CRC, compared with the healthy control group, and had a fair discriminatory power (area under the curve, 0.7006), with 66.7% sensitivity and 77.8% specificity. To the best of our knowledge, this distinct five-miRNA deregulation pattern in tumor tissue, and upregulation of plasma miR-146a, were shown for the first time in patients with CRC; however, studies on larger patient cohorts are warranted to confirm their potential to be used as CRC diagnostic biomarkers.
Collapse
Affiliation(s)
- Maša Ždralević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Janja Raonić
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | | | - Batrić Vukčević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Vladimir Todorović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Institute for Oncology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Filip Vukmirović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Flaviana Marzano
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Apollonia Tullo
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, I-70126 Bari, Italy
| | - Sergio Giannattasio
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Miodrag Radunović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| |
Collapse
|
3
|
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, Stefanescu C, Stolniceanu CR, Ciocoiu M, Dumitras EA, Danciu M, Apostol DGC, Drug V, Shurbaji SA, Coca LG, Leon F, Iftene A, Herghelegiu PC. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel) 2022; 14:4834. [PMID: 36230757 PMCID: PMC9562853 DOI: 10.3390/cancers14194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota's composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Zob
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eduard Alexandru Dumitras
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Vasile Drug
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Sinziana Al Shurbaji
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Lucia-Georgiana Coca
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Florin Leon
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| | - Adrian Iftene
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Paul-Corneliu Herghelegiu
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| |
Collapse
|
4
|
Yang F, Xuan G, Chen Y, Cao L, Zhao M, Wang C, Chen E. MicroRNAs Are Key Molecules Involved in the Gene Regulation Network of Colorectal Cancer. Front Cell Dev Biol 2022; 10:828128. [PMID: 35465317 PMCID: PMC9023807 DOI: 10.3389/fcell.2022.828128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer and one of the leading causes of mortality worldwide. MicroRNAs (miRNAs) play central roles in normal cell maintenance, development, and other physiological processes. Growing evidence has illustrated that dysregulated miRNAs can participate in the initiation, progression, metastasis, and therapeutic resistance that confer miRNAs to serve as clinical biomarkers and therapeutic targets for CRC. Through binding to the 3′-untranslated region (3′-UTR) of target genes, miRNAs can lead to target mRNA degradation or inhibition at a post-transcriptional level. During the last decade, studies have found numerous miRNAs and their potential targets, but the complex network of miRNA/Targets in CRC remains unclear. In this review, we sought to summarize the complicated roles of the miRNA-target regulation network (Wnt, TGF-β, PI3K-AKT, MAPK, and EMT related pathways) in CRC with up-to-date, high-quality published data. In particular, we aimed to discuss the downstream miRNAs of specific pathways. We hope these data can be a potent supplement for the canonical miRNA-target regulation network.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Guoyun Xuan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yixin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Lichao Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Min Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Chen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
- *Correspondence: Erfei Chen,
| |
Collapse
|
5
|
Kudelova E, Holubekova V, Grendar M, Kolkova Z, Samec M, Vanova B, Mikolajcik P, Smolar M, Kudela E, Laca L, Lasabova Z. Circulating miRNA expression over the course of colorectal cancer treatment. Oncol Lett 2021; 23:18. [PMID: 34868358 PMCID: PMC8630815 DOI: 10.3892/ol.2021.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is the third-most common cancer type in males and the second-most common cancer type in females, and has the second-highest overall mortality rate worldwide. Approximately 50% of patients in stage I–III develop metastases, mostly localized to the liver. All physiological conditions occurring in the organism are also reflected in the levels of circulating microRNAs (miRNAs/miRs) in patients. miRNAs are a class of small, non-coding, single-stranded RNAs consisting of 18–25 nucleotides, which have important roles in various cellular processes. The aim of the present study was to evaluate a panel of seven circulating miRNAs (miR-106a-5p, miR-210-5p, miR-155-5p, miR-21-5p, miR-103a-3p, miR-191-5p and miR-16-5p) as biomarkers for monitoring patients undergoing adjuvant treatment of CRC. Total RNA was extracted from the plasma of patients with CRC prior to surgery, in the early post-operative period (n=60) and 3 months after surgery (n=14). The levels of the selected circulating miRNAs were measured with the miRCURY LNA miRNA PCR system and fold changes were calculated using the standard ∆∆Cq method. DIANA-miRPath analysis was used to evaluate the role of significantly deregulated miRNAs. The results indicated significant upregulation of miR-155-5p, miR-21-5p and miR-191-5p, and downregulation of miR-16-5p directly after the surgery. In paired follow-up samples, the most significant upregulation was detected for miR-106a-5p and miR-16-5p, and the most significant downregulation was for miR-21-5p. Pathway analysis outlined the role of the differentially expressed miRNAs in cancer development, but the same pathways are also involved in wound healing and regeneration of intestinal epithelium. It may be suggested that these processes should also be considered in studies investigating sensitive and easily detectable circulating biomarkers for recurrence in patients.
Collapse
Affiliation(s)
- Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Veronika Holubekova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marian Grendar
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Zuzana Kolkova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marek Samec
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Barbora Vanova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Erik Kudela
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| |
Collapse
|
6
|
Association of Exosomal miR-210 with Signaling Pathways Implicated in Lung Cancer. Genes (Basel) 2021; 12:genes12081248. [PMID: 34440422 PMCID: PMC8392066 DOI: 10.3390/genes12081248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
MicroRNA is a class of non-coding RNA involved in post-transcriptional gene regulation. Aberrant expression of miRNAs is well-documented in molecular cancer biology. Extensive research has shown that miR-210 is implicated in the progression of multiple cancers including that of the lung, bladder, colon, and renal cell carcinoma. In recent years, exosomes have been evidenced to facilitate cell–cell communication and signaling through packaging and transporting active biomolecules such as miRNAs and thereby modify the cellular microenvironment favorable for lung cancers. MiRNAs encapsulated inside the lipid bilayer of exosomes are stabilized and transmitted to target cells to exert alterations in the epigenetic landscape. The currently available literature indicates that exosomal miR-210 is involved in the regulation of various lung cancer-related signaling molecules and pathways, including STAT3, TIMP-1, KRAS/BACH2/GATA-3/RIP3, and PI3K/AKT. Here, we highlight major findings and progress on the roles of exosomal miR-210 in lung cancer.
Collapse
|
7
|
Zhang Y, Zhou YM, Zhang ZJ, Li X. miR-210 is a Serological Biomarker for Predicting Recurrence and Prognosis of Colon Carcinoma Patients with Liver Metastases After Radiofrequency Ablation Treatment. Cancer Manag Res 2020; 12:9077-9085. [PMID: 33061602 PMCID: PMC7524199 DOI: 10.2147/cmar.s267731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Hepatic metastasis of colon carcinoma seriously affects the prognosis of patients, and miRNA has attracted much attention in predicting hepatic metastasis of colon carcinoma (CC). This research aimed to explore the predictive role of miR-210 in serum for recurrence and prognosis of CC patients with hepatic metastasis. Methods Altogether, 150 patients with liver metastases of CC (research group, RG) and 130 patients with non-metastatic of CC (control group, CG) admitted to People’s Hospital of Deyang City from March 2012 to March 2015 were obtained and their serum was collected. miR-210 in the RG and the CG, and miR-210 in the RG after radiofrequency ablation treatment were detected, the relationship between miR-210 and pathological parameters of CC patients with hepatic metastasis was analyzed, and patients in the RG were followed up for 5 years to analyze the recurrence, overall survival (OS) and disease-free survival (DFS). The area under the curve (AUC) of receiver operating characteristic curve (ROC) was applied to test the predictive value of miR-210. Cox regression was applied to analyze the independent prognostic factors of patients. Results miR-210 in the RG was evidently higher than that in the CG, and AUC for distinguishing hepatic metastasis of CC was 0.907. miR-210 had a close correlation with lymph node metastasis, distant metastasis and pathological differentiation. After treatment, miR-210 in the RG was evidently reduced, and the serum was higher in patients with recurrence and with poor prognosis. AUC for predicting recurrence was 0.858, and AUC for predicting poor prognosis was 0.843. High miR-210 was closely related to lower 5-year OS and DFS and is also an independent prognostic factor affecting patients’ 5-year OS. Conclusion miR-210 is enhanced in hepatic metastasis of CC, which is a serological biomarker for predicting recurrence and prognosis of patients with hepatic metastasis of CC after radiofrequency ablation, and has great clinical application value.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Radiology, People's Hospital of Deyang City, Deyang City, Sichuan Province 618000, People's Republic of China
| | - Yu-Mei Zhou
- Outpatient Department, People's Hospital of Deyang City, Deyang City, Sichuan Province, 618000, People's Republic of China
| | - Zu-Jian Zhang
- Department of Interventional Radiology, People's Hospital of Deyang City, Deyang City, Sichuan Province 618000, People's Republic of China
| | - Xin Li
- Department of Interventional Radiology, People's Hospital of Deyang City, Deyang City, Sichuan Province 618000, People's Republic of China
| |
Collapse
|
8
|
Current and New Predictors for Treatment Response in Metastatic Colorectal Cancer. The Role of Circulating miRNAs as Biomarkers. Int J Mol Sci 2020; 21:ijms21062089. [PMID: 32197436 PMCID: PMC7139554 DOI: 10.3390/ijms21062089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer in the world. More than half of all CRC patients will eventually develop metastases and require treatment accordingly, but few validated predictive factors for response to systemic treatments exist. In order to ascertain which patients benefit from specific treatments, there is a strong need for new and reliable biomarkers. We conducted a comprehensive search using the PUBMED database, up to December 2019, in order to identify relevant studies on predictive biomarkers for treatment response in metastatic CRC. We will herein present the currently used and potential biomarkers for treatment response and bring up-to-date knowledge on the role of circulating microRNAs, associated with chemotherapy and targeted therapy regimens used in metastatic CRC treatment. Molecular, tumor-related, disease-related, clinical, and laboratory predictive markers for treatment response were identified, mostly proposed, with few validated. Several circulating microRNAs have already proven their role of prediction for treatment response in CRC, but future clinical studies are needed to confirm their role as biomarkers across large cohorts of patients.
Collapse
|
9
|
Kapodistrias N, Theocharopoulou G, Vlamos P. A Hypothesis of Circulating MicroRNAs' Implication in High Incidence of Atrial Fibrillation and Other Electrocardiographic Abnormalities in Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1196:1-9. [PMID: 32468302 DOI: 10.1007/978-3-030-32637-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are short non-coding RNA molecules that control posttranscriptional gene expression and are present in tissues cells but also circulate in biological fluids in various forms (exosome, connected with proteins, apoptotic bodies, etc.). The roles that circulated extracellular serum microRNAs possess in cancer development, like in the delivery from a recipient cell to distant tissues and the repression of host genes resulting in the impairment of critical functions, are still undetermined. Disturbances, such as the higher incidence of atrial fibrillation in cancer patients, could be analyzed in the frame of suppressive action of circulated microRNAs in genes that control cardiac conduction in atrium. More precisely, mir-21 overexpression in tissues promotes atrium fibrosis and impairs conductibility. A possible hypothesis is that the high levels of circulating microRNA in cancer may exert the same effect. Further experiments are necessary to corroborate the hypothesis.
Collapse
|
10
|
Ishinaga H, He F, Hou B, Shah S, Murata M, Takeuchi K. A longitudinal study on circulating miR-21 as a therapeutic effect marker in head and neck squamous cell carcinoma. Carcinogenesis 2019; 40:1070-1076. [PMID: 31063535 DOI: 10.1093/carcin/bgz075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of the study is to investigate plasma miR-21 for a possible therapeutic effect determination marker in head and neck squamous cell carcinoma (HNSCC). Plasma samples are obtained from 86 HNSCC patients and 29 non-cancer volunteers who had been treated at Mie University Hospital between May 2015 and December 2016, and plasma miR-21 expression was measured using real-time quantitative reverse transcription polymerase chain reaction. In addition, plasma miR-21 level of advanced HNSCC patients including 22 non-recurrent cases and 11 recurrent cases before and after treatment was analyzed using a longitudinal design. Plasma miR-21 expression in 86 HNSCC patients was obviously higher than in 29 control patients (P < 0.0001). The area under the curve (AUC) for plasma miR-21 was 0.756 (95% confidence interval: 0.661-0.851). Furthermore, our longitudinal study of plasma miR-21 showed that the expression level of plasma miR-21 was significantly reduced at the time point of 2 months after treatment in case of no recurrence. On the other hand, plasma miR-21 was not decreased after treatment in case of 10 patients who had developed recurrences during the follow-up period. This study may provide new insights into the role of plasma miR-21 as a biomarker for HNSCC, and plasma miR-21 would be useful for early detection of tumor recurrence after operation or chemoradiotherapy.
Collapse
Affiliation(s)
- Hajime Ishinaga
- Department of Otorhinolaryngology-Head and Neck Surgery, Tsu, Mie, Japan
| | - Feng He
- Department of Otorhinolaryngology-Head and Neck Surgery, Tsu, Mie, Japan
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Bo Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Tsu, Mie, Japan
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - SaidAhmad Shah
- Department of Otorhinolaryngology-Head and Neck Surgery, Tsu, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, Japan
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Tsu, Mie, Japan
| |
Collapse
|
11
|
Jin X, Liao M, Zhang L, Yang M, Zhao J. Role of the novel gene BZW2 in the development of hepatocellular carcinoma. J Cell Physiol 2019; 234:16592-16600. [PMID: 30805927 DOI: 10.1002/jcp.28331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/24/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in adults. Basic leucine zipper and W2 domains 2 (BZW2) is a member of the basic-region leucine zipper (bZIP) superfamily of transcription factors. Here, we found that BZW2 expression was substantially increased in both human HCC tissues and cell lines, which was correlated with the clinical progression of patients with HCC. Silence of BZW2 in HCC cells by infecting with the lentivirus for delivering BZW2 shRNA (short hairpin RNA), prohibits cell progression, as determined by the suppressed cell proliferation, clonality, invasion, and increased cell apoptosis. Furthermore, overexpression of BZW2 promotes drug resistance of HCC cells, as shown by the attenuated suppression of cell viability and invasion following rapamycin (RAPA) treatment. Mechanistically, overexpression (or silence) of BZW2 in HCC cells significantly stimulates (or decreases) the activation of the PI3K/AKT/mTOR signaling pathway, which is responsible for HCC progression. Thus, increased BZW2 expression in HCC can induce HCC progression and drug resistance via stimulating the PI3K/AKT/mTOR pathway, which may represent a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingmei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Zhang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manyi Yang
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfeng Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Perilli L, Tessarollo S, Albertoni L, Curtarello M, Pastò A, Brunetti E, Fassan M, Rugge M, Indraccolo S, Amadori A, Bortoluzzi S, Zanovello P. Silencing of miR-182 is associated with modulation of tumorigenesis through apoptosis induction in an experimental model of colorectal cancer. BMC Cancer 2019; 19:821. [PMID: 31429725 PMCID: PMC6700772 DOI: 10.1186/s12885-019-5982-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND miR-182-5p (miR-182) is an oncogenic microRNA (miRNA) found in different tumor types and one of the most up-regulated miRNA in colorectal cancer (CRC). Although this microRNA is expressed in the early steps of tumor development, its role in driving tumorigenesis is unclear. METHODS The effects of miR-182 silencing on transcriptomic profile were investigated using two CRC cell lines characterized by different in vivo biological behavior, the MICOL-14h-tert cell line (dormant upon transfer into immunodeficient hosts) and its tumorigenic variant, MICOL-14tum. Apoptosis was studied by annexin/PI staining and cleaved Caspase-3/PARP analysis. The effect of miR-182 silencing on the tumorigenic potential was addressed in a xenogeneic model of MICOL-14tum transplant. RESULTS Endogenous miR-182 expression was higher in MICOL-14tum than in MICOL-14h-tert cells. Interestingly, miR-182 silencing had a strong impact on gene expression profile, and the positive regulation of apoptotic process was one of the most affected pathways. Accordingly, annexin/PI staining and caspase-3/PARP activation demonstrated that miR-182 treatment significantly increased apoptosis, with a prominent effect in MICOL-14tum cells. Moreover, a significant modulation of the cell cycle profile was exerted by anti-miR-182 treatment only in MICOL-14tum cells, where a significant increase in the fraction of cells in G0/G1 phases was observed. Accordingly, a significant growth reduction and a less aggressive histological aspect were observed in tumor masses generated by in vivo transfer of anti-miR-182-treated MICOL-14tum cells into immunodeficient hosts. CONCLUSIONS Altogether, these data indicate that increased miR-182 expression may promote cell proliferation, suppress the apoptotic pathway and ultimately confer aggressive traits on CRC cells.
Collapse
Affiliation(s)
- Lisa Perilli
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Sofia Tessarollo
- Genetics and Molecular Biology Unit, ULSS 8 Berica, Vicenza, Italy
| | - Laura Albertoni
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Matteo Curtarello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Anna Pastò
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Efrem Brunetti
- Department of Surgery, Oncology and Gastroenterology, Immunology & Oncology Section, University of Padova, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Massimo Rugge
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Alberto Amadori
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Immunology & Oncology Section, University of Padova, Padua, Italy
| | | | - Paola Zanovello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Immunology & Oncology Section, University of Padova, Padua, Italy
| |
Collapse
|
13
|
The emerging role of noncoding RNAs in colorectal cancer chemoresistance. Cell Oncol (Dordr) 2019; 42:757-768. [DOI: 10.1007/s13402-019-00466-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
|
14
|
Liu S, Jiang T, Zhong Y, Yu Y. miR-210 inhibits cell migration and invasion by targeting the brain-derived neurotrophic factor in glioblastoma. J Cell Biochem 2019; 120:11375-11382. [PMID: 30746749 DOI: 10.1002/jcb.28414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
Recently, there is increasing evidence that microRNAs are related to the development, diagnosis, treatment, and prognosis of glioblastoma. microRNA-210 (miR-210) had been identified in many human cancers, but the specific function of miR-210 remains unclear in glioblastoma. The present study mainly focused on exploring its biological role and potential molecular mechanisms in glioblastoma. We found that miR-210 expression was decreased in glioblastoma, and downregulation of miR-210 was related to worse prognosis in glioblastoma patients. In addition, miR-210 overexpression inhibited the migration and invasion of human glioblastoma cells. At the same time, we found that miR-210 directly targets the brain-derived neurotrophic factor (BDNF) and reduces BDNF expression level. Consistently, BDNF silencing had the same effects as miR-210 overexpression in glioblastoma, and upregulation of BDNF counteracted the inhibitory effect of miR-210 in glioblastoma. In conclusion, miR-210 suppressed the migration and invasion of glioblastoma cells by targeting BDNF.
Collapse
Affiliation(s)
- Shouyue Liu
- Department of Neurosurgery, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Tao Jiang
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yingjie Zhong
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yin Yu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
15
|
Plasma microRNA Levels Combined with CEA and CA19-9 in the Follow-Up of Colorectal Cancer Patients. Cancers (Basel) 2019; 11:cancers11060864. [PMID: 31234350 PMCID: PMC6627112 DOI: 10.3390/cancers11060864] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) ranks among the most common cancers worldwide. Surgical removal remains the best strategy for treatment of resectable tumors. An important part of caring for patients after surgery is monitoring for early detection of a possible relapse of the disease. Efforts are being made to improve the sensitivity and specificity of routinely used carcinoembryonic antigen (CEA) with the use of additional biomarkers such as microRNAs. The aim of our study was to evaluate the prognostic potential of microRNAs and their use as markers of disease recurrence. The quantitative estimation of CEA, CA19-9, and 22 selected microRNAs (TaqMan Advanced miRNA Assays) was performed in 85 paired (preoperative and postoperative) blood plasma samples of CRC patients and in samples taken during the follow-up period. We have revealed a statistically significant decrease in plasma levels for miR-20a, miR-23a, miR-210, and miR-223a (p = 0.0093, p = 0.0013, p = 0.0392, and p = 0.0214, respectively) after surgical removal of the tumor tissue. A statistically significant relation to prognosis (overall survival; OS) was recorded for preoperative plasma levels of miR-20a, miR-21, and miR-23a (p = 0.0236, p = 0.0316, and p =0.0271, respectively) in a subgroup of patients who underwent palliative surgery. The best discrimination between patients with favorable and unfavorable outcomes was achieved by a combination of CEA, CA19-9 with miR-21, miR-20a, and miR-23a (p < 0.0001). The use of these microRNAs for early disease recurrence detection was affected by a low specificity in comparison with CEA and CA19-9. CEA and CA19-9 had high specificity but low sensitivity. Our results show the benefit of combining currently used standard biomarkers and microRNAs for precise prognosis estimation.
Collapse
|
16
|
The Developing Story of Predictive Biomarkers in Colorectal Cancer. J Pers Med 2019; 9:jpm9010012. [PMID: 30736475 PMCID: PMC6463186 DOI: 10.3390/jpm9010012] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. Surgery remains the most important treatment for non-metastatic CRC, and the administration of adjuvant chemotherapy depends mainly on the disease stage, which is still the strongest prognostic factor. A refined understanding of the genomics of CRC has recently been achieved thanks to the widespread use of next generation sequencing with potential future therapeutic implications. Microsatellite instability (MSI) has been suggested as a predictive marker for response to anti-programmed-cell-death protein 1 (PD-1) therapy in solid tumors, including CRC. It should be noted that not all cancers with MSI phenotype respond to anti-PD-1 immunotherapy, highlighting the urgent need for even better predictive biomarkers. Mitogen-Activated Protein Kinase (MAPK) pathway genes KRAS, NRAS, and BRAF represent important molecular targets and could serve as independent prognostic biomarkers in CRC, and identify those who potentially benefit from anti-epidermal growth factor receptor (EGFR) treatment. Emerging evidence has attributed a significant role to inflammatory markers including blood cell ratios in the prognosis and survival of CRC patients; these biomarkers can be easily assessed in routine blood exams and be used to identify high-risk patients or those more likely to benefit from chemotherapy, targeted therapies and potentially immunotherapy. Analysis of cell-free DNA (cfDNA), circulating tumor cells (CTC) and/or micro RNAs (miRNAs) could provide useful information for the early diagnosis of CRC, the identification of minimal residual disease and, the evaluation of the risk of recurrence in early CRC patients. Even the selection of patients suitable for the new targeted therapy is becoming possible with the use of predictive miRNA biomarkers. Finally, the development of treatment resistance with the emergence of chemo-resistance clones after treatment remains the most important challenge in the clinical practice. In this context it is crucial to identify potential biomarkers and therapeutic targets which could lead to development of new and more effective treatments.
Collapse
|
17
|
Wang J, Cheng M, Law IKM, Ortiz C, Sun M, Koon HW. Cathelicidin Suppresses Colon Cancer Metastasis via a P2RX7-Dependent Mechanism. MOLECULAR THERAPY-ONCOLYTICS 2019; 12:195-203. [PMID: 30847383 PMCID: PMC6389776 DOI: 10.1016/j.omto.2019.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
The antimicrobial peptide cathelicidin inhibits development of colitis-associated colon cancer. However, the role of cathelicidin in colon cancer metastasis remains unknown. We hypothesized that cathelicidin is effective in inhibiting colon cancer metastasis. Human colon cancer HT-29 cells were injected intravenously into nude mice. Control HA-tagged adeno-associated virus (HA-AAV) or cathelicidin-overexpressing AAV (CAMP-HA-AAV) were injected intravenously into nude mice on the same day. Four weeks later, the nude mice were assessed for lung and liver metastases. Human colon cancer SW620 cells were used to study the effect of cathelicidin on cell migration and cytoskeleton. Incubation of SW620 cells with cathelicidin dose-dependently reduced cell migration, disrupted cytoskeletal structure, and reduced βIII-tubulin (TUBB3) mRNA expression. The addition of the P2RX7 antagonist KN62, but not the FPRL1 antagonist WRW4, prevented the LL-37-mediated inhibition of cell migration and TUBB3 mRNA expression. The CAMP-HA-AAV-overexpressing group showed significantly reduced human CK20 protein (by 60%) and TUBB3 mRNA expression (by 40%) in the lungs and liver of the HT-29-loaded nude mice, compared to the HA-AAV control group. Intraperitoneal injection of KN62 reversed the CAMP-HA-AAV-mediated inhibition of human CK20 and TUBB3 expression in the lungs and liver of HT-29-loaded nude mice. In conclusion, cathelicidin inhibits colon cancer metastasis via a P2RX7-dependent pathway.
Collapse
Affiliation(s)
- Jiani Wang
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China.,Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle Cheng
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ivy K M Law
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christina Ortiz
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingjun Sun
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Hon Wai Koon
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Chen J, Zhong J, Liu Y, Huang Y, Luo F, Zhou Y, Pan X, Cao S, Zhang L, Zhang Y, Wang J. Purified vitexin compound 1, a new neolignan isolated compound, promotes PUMA-dependent apoptosis in colorectal cancer. Cancer Med 2018; 7:6158-6169. [PMID: 30402948 PMCID: PMC6308053 DOI: 10.1002/cam4.1769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Purified vitexin compound 1 (VB1, a neolignan isolated and extracted from the seed of Chinese herb Vitex negundo) is an effective antitumor agent and exhibits promising clinical activity against various cancers including colorectal cancer. However, it remains unknown about the precise underlying mechanism associated with the antitumor effect of VB1 and how it triggers apoptosis in cancer cells. Here, we demonstrated that VB1 promoted apoptosis via p53-dependent induction of p53 upregulated modulator of apoptosis (PUMA) and further to induce Bax (Bcl-2-associated X protein) activation and mitochondrial dysfunction in colon cancer HCT-116 and LoVo cells. Deficiency in p53, PUMA, or Bax abrogated VB1-induced apoptosis and promoted cell survival in HCT-116 cells. Furthermore, the combination of VB1 with chemotherapeutic drugs 5-fluorouracil (5-FU) or NVP-BZE235 resulted in a synergistic antitumor effect via PUMA induction in HCT-116 cells. VB1 significantly suppressed the cell proliferation of wild-type (WT) HCT-116 and LoVo cells in vitro and tumor growth in vivo. The results indicate that p53/PUMA/Bax axis plays a critical role in VB1-induced apoptosis and VB1 may have valuable clinical applications in cancer therapy as a novel anticancer agent used alone or in combination with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jingfei Chen
- Department of Internal MedicineThe Third Xiangya HospitalCentral South UniversityChangshaChina
- College of BiologyHunan UniversityChangshaChina
- Department of Laboratory MedicineXiangya School of MedicineCentral South UniversityChangshaChina
- Department of Obstetrics and GynecologyXiangya HospitalCentral South UniversityChangshaChina
| | | | - Yeying Liu
- Department of Internal MedicineThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuan Huang
- College of BiologyHunan UniversityChangshaChina
| | - Fei Luo
- Department of CardiologyThe Second Xiangya HospitalChangshaChina
| | - Yingjun Zhou
- School of Pharmaceutical ScienceCentral South UniversityChangshaChina
| | - Xi Pan
- Department of OncologyThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Shousong Cao
- Department of PharmacologySchool of PharmacySouthwest Medical UniversityLuzhouChina
| | - Lingling Zhang
- Department of Laboratory MedicineXiangya School of MedicineCentral South UniversityChangshaChina
| | - Yingjie Zhang
- College of BiologyHunan UniversityChangshaChina
- Shenzhen InstituteHunan UniversityShenzhenChina
| | - Jiangang Wang
- Department of Internal MedicineThe Third Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
19
|
Hon KW, Abu N, Ab Mutalib NS, Jamal R. miRNAs and lncRNAs as Predictive Biomarkers of Response to FOLFOX Therapy in Colorectal Cancer. Front Pharmacol 2018; 9:846. [PMID: 30127741 PMCID: PMC6088237 DOI: 10.3389/fphar.2018.00846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy is one of the options for cancer treatment. FOLFOX is one of the widely used chemotherapeutic regimens used to treat primarily colorectal cancer and other cancers as well. However, the emergence of chemo-resistance clones during cancer treatment has become a critical challenge in the clinical setting. It is crucial to identify the potential biomarkers and therapeutics targets which could lead to an improvement in the success rate of the proposed therapies. Since non-coding RNAs have been known to be important players in the cellular system, the interest in their functional roles has intensified. Non-coding RNAs (ncRNAs) as regulators at the post-transcriptional level could be very promising to provide insights in overcoming chemo-resistance to FOLFOX. Hence, this mini review attempts to summarize the potential of ncRNAs correlating with chemo-sensitivity/resistance to FOLFOX.
Collapse
Affiliation(s)
- Kha Wai Hon
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Wei HT, Guo EN, Liao XW, Chen LS, Wang JL, Ni M, Liang C. Genome‑scale analysis to identify potential prognostic microRNA biomarkers for predicting overall survival in patients with colon adenocarcinoma. Oncol Rep 2018; 40:1947-1958. [PMID: 30066920 PMCID: PMC6111604 DOI: 10.3892/or.2018.6607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to identify potential prognostic microRNA (miRNA) biomarkers for colon adenocarcinoma (COAD) prognostic prediction using the dataset of The Cancer Genome Atlas (TCGA). The genome‑wide miRNA sequencing dataset and corresponding COAD clinical information were downloaded from TCGA. Prognosis‑related miRNA screening was performed by genome‑wide multivariable Cox regression analysis and used for prognostic signature construction. Ten miRNAs (hsa‑mir‑891a, hsa‑mir‑6854, hsa‑mir‑216a, hsa‑mir‑378d‑1, hsa‑mir‑92a‑1, hsa‑mir‑4709, hsa‑mir‑92a‑2, hsa‑mir‑210, hsa‑mir‑940 and hsa‑mir‑887) were identified as prognostic miRNAs and used for further prognostic signature construction. The 10‑miRNA prognostic signature showed good performance in prognosis prediction (adjusted P<0.0001; adjusted hazard ratio, 4.580; 95% confidence interval, 2.783‑7.538). In the time‑dependent receiver operating characteristic analysis, the area under the curve was 0.735, 0.788, 0.806, 0.806, 0.775 and 0.900 for 1‑, 2‑, 3‑, 4‑, 5‑ and 10‑year COAD overall survival prediction, respectively. Comprehensive survival analysis suggested that the 10‑miRNA prognostic signature is an independent prognostic factor in COAD, with a better performance in COAD overall survival prediction than other traditional clinical parameters. Functional enrichment indicated that the corresponding target genes were significantly enriched in multiple biological processes and pathways, including regulation of cell proliferation, cell cycle, cell growth, and Wnt and transforming growth factor‑β signaling pathways. In conclusion, our present study identified a 10‑miRNA expression signature that may serve as a potential prognostic biomarker in COAD patients.
Collapse
Affiliation(s)
- Hao-Tang Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning,Guangxi Zhuang Autonomous Region 530031, P.R. China
| | - Er-Na Guo
- School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Sheng Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Lei Wang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning,Guangxi Zhuang Autonomous Region 530031, P.R. China
| | - Min Ni
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning,Guangxi Zhuang Autonomous Region 530031, P.R. China
| | - Chi Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning,Guangxi Zhuang Autonomous Region 530031, P.R. China
| |
Collapse
|
21
|
To KKW, Tong CWS, Wu M, Cho WCS. MicroRNAs in the prognosis and therapy of colorectal cancer: From bench to bedside. World J Gastroenterol 2018; 24:2949-2973. [PMID: 30038463 PMCID: PMC6054943 DOI: 10.3748/wjg.v24.i27.2949] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs that can post-transcriptionally regulate the expression of various oncogenes and tumor suppressor genes. Dysregulated expression of many miRNAs have been shown to mediate the signaling pathways critical in the multistep carcinogenesis of colorectal cancer (CRC). MiRNAs are stable and protected from RNase-mediated degradation, thereby enabling its detection in biological fluids and archival tissues for biomarker studies. This review focuses on the role and application of miRNAs in the prognosis and therapy of CRC. While stage II CRC is potentially curable by surgical resection, a significant percentage of stage II CRC patients do develop recurrence. MiRNA biomarkers may be used to stratify such high-risk population for adjuvant chemotherapy to provide better prognoses. Growing evidence also suggests that miRNAs are involved in the metastatic process of CRC. Certain of these miRNAs may thus be used as prognostic biomarkers to identify patients more likely to have micro-metastasis, who could be monitored more closely after surgery and/or given more aggressive adjuvant chemotherapy. Intrinsic and acquired resistance to chemotherapy severely hinders successful chemotherapy in CRC treatment. Predictive miRNA biomarkers for response to chemotherapy may identify patients who will benefit the most from a particular regimen and also spare the patients from unnecessary side effects. Selection of patients to receive the new targeted therapy is becoming possible with the use of predictive miRNA biomarkers. Lastly, forced expression of tumor suppressor miRNA or silencing of oncogenic miRNA in tumors by gene therapy can also be adopted to treat CRC alone or in combination with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Kenneth KW To
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Christy WS Tong
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - William CS Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
22
|
Nasr R, Salim Hammoud M, Nassar F, Mukherji D, Shamseddine A, Temraz S. Inflammatory Markers and MicroRNAs: The Backstage Actors Influencing Prognosis in Colorectal Cancer Patients. Int J Mol Sci 2018; 19:E1867. [PMID: 29949857 PMCID: PMC6073730 DOI: 10.3390/ijms19071867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains a deadly disease, afflicting the lives of millions worldwide. The prognosis of CRC patients is best predicted by surgical resection and pathological analysis of specimens. Emerging evidence has attributed a significant role to inflammatory markers and microRNAs (miRNAs) in the prognosis and survival of CRC patients. AIM Here, we review the literature on inflammatory markers and miRNAs with an established role on survival rates, response to systemic chemotherapy, and other clinic-pathological parameters in CRC patients. RESULTS Our literature review revealed a critical role of inflammatory markers—specifically, the acute-phase proteins, inflammatory cytokines, and blood cell ratios—on prognostic outcomes in CRC patients. MiRNAs, on the other hand, were useful in predicting prognosis and clinical response and accordingly stratifying CRC patients for optimal drug selection. CONCLUSION These biomarkers are easily measured in routine blood exams and can be used in adjunct to the tumor-node-metastasis (TNM) staging system to identify high-risk patients and those who are more likely to benefit from chemotherapy and other targeted therapies. However, more prospective studies are needed for the validation of these discussed prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Rihab Nasr
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 110 72020, Lebanon.
| | - Miza Salim Hammoud
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 110 72020, Lebanon.
| | - Farah Nassar
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 110 72020, Lebanon.
| | - Deborah Mukherji
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 110 72020, Lebanon.
| | - Ali Shamseddine
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 110 72020, Lebanon.
| | - Sally Temraz
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 110 72020, Lebanon.
| |
Collapse
|
23
|
Translational reprogramming of colorectal cancer cells induced by 5-fluorouracil through a miRNA-dependent mechanism. Oncotarget 2018; 8:46219-46233. [PMID: 28515355 PMCID: PMC5542262 DOI: 10.18632/oncotarget.17597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/06/2017] [Indexed: 11/25/2022] Open
Abstract
5-Fluorouracil (5-FU) is a widely used chemotherapeutic drug in colorectal cancer. Previous studies showed that 5-FU modulates RNA metabolism and mRNA expression. In addition, it has been reported that 5-FU incorporates into the RNAs constituting the translational machinery and that 5-FU affects the amount of some mRNAs associated with ribosomes. However, the impact of 5-FU on translational regulation remains unclear. Using translatome profiling, we report that a clinically relevant dose of 5-FU induces a translational reprogramming in colorectal cancer cell lines. Comparison of mRNA distribution between polysomal and non-polysomal fractions in response to 5-FU treatment using microarray quantification identified 313 genes whose translation was selectively regulated. These regulations were mostly stimulatory (91%). Among these genes, we showed that 5-FU increases the mRNA translation of HIVEP2, which encodes a transcription factor whose translation in normal condition is known to be inhibited by mir-155. In response to 5-FU, the expression of mir-155 decreases thus stimulating the translation of HIVEP2 mRNA. Interestingly, the 5-FU-induced increase in specific mRNA translation was associated with reduction of global protein synthesis. Altogether, these findings indicate that 5-FU promotes a translational reprogramming leading to the increased translation of a subset of mRNAs that involves at least for some of them, miRNA-dependent mechanisms. This study supports a still poorly evaluated role of translational control in drug response.
Collapse
|
24
|
Ullmann P, Qureshi-Baig K, Rodriguez F, Ginolhac A, Nonnenmacher Y, Ternes D, Weiler J, Gäbler K, Bahlawane C, Hiller K, Haan S, Letellier E. Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Oncotarget 2018; 7:65454-65470. [PMID: 27589845 PMCID: PMC5323168 DOI: 10.18632/oncotarget.11772] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
Low oxygen concentrations (hypoxia) are known to affect the cellular metabolism and have been suggested to regulate a subpopulation of cancer cells with tumorigenic properties, the so-called tumor-initiating cells (TICs). To better understand the mechanism of hypoxia-induced TIC activation, we set out to study the role of hypoxia-responsive miRNAs in recently established colon cancer patient-derived TICs. We were able to show that low oxygen concentrations consistently lead to the upregulation of miR-210 in different primary TIC-enriched cultures. Both stable overexpression of miR-210 and knockdown of its target gene ISCU resulted in enhanced TIC self-renewal. We could validate the tumorigenic properties of miR- 210 in in vivo experiments by showing that ectopic expression of miR-210 results in increased tumor incidence. Furthermore, enhanced miR-210 expression correlated with reduced TCA cycle activity and increased lactate levels. Importantly, by blocking lactate production via inhibition of LDHA, we could reverse the promoting effect of miR-210 on self-renewal capacity, thereby emphasizing the regulatory impact of the glycolytic phenotype on colon TIC properties. Finally, by assessing expression levels in patient tissue, we could demonstrate the clinical relevance of the miR-210/ISCU signaling axis for colorectal carcinoma. Taken together, our study highlights the importance of hypoxia-induced miR-210 in the regulation of colon cancer initiation.
Collapse
Affiliation(s)
- Pit Ullmann
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Komal Qureshi-Baig
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Fabien Rodriguez
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | | | - Dominik Ternes
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jil Weiler
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Karoline Gäbler
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Christelle Bahlawane
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, L-4367 Belvaux, Luxembourg
| | - Serge Haan
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Elisabeth Letellier
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
25
|
Ke X, Yan R, Sun Z, Cheng Y, Meltzer A, Lu N, Shu X, Wang Z, Huang B, Liu X, Wang Z, Song JH, Ng CK, Ibrahim S, Abraham JM, Shin EJ, He S, Meltzer SJ. Esophageal Adenocarcinoma-Derived Extracellular Vesicle MicroRNAs Induce a Neoplastic Phenotype in Gastric Organoids. Neoplasia 2017; 19:941-949. [PMID: 28968550 PMCID: PMC5633352 DOI: 10.1016/j.neo.2017.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
There have been no reports describing the effects of cancer cell-derived extracellular vesicles (EVs) on three-dimensional organoids. In this study, we delineated the proneoplastic effects of esophageal adenocarcinoma (EAC)-derived EVs on gastric organoids (gastroids) and elucidated molecular mechanisms underlying these effects. EVs were identified using PKH-67 staining. Morphologic changes, Ki-67 immunochemistry, cell viability, growth rates, and expression levels of miR-25 and miR-210, as well as of their target mRNAs, were determined in gastroids co-cultured with EAC-derived extracellular vesicles (c-EVs). C-EVs were efficiently taken up by gastroids. Notably, c-EV-treated gastroids were more crowded, compact, and multilayered and contained smaller lumens than did those cultured in organoid medium alone or in EAC-conditioned medium that had been depleted of EVs. Moreover, c-EV-treated gastroids manifested increased proliferation and cellular viability relative to medium-only or EV-depleted controls. Expression levels of miR-25 and miR-210 were significantly higher, and those of PTEN and AIFM3 significantly lower, in c-EV-treated versus medium-only or EV-depleted control groups. Inhibitors of miR-25 and miR-210 reversed the increased cell proliferation induced by c-exosomes in co-cultured gastroids by lowering miR-25 and miR-210 levels. In conclusion, we have constructed a novel model system featuring the co-culture of c-EVs with three-dimensional gastroids. Using this model, we discovered that cancer-derived EVs induce a neoplastic phenotype in gastroids. These changes are due, at least in part, to EV transfer of miR-25 and miR-210.
Collapse
Affiliation(s)
- Xiquan Ke
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Department of Gastroenterology, the First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rong Yan
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Departments of Surgical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Zhenguo Sun
- Department of Thoracic Surgery, Shandong University Qilu Hospital, Jinan, Shandong, PR China
| | - Yulan Cheng
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Amy Meltzer
- Department of Biology, Goucher College, Baltimore, MD, USA
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Huang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Liu
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Departments of Pathology, the First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Zhixiong Wang
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Departments of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jee Hoon Song
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Christopher K Ng
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sariat Ibrahim
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - John M Abraham
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Eun Ji Shin
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China.
| | - Stephen J Meltzer
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
26
|
Esophageal Adenocarcinoma-Derived Extracellular Vesicle MicroRNAs Induce a Neoplastic Phenotype in Gastric Organoids. Neoplasia 2017. [PMID: 28968550 DOI: 10.1016/j.neo.2017.06.007.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There have been no reports describing the effects of cancer cell-derived extracellular vesicles (EVs) on three-dimensional organoids. In this study, we delineated the proneoplastic effects of esophageal adenocarcinoma (EAC)-derived EVs on gastric organoids (gastroids) and elucidated molecular mechanisms underlying these effects. EVs were identified using PKH-67 staining. Morphologic changes, Ki-67 immunochemistry, cell viability, growth rates, and expression levels of miR-25 and miR-210, as well as of their target mRNAs, were determined in gastroids co-cultured with EAC-derived extracellular vesicles (c-EVs). C-EVs were efficiently taken up by gastroids. Notably, c-EV-treated gastroids were more crowded, compact, and multilayered and contained smaller lumens than did those cultured in organoid medium alone or in EAC-conditioned medium that had been depleted of EVs. Moreover, c-EV-treated gastroids manifested increased proliferation and cellular viability relative to medium-only or EV-depleted controls. Expression levels of miR-25 and miR-210 were significantly higher, and those of PTEN and AIFM3 significantly lower, in c-EV-treated versus medium-only or EV-depleted control groups. Inhibitors of miR-25 and miR-210 reversed the increased cell proliferation induced by c-exosomes in co-cultured gastroids by lowering miR-25 and miR-210 levels. In conclusion, we have constructed a novel model system featuring the co-culture of c-EVs with three-dimensional gastroids. Using this model, we discovered that cancer-derived EVs induce a neoplastic phenotype in gastroids. These changes are due, at least in part, to EV transfer of miR-25 and miR-210.
Collapse
|
27
|
Mjelle R, Sellæg K, Sætrom P, Thommesen L, Sjursen W, Hofsli E. Identification of metastasis-associated microRNAs in serum from rectal cancer patients. Oncotarget 2017; 8:90077-90089. [PMID: 29163812 PMCID: PMC5685733 DOI: 10.18632/oncotarget.21412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are promising prognostic and diagnostic biomarkers due to their high stability in blood. Here we investigate the expression of miRNAs and other noncoding (nc) RNAs in serum of rectal cancer patients. Serum from 96 rectal cancer patients was profiled using small RNA sequencing and expression of small RNAs was correlated with the clinicopathological characteristics of the patients. Multiple classes of RNAs were detected, including miRNAs and fragments of tRNAs, snoRNAs, long ncRNAs, and other classes of RNAs. Several miRNAs, miRNA variants (isomiRs) and other ncRNAs were differentially expressed between Stage IV and Stage I-III rectal cancer patients, including several members of the miR-320 family. Furthermore, we show that high expression of miR-320d as well as one tRNA fragment is associated with poor survival. We also show that several miRNAs and isomiRs are differentially expressed between patients receiving preoperative chemoradiotherapy and patients who did not receive any treatment before serum collection. In summary, our study shows that the expression of miRNAs and other small ncRNAs in serum may be used to predict distant metastasis and survival in rectal cancer.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway
| | - Kjersti Sellæg
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.,Department of Computer Science, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Liv Thommesen
- Department of Biomedical Science, Norwegian University of Science and Technology, 7030 Trondheim Norway
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.,Department of Medical Genetics, St. Olavs Hospital, Norwegian University of Science and Technology, 7030 Trondheim Norway
| | - Eva Hofsli
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.,The Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
28
|
Ren D, Yang Q, Dai Y, Guo W, Du H, Song L, Peng X. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway. Mol Cancer 2017; 16:117. [PMID: 28693582 PMCID: PMC5504657 DOI: 10.1186/s12943-017-0688-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The primary issue arising from prostate cancer (PCa) is its high prevalence to metastasize to bone, which severely affects the quality of life and survival time of PCa patients. miR-210-3p is a well-documented oncogenic miRNA implicated in various aspects of cancer development, progression and metastasis. However, the clinical significance and biological roles of miR-210-3p in PCa bone metastasis remain obscure. METHODS miR-210-3p expression was evaluated by real-time PCR in 68 bone metastatic and 81 non-bone metastatic PCa tissues. The biological roles of miR-210-3p in the bone metastasis of PCa were investigated both in vitro by EMT and Transwell assays, and in vivo using a mouse model of left cardiac ventricle inoculation. Bioinformatics analysis, real-time PCR, western blot and luciferase reporter analysis were applied to discern and examine the relationship between miR-210-3p and its potential targets. RT-PCR was performed to identify the underlying mechanism of miR-210-3p overexpression in bone metastasis of PCa. Clinical correlation of miR-210-3p with its targets was examined in human PCa and metastatic bone tissues. RESULTS miR-210-3p expression is elevated in bone metastatic PCa tissues compared with non-bone metastatic PCa tissues. Overexpression of miR-210-3p positively correlates with serum PSA levels, Gleason grade and bone metastasis status in PCa patients. Upregulating miR-210-3p enhances, while silencing miR-210-3p represses the EMT, invasion and migration of PCa cells in vitro. Importantly, silencing miR-210-3p significantly inhibits bone metastasis of PC-3 cells in vivo. Our results further demonstrate that miR-210-3p maintains the sustained activation of NF-κB signaling via targeting negative regulators of NF-κB signaling (TNF-α Induced Protein 3 Interacting Protein 1) TNIP1 and (Suppressor Of Cytokine Signaling 1) SOCS1, resulting in EMT, invasion, migration and bone metastasis of PCa cells. Moreover, our results further indicate that recurrent gains (amplification) contribute to miR-210-3p overexpression in a small number of PCa patients. The clinical correlation of miR-210-3p with SOCS1, TNIP1 and NF-κB signaling activity is verified in PCa tissues. CONCLUSION Our findings unravel a novel mechanism for constitutive activation of NF-κB signaling pathway in the bone metastasis of PCa, supporting a functional and clinical significance of epigenetic events in bone metastasis of PCa.
Collapse
Affiliation(s)
- Dong Ren
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangdong Province, Guangzhou, 510080 China
| | - Qing Yang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangdong Province, Guangzhou, 510080 China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangdong Province, Guangzhou, 510080 China
| | - Wei Guo
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangdong Province, Guangzhou, 510080 China
| | - Hong Du
- Department of Pathology, the First People’s Hospital of Guangzhou City, Guangdong Province, Guangzhou, 510180 China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangdong Province, Guangzhou, 510080 China
| |
Collapse
|
29
|
Yang W, Ma J, Zhou W, Zhou X, Cao B, Fan D, Hong L. Biological implications and clinical value of mir-210 in gastrointestinal cancer. Expert Rev Gastroenterol Hepatol 2017; 11:539-548. [PMID: 28317401 DOI: 10.1080/17474124.2017.1309281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia, a common feature of tumor microenvironment, is known to accelerate tumor development and growth by promoting the formation of a neoplastic environment. Recent studies have provided a wealth of evidence that miRNAs are significant members of the adaptive response to low oxygen in tumors. miR-210 is one of the hypoxia-induced miRNAs, which has been reported extensively in cancer researches. However, there is no systematic discussion about the role of miR-210 in gastrointestinal cancer. We conducted a literature research in database including PubMed, Elsevier Science Direct and Medline before 16 September 2016, in order to collect articles of miR-210 in gastrointestinal cancer. Areas covered: In the present review, we mainly discuss the following aspects: hypoxia-induced dysregulation of miR-210, the expression of miR-210 and tumorigenesis, the resultant changes of miR-210 targets and its roles in different types of gastrointestinal cancer progression, the diagnostic, therapeutic and prognostic value of miR-210 in gastrointestinal cancer. Expert commentary: Numerous researches have demonstrated the values of miR-210 in cancer diagnosis, prognosis and targeted therapies, especially in gastrointestinal cancers. However, there are also some existing problems and challenges in translating the new research findings into clinical utility. Further investigations and studies are still urgently required.
Collapse
Affiliation(s)
- Wanli Yang
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Daiming Fan
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Liu Hong
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
30
|
Noncoding RNAs in the development, diagnosis, and prognosis of colorectal cancer. Transl Res 2017; 181:108-120. [PMID: 27810413 DOI: 10.1016/j.trsl.2016.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
More than 90% of the human genome is actively transcribed, but less than 2% of the total genome encodes protein-coding RNA, and thus, noncoding RNA (ncRNA) is a major component of the human transcriptome. Recently, ncRNA was demonstrated to play important roles in multiple biological processes by directly or indirectly interfering with gene expression, and the dysregulation of ncRNA is associated with a variety of diseases, including cancer. In this review, we summarize the function and mechanism of miRNA, long intergenic ncRNA, and some other types of ncRNAs, such as small nucleolar RNA, circular ncRNA, pseudogene RNA, and even protein-coding mRNA, in the progression of colorectal cancer (CRC). We also presented their clinical application in the diagnosis and prognosis of CRC. The summary of the current state of ncRNA in CRC will contribute to our understanding of the complex processes of CRC initiation and development and will help in the discovery of novel biomarkers and therapeutic targets for CRC diagnosis and treatment.
Collapse
|
31
|
Jin C, Liang R. miR-205 promotes epithelial-mesenchymal transition by targeting AKT signaling in endometrial cancer cells. J Obstet Gynaecol Res 2016; 41:1653-60. [PMID: 26446417 DOI: 10.1111/jog.12756] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/10/2015] [Accepted: 04/08/2015] [Indexed: 01/11/2023]
Abstract
AIM AKT signaling regulates multiple biological processes and expresses in various cancers. miR-205 plays complex roles in tumorigenesis and tumor progression by acting either as a tumor suppressor or an oncogene depending on the tumor type. Here we describe the molecular mechanism of miR-205 regulating epithelial-mesenchymal transition by activation of AKT signaling in endometrial cancer cells HEC-50B and HEC-1-A. MATERIAL AND METHODS The proliferation of HEC-50B cells transfected with miR-205 mimic was assessed by WST-1 assay. The migration and invasion were evaluated by BD transwell migration and matrigel invasion assays. The EMT markers were detected by Western blot. RESULTS We found that miR-205 increased the proliferation in HEC-50B cells. The migration and invasion of HEC-50B cells and HEC-1-A cells were enhanced by miR-205. When HEC-50B cells and HEC-1-A cells were treated with anti-miR-205 inhibitor, the migration and invasion were decreased as compared with the negative control. The overexpression of miR-205 inhibited E-cadherin expression and promoted Snail expression by activation of AKT and downregulation of glycogen synthase kinase 3β. However, after the HEC-50B cells and HEC-1-A cells were treated with anti-miR-205 inhibitor, E-cadherin expression was increased and Snail protein level was decreased by inhibition of AKT expression. CONCLUSION Our data strongly suggest that miR-205 plays an important role in endometrial cancer migration and invasion by targeting the AKT pathway. Our data highlight miR-205 as a potential molecular target for endometrial cancer treatment.
Collapse
Affiliation(s)
- Chenyu Jin
- School of Medicine International Healthcare Center, Second Affiliated Hospital Zhejiang University, HangZhou, China
| | - Ruojia Liang
- Department of Gynaecology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, HangZhou, China
| |
Collapse
|
32
|
Maierthaler M, Benner A, Hoffmeister M, Surowy H, Jansen L, Knebel P, Chang-Claude J, Brenner H, Burwinkel B. Plasma miR-122 and miR-200 family are prognostic markers in colorectal cancer. Int J Cancer 2016; 140:176-187. [PMID: 27632639 DOI: 10.1002/ijc.30433] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
Circulating microRNAs (miRNAs) have been proposed as minimally invasive prognostic markers for various types of cancers, including colorectal cancer (CRC), the third most diagnosed cancer worldwide. We aimed to evaluate the levels of circulating miRNAs that might serve as markers for CRC prognosis and survival. We included plasma samples of 543 CRC patients with stage I-IV disease from a population-based study carried out in Germany. After comprehensive evaluation of current literature, 95 miRNAs were selected and measured with Custom TaqMan® Array MicroRNA Cards. Plasma samples of non-metastatic and metastatic colon cancer patients, each group consisting of ten patients with 'good' and ten patients with 'bad' prognosis were screened. Identified candidate miRNAs were further validated by RT-qPCR in the whole study cohort. The association of the miRNA levels with patients' survival and the prognostic subtypes was analyzed with uni- and multivariate logistic regression and Cox proportional hazards regression models. Increased miR-122 levels were associated with a 'bad' prognostic subtype in metastatic CRC (Odds ratio: 1.563, 95% confidence interval (CI): 1.038-2.347) and a shorter relapse-free survival and overall survival for non-metastatic (Hazard ratio (HR): 1.370, 95% CI: 1.028-1.825; HR: 1.353, 95% CI: 1.002-1.828) and metastatic (HR: 1.264, 95% CI: 1.050-1.520; HR: 1.292, 95% CI: 1.078-1.548) CRC patients. Additionally, several members of the miR-200 family showed associations with patients' prognosis and correlations to clinicopathological characteristics. The here identified miRNA markers, miR-122 and the miR-200 family members, could be of use in the development of a multi-marker blood test for CRC prognosis.
Collapse
Affiliation(s)
- Melanie Maierthaler
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald Surowy
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Phillip Knebel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, Unit of Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Wang Q, Zhang H, Shen X, Ju S. Serum microRNA-135a-5p as an auxiliary diagnostic biomarker for colorectal cancer. Ann Clin Biochem 2016; 54:76-85. [PMID: 27126269 DOI: 10.1177/0004563216638108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective The purpose of this study was to explore serum miR-135a-5p expression in colorectal cancer and examine the potential usefulness of this molecule as a biomarker for diagnosis in colorectal cancer. Methods Serum samples were collected from 60 patients with primary colorectal cancer, 40 patients with colorectal polyps and 50 healthy controls. Serum miR-135a-5p expression levels were detected by reverse transcription quantitative real-time quantitative polymerase chain reaction. Serum carcinoembryonic antigen and carbohydrate antigen 199 concentrations were detected by MODULAR ANALYTICS E170. Results The relative expression level of serum miR-135a-5p in colorectal cancer patients, colorectal polyps patients and healthy controls was 2.451 (1.107, 4.413), 0.946 (0.401, 1.942) and 0.949 (0.194, 1.415), respectively, indicating that it was significantly higher in colorectal cancer patients than that in the other two groups ( U = 351.0, 313.0, both P < 0.001). Additionally, it was significantly correlated with different degrees of tumour differentiation ( U = 215.0, P = 0.029) and different tumour stages ( U = 202.0, P = 0.013). There was no significant correlation between the relative expression of serum miR-135a-5p and carcinoembryonic antigen ( r2 = 0.023, P = 0.293) or carbohydrate antigen 199 ( r2 = 0.067, P = 0.068) in colorectal cancer patients. Compared with colorectal polyps group, AUCROC of serum miR-135a-5p in colorectal cancer group was 0.832 with 95% CI 0.73-0.93; compared with healthy control group, AUCROC was 0.875 with 95% CI 0.80-0.95. Conclusion Serum miR-135a-5p expression in colorectal cancer patients was higher than that in patients with colorectal polyps and healthy controls, suggesting that serum miR-135a-5p may prove to be an important biomarker for auxiliary diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Qinjun Wang
- 1 Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, JS, P. R. China.,2 Department of Clinical Laboratory, the People's Hospital of Qidong, Qidong, JS, P. R. China
| | - Hongchun Zhang
- 2 Department of Clinical Laboratory, the People's Hospital of Qidong, Qidong, JS, P. R. China
| | - Xianjuan Shen
- 1 Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, JS, P. R. China
| | - Shaoqing Ju
- 1 Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, JS, P. R. China
| |
Collapse
|
34
|
Bigagli E, Luceri C, Guasti D, Cinci L. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: Role of microRNA-210. Cancer Biol Ther 2016; 17:1062-1069. [PMID: 27611932 PMCID: PMC5079399 DOI: 10.1080/15384047.2016.1219815] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer-secreted exosomes influence tumor microenvironment and support cancer growth and metastasis. MiR-210 is frequently up-regulated in colorectal cancer tissues and correlates with metastatic disease. We investigated whether exosomes are actively released by HCT-8 colon cancer cells, the role of exosomal miR-210 in the cross-talk between primary cancer cells and neighboring metastatic cells and its contribution in regulating epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). After 7 d of culture, a subpopulation of viable HCT-8 cells detached the monolayer and started to grow in suspension, suggesting anoikis resistance and a metastatic potential. The expression of key proteins of EMT revealed that these cells were E-cadherin negative and vimentin positive further confirming their metastatic phenotype and the acquisition of anoikis resistance. Metastatic cells, in the presence of adherently growing HCT-8, continued to grow in suspension whereas only if seeded in cell-free wells, were able to adhere again and to form E-cadherin positive and vimentin negative new colonies, suggesting the occurrence of MET. The chemosensitivity to 5 fluorouracil and to FOLFOX-like treatment of metastatic cells was significantly diminished compared to adherent HCT-8 cells. Of note, adherent new colonies undergoing MET, were insensitive to both chemotherapeutic strategies. Electron microscopy analysis demonstrated that adherently growing HCT-8, actually secreted exosomes and that exosomes in turn were taken up by metastatic cells. When exosomes secreted by adherently growing HCT-8 were administered to metastatic cells, MET was significantly inhibited. miR-210 was significantly upregulated in exosomes compared to its intracellular levels in adherently growing HCT-8 cells and correlated to anoikis resistance and EMT markers. Exosomes containing miR-210 might be considered as EMT promoting signals that preserve the local cancer-growth permissive milieu and also guide metastatic cells to free, new sites of dissemination.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- a Department of Neuroscience, Psychology , Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| | - Cristina Luceri
- a Department of Neuroscience, Psychology , Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| | - Daniele Guasti
- b Department of Experimental and Clinical Medicine - Research Unit of Histology and Embryology , University of Florence , Florence , Italy
| | - Lorenzo Cinci
- a Department of Neuroscience, Psychology , Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| |
Collapse
|
35
|
Tagscherer KE, Fassl A, Sinkovic T, Richter J, Schecher S, Macher-Goeppinger S, Roth W. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int 2016; 16:42. [PMID: 27293381 PMCID: PMC4901463 DOI: 10.1186/s12935-016-0321-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Deregulation of miRNA-210 is a common event in several types of cancer. However, increased expression levels in the cancer tissue have been associated with both poor and good prognosis of patients. Similarly, the function of miR-210 with regard to cell growth and apoptosis is still controversial. Methods Overexpression of miR-210 was performed in HCT116, SW480 and SW707 colorectal cancer (CRC) cell lines. Functional effects of a modulated miR-210 expression were analyzed with regard to proliferation, clonogenicity, cell cycle distribution, reactive oxygen species (ROS) generation, and apoptosis. Furthermore, quantitative real time (RT)-PCR and immunoblot analyses were performed to investigate signaling pathways affected by miR-210. Results We show that in CRC cells miR-210 inhibits clonogenicity and proliferation which was accompanied by an accumulation of cells in the G2/M phase of the cell cycle. Additionally, overexpression of miR-210 results in an increase of ROS generation. Moreover, miR-210 mediated the induction of apoptosis which was associated with an upregulation of pro-apoptotic Bim expression and enhanced processing of Caspase 2. Importantly, inhibition of ROS generation rescued cells from miR-210-induced apoptosis. Conclusions Taken together, miR-210 induces apoptosis in CRC cells via a ROS-dependent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0321-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrin E Tagscherer
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Anne Fassl
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA ; Department of Genetics, Harvard Medical School, Boston, MA 02215 USA
| | - Tabea Sinkovic
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jutta Richter
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sabrina Schecher
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Macher-Goeppinger
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Wilfried Roth
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
36
|
Schou JV, Johansen JS, Nielsen D, Rossi S. Circulating microRNAs as Prognostic and Predictive Biomarkers in Patients with Colorectal Cancer. Noncoding RNA 2016; 2:ncrna2020005. [PMID: 29657263 PMCID: PMC5831904 DOI: 10.3390/ncrna2020005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/23/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
MiRNAs are suggested as promising cancer biomarkers. They are stable and extractable from a variety of clinical tissue specimens (fresh frozen or formalin fixed paraffin embedded tissue) and a variety of body fluids (e.g., blood, urine, saliva). However, there are several challenges that need to be solved, considering their potential as biomarkers in cancer, such as lack of consistency between biomarker panels in independent studies due to lack of standardized sample handling and processing, use of inconsistent normalization approaches, and differences in patients populations. Focusing on colorectal cancer (CRC), divergent results regarding circulating miRNAs as prognostic or predictive biomarkers are reported in the literature. In the present review, we summarize the current data on circulating miRNAs as prognostic/predictive biomarkers in patients with localized and metastatic CRC (mCRC).
Collapse
Affiliation(s)
- Jakob Vasehus Schou
- Department of Oncology, Herlev & Gentofte Hospital, DK-2730 Herlev, Denmark.
| | - Julia Sidenius Johansen
- Department of Oncology, Herlev & Gentofte Hospital, DK-2730 Herlev, Denmark.
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørregade 10, DK-1165 Copenhagen, Denmark.
| | - Dorte Nielsen
- Department of Oncology, Herlev & Gentofte Hospital, DK-2730 Herlev, Denmark.
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørregade 10, DK-1165 Copenhagen, Denmark.
| | - Simona Rossi
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Via Vela 6, CH-6500 Bellinzona, Switzerland.
| |
Collapse
|
37
|
Wang C, Li Q, Liu F, Chen X, Nesa EU, Guan S, Liu B, Han L, Tan B, Wang D, Chen P, Liu X, Zhang H, Sun Y, Cheng Y. Serum miR-1297: a promising diagnostic biomarker in esophageal squamous cell carcinoma. Biomarkers 2016; 21:517-22. [PMID: 27152453 DOI: 10.3109/1354750x.2016.1160291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We aimed to value the diagnostic potential of serum miR-1297 in esophageal squamous cell cancer (ESCC). Its expression level was detected in 156 pairs of patients with ESCC and healthy volunteers using quantitative real-time polymerase chain reaction (qRT-PCR) method. It was statistically decreased in ESCC patients compared with healthy controls. AUC based on serum miR-1297 was 0.840 ± 0.035 in discovery group and 0.837 ± 0.034 in validation group. Further analysis on early-stage patients revealed that the AUC was 0.819 ± 0.053 in discovery group and 0.814 ± 0.044 in validation group. Its sensitivity and specificity were promising. In conclusion, serum miR-1297 can serve as an ideal indicator for the diagnosis of ESCC.
Collapse
Affiliation(s)
- Cong Wang
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Qingbao Li
- b Department of Cardiac Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , People's Republic of China
| | - Fang Liu
- c Department of Imaging , Shandong Medical College , Jinan , Shandong , People's Republic of China
| | - Xuan Chen
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Effat Un Nesa
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Shanghui Guan
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Bowen Liu
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Lihui Han
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Bingxu Tan
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Ding Wang
- d Department of Clinical Laboratory , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Pengxiang Chen
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Xiaoyue Liu
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Han Zhang
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Ying Sun
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| | - Yufeng Cheng
- a Department of Radiation Oncology , Qilu Hospital of Shandong University , Jinan , Shandong , People's Republic of China
| |
Collapse
|
38
|
Leidinger P, Galata V, Backes C, Stähler C, Rheinheimer S, Huwer H, Meese E, Keller A. Longitudinal study on circulating miRNAs in patients after lung cancer resection. Oncotarget 2016; 6:16674-85. [PMID: 26078336 PMCID: PMC4599298 DOI: 10.18632/oncotarget.4322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/25/2015] [Indexed: 12/31/2022] Open
Abstract
There is an urgent need of comprehensive longitudinal analyses of circulating miRNA patterns to identify dynamic changes of miRNAs in cancer patients after surgery. Here we provide longitudinal analysis of 1,205 miRNAs in plasma samples of 26 patients after lung cancer resection at 8 time points over a period of 18 months and compare them to 12 control patients. First, we report longitudinal changes with respect to the number of detected miRNAs over time and identified a significantly increased number of miRNAs in patients developing metastases (p = 0.0096). A quantitative analysis with respect to the expression level of the detected miRNAs revealed more significant changes in the miRNA levels in samples from patients without metastases compared to the non-cancer control patients. This analysis provided further evidence of miRNA plasma levels that are changing over time after tumor resection and correlate to patient outcome. Especially hsa-miR-197 could be validated by qRT-PCR as prognostic marker. Also for this miRNA, patients developing metastases had levels close to that of controls while patients that did not develop metastases showed a significant up-regulation. In conclusion, our data indicate that the overall miRNome of a patient that later develops metastases is less affected by surgery than the miRNome of a patient who does not show metastases. The relationship between altered plasma levels of specific miRNAs with the development of metastases would partially have gone undetected by an analysis at a single time point only.
Collapse
Affiliation(s)
- Petra Leidinger
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Valentina Galata
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Cord Stähler
- Siemens AG, Strategy Division, Erlangen, Germany
| | | | - Hanno Huwer
- Department of Cardiothoracic Surgery, Heart Center, Völklingen, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
39
|
Tan S, Shi H, Ba M, Lin S, Tang H, Zeng X, Zhang X. miR-409-3p sensitizes colon cancer cells to oxaliplatin by inhibiting Beclin-1-mediated autophagy. Int J Mol Med 2016; 37:1030-8. [PMID: 26935807 DOI: 10.3892/ijmm.2016.2492] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 01/19/2016] [Indexed: 11/06/2022] Open
Abstract
The chemoresistance of colon cancer cells limits the efficacy of chemotherapy. miR-409-3p has been shown to be downregulated in various types of cancer. In the present study, we examined the role of miR-409-3p in colon cancer as well as the effects of miR‑409-3p on the sensitivity of colon cancer cells to oxaliplatin. The expression of miR-409 was significantly downregulated in the human colon cancer cell lines compared with the normal colon epithelial cells. Importantly, the miR-409-3p expression levels were lower in human colon cancer patient samples than in normal colon tissues. Moreover, we observed a negative correlation between the miR‑409-3p levels and resistance to oxaliplatin: the oxaliplatin-resistant colon cancer cells exhibited significantly downregulated miR‑409-3p levels, but higher autophagic activity than the oxaliplatin-sensitive cells. Using bioinformatics analysis, we predicted that miR‑409-3p miRNA binds to the key autophagy gene encoding Beclin-1. Our findings indicated that the overexpression of miR‑409-3p inhibited Beclin-1 expression and autophagic activity by binding to the 3'-untranslated region of Beclin-1 mRNA. In addition, the overexpression of miR‑409-3p enhanced the chemosensitivity of the oxaliplatin-sensitive and oxaliplatin-resistant colon cancer cells. The restoration of Beclin-1 abrogated these effects of miR‑409-3p. In a xenograft model using nude mice, we examined the effects of miR‑409-3p on tumor growth during chemotherapy. miR‑409-3p overexpression sensitized the tumor to chemotherapy, while inhibiting chemotherapy-induced autophagy in a manner dependent on Beclin-1. The findings of our study suggest that miR-409-3p is capable of enhancing the chemosensitivity of colon cancer cells by inhibiting Beclin-1-mediated autophagy.
Collapse
Affiliation(s)
- Shifan Tan
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Mingchen Ba
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Shengqv Lin
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Hongsheng Tang
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xiaoqi Zeng
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xiangliang Zhang
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
40
|
Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 2016; 7:6476-505. [PMID: 26623728 PMCID: PMC4872728 DOI: 10.18632/oncotarget.6390] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
41
|
Greystoke A, Ayub M, Rothwell DG, Morris D, Burt D, Hodgkinson CL, Morrow CJ, Smith N, Aung K, Valle J, Carter L, Blackhall F, Dive C, Brady G. Development of a circulating miRNA assay to monitor tumor burden: From mouse to man. Mol Oncol 2016; 10:282-91. [PMID: 26654130 PMCID: PMC4750526 DOI: 10.1016/j.molonc.2015.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/08/2015] [Indexed: 01/12/2023] Open
Abstract
Circulating miRNA stability suggests potential utility of miRNA based biomarkers to monitor tumor burden and/or progression, particularly in cancer types where serial biopsy is impractical. Assessment of miRNA specificity and sensitivity is challenging within the clinical setting. To address this, circulating miRNAs were examined in mice bearing human SCLC tumor xenografts and SCLC patient derived circulating tumor cell explant models (CDX). We identified 49 miRNAs using human TaqMan Low Density Arrays readily detectable in 10 μl tail vein plasma from mice carrying H526 SCLC xenografts that were low or undetectable in non-tumor bearing controls. Circulating miR-95 measured serially in mice bearing CDX was detected with tumor volumes as low as 10 mm(3) and faithfully reported subsequent tumor growth. Having established assay sensitivity in mouse models, we identified 26 miRNAs that were elevated in a stage dependent manner in a pilot study of plasma from SCLC patients (n = 16) compared to healthy controls (n = 11) that were also elevated in the mouse models. We selected a smaller panel of 10 previously reported miRNAs (miRs 95, 141, 200a, 200b, 200c, 210, 335#, 375, 429) that were consistently elevated in SCLC, some of which are reported to be elevated in other cancer types. Using a multiplex qPCR assay, elevated levels of miRNAs across the panel were also observed in a further 66 patients with non-small cell lung, colorectal or pancreatic cancers. The utility of this circulating miRNA panel as an early warning of tumor progression across several tumor types merits further evaluation in larger studies.
Collapse
Affiliation(s)
- Alastair Greystoke
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Mahmood Ayub
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Dominic G Rothwell
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Dan Morris
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Deborah Burt
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Cassandra L Hodgkinson
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Christopher J Morrow
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Nigel Smith
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Kyaw Aung
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK; The Christie NHS Foundation Trust, UK
| | - Juan Valle
- The Christie NHS Foundation Trust, UK; Institute of Cancer Sciences, University of Manchester, UK
| | - Louise Carter
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK; The Christie NHS Foundation Trust, UK
| | - Fiona Blackhall
- The Christie NHS Foundation Trust, UK; Institute of Cancer Sciences, University of Manchester, UK
| | - Caroline Dive
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Ged Brady
- Clinical & Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, UK.
| |
Collapse
|
42
|
Taylor MA. Circulating MicroRNAs as Biomarkers and Mediators of Cell-Cell Communication in Cancer. Biomedicines 2015; 3:270-281. [PMID: 28536412 PMCID: PMC5344225 DOI: 10.3390/biomedicines3040270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
The realization of personalized medicine for cancer will rely not only on the development of new therapies, but on biomarkers that direct these therapies to the right patient. MicroRNA expression profiles in the primary tumor have been shown to differ between cancer patients and healthy individuals, suggesting they might make useful biomarkers. However, examination of microRNA expression in the primary tumor requires an invasive biopsy procedure. More recently, microRNAs have been shown to be released from the primary tumor into the circulation where they can be utilized as non-invasive biomarkers to diagnose patients, predict prognosis, or indicate therapeutic response. This review provides an overview of the current use of circulating microRNAs as biomarkers as well as recent findings on their role in regulating cell signaling interactions in the tumor microenvironment.
Collapse
Affiliation(s)
- Molly A Taylor
- AstraZeneca, R&D Oncology iMed, Room 33F83/7 Mereside, Alderley Park, Macclesfield SK10 4TG, UK.
| |
Collapse
|
43
|
Ragusa M, Barbagallo C, Statello L, Condorelli AG, Battaglia R, Tamburello L, Barbagallo D, Di Pietro C, Purrello M. Non-coding landscapes of colorectal cancer. World J Gastroenterol 2015; 21:11709-11739. [PMID: 26556998 PMCID: PMC4631972 DOI: 10.3748/wjg.v21.i41.11709] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy.
Collapse
|
44
|
Yuan WX, Gui YX, Na WN, Chao J, Yang X. Circulating microRNA-125b and microRNA-130a expression profiles predict chemoresistance to R-CHOP in diffuse large B-cell lymphoma patients. Oncol Lett 2015; 11:423-432. [PMID: 26870228 DOI: 10.3892/ol.2015.3866] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 10/06/2015] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have reported the aberrant expression profiles of microRNAs (miRNAs) in diffuse large B-cell lymphoma (DLBCL), although very few of these studies were concerned with chemoresistance to R-CHOP in DLBCL patients. This study was designed to assess the correlation between circulating miRNA expression and chemoresistance and prognosis in DLBCL patients. At the start of the study, we demonstrated that miRNA expression levels in serum were significantly associated with those in formalin-fixed, paraffin-embedded tissues, which indicated that circulating miRNAs may be powerful, non-invasive biomarkers reflecting miRNAs levels isolated from tumor tissue. Then from eight potential drug-resistant miRNAs which were deregulated in DLBCL and which had been reported to be associated with drug resistance in other carcinomas, we screened out the circulating miR-125b and miR-130a, which may related to R-CHOP resistance. Dynamic monitoring of the levels of circulating miR-125b and miR-130a further demonstrated that they were involved in recurrence, progression and chemoresistance in DLBCL patients. Finally, we demonstrated that high miR-125b indicated poor prognosis, as patients with higher miR-125b levels had a shorter overall survival. To our knowledge, this is the first study demonstrating that miR-125b and miR-130a are associated with the risk of chemoresistance in DLBCL patients, and that dynamic monitoring of the levels of circulating miR-125b and miR-130a predicts the therapeutic response and disease status of DLBCL patients.
Collapse
Affiliation(s)
- Wang Xin Yuan
- Department of Medical Oncology, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Yang Xi Gui
- Department of Medical Oncology, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Wang Na Na
- Department of Medical Oncology, Yucheng People's Hospital, Yucheng, Shandong 253000, P.R. China
| | - Jiang Chao
- Department of Medical Oncology, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Xigui Yang
- Department of Medical Oncology, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
45
|
Guan S, Wang C, Chen X, Liu B, Tan B, Liu F, Wang D, Han L, Wang L, Huang X, Wang J, Yao B, Shi J, Chen P, Nesa EU, Song Q, Cheng Y. MiR-613: a novel diagnostic and prognostic biomarker for patients with esophageal squamous cell carcinoma. Tumour Biol 2015; 37:4383-91. [PMID: 26499784 DOI: 10.1007/s13277-015-4271-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/15/2015] [Indexed: 12/29/2022] Open
Abstract
MicroRNA-613 (miR-613) plays important roles in tumorigenesis and cancer progression. We aimed to evaluate its expression level and potential for diagnosis and prognosis in esophageal squamous cell cancer (ESCC). We examined miR-613 expression in 60 pairs of ESCC cancerous and matched paracancerous tissues, serum samples from 75 ESCC patients and 75 healthy volunteers, and 105 formalin-fixed paraffin-embedded (FFPE) tissue samples using quantitative reverse transcription polymerase chain reaction. Receiver-operating characteristic (ROC) curve analysis, Kaplan-Meier method, and Cox regression were applied to analyze its diagnostic and prognostic value. MiR-613 was significantly decreased in ESCC tissue compared with paracancerous tissue (P < 0.001). Moreover, the expression level of miR-613 was significantly reduced with increased T stage of ESCC. Statistically significant difference between ESCC patients and healthy controls in expression level of miR-613 (0.89 ± 0.73 vs. 1.71 ± 1.03, P < 0.001) was found. The area under the ROC curve (AUC) based on serum miR-613 was 0.767 ± 0.040. We also performed analysis on early-stage patients and revealed that the AUC value was 0.728 ± 0.052 (P < 0.001). The Kaplan-Meier curve revealed that the downregulation of miR-613 was related to worse overall survival (OS) and progression-free survival (PFS) of ESCC patients (P = 0.018 and P = 0.035, respectively). Furthermore, the multivariate analysis identified miR-613 to be an independent prognostic factor for OS and PFS (P = 0.031 and P = 0.006, respectively) In conclusion, miR-613 is significantly reduced in cancerous tissue and serum samples of ESCC patients. It can serve as an ideal indicator for the diagnosis and prognosis of ESCC.
Collapse
Affiliation(s)
- Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Bowen Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Fang Liu
- Department of Image, Shandong Medical College, Jinan, Shandong, 250002, People's Republic of China
| | - Ding Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lu Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaochen Huang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Jiangfeng Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Bin Yao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Jialei Shi
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
46
|
Yu X, Li Z, Yu J, Chan MTV, Wu WKK. MicroRNAs predict and modulate responses to chemotherapy in colorectal cancer. Cell Prolif 2015. [PMID: 26202377 DOI: 10.1111/cpr.12202] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related death globally. Chemotherapy regimens consisting of 5-fluorouracil (5-FU) in combination with either oxaliplatin or irinotecan are the first-line options for treatment of metastatic CRC. However, primary or acquired resistance to these chemotherapeutics is a major clinical challenge. MicroRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally. miRNAs play important roles in many cancer-related processes, including cell proliferation, apoptosis and invasion, and their dysregulation is implicated in colorectal tumourigenesis. Pertinent to chemotherapy, increasing evidence has revealed that miRNAs can be directly linked to chemosensitivity in CRC. In this review, we summarize current evidence concerning the role of miRNAs in prediction and modulation of cellular responses to 5-FU, oxaliplatin and irinotecan in CRC. We also discuss the possible targets and intracellular pathways involved in these processes.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jun Yu
- State-Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William K K Wu
- State-Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, 999077, China.,Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
47
|
Hollis M, Nair K, Vyas A, Chaturvedi LS, Gambhir S, Vyas D. MicroRNAs potential utility in colon cancer: Early detection, prognosis, and chemosensitivity. World J Gastroenterol 2015; 21:8284-8292. [PMID: 26217080 PMCID: PMC4507098 DOI: 10.3748/wjg.v21.i27.8284] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, research has shown that aberrant expression of microRNA (miRNA) is involved in colorectal cancer development and progression. MicroRNAs are small sequences of non-coding RNA that regulate expression of genes involved in important cellular functions, such as cell differentiation, multiplication, and apoptosis. A specific miRNA may display the effects of a tumor suppressor or oncogene. Altered miRNA expression is found in colorectal cancer (CRC) and patterns of miRNA expression correlate with CRC detection and outcome. Studies also have examined the use of circulating serum miRNA and fecal miRNA expression as non-invasive markers for early detection. Here, we review recent evidence demonstrating the potential role of miRNA in CRC and the implications of its use in the diagnosis, prognosis, and management of CRC.
Collapse
|
48
|
Carrillo E, Navarro SA, Ramírez A, García MÁ, Griñán-Lisón C, Perán M, Marchal JA. 5-Fluorouracil derivatives: a patent review (2012 - 2014). Expert Opin Ther Pat 2015; 25:1131-44. [PMID: 26165922 DOI: 10.1517/13543776.2015.1056736] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION 5-Fluorouracil (5-FU)-based chemotherapy is the most widely prescribed treatment for gastrointestinal solid tumors, but there are several drawbacks such as toxicities, lack of selectivity and effectiveness as well as the development of resistance that need to be overcome. AREAS COVERED In this review, the authors present the latest innovations in 5-FU derivatives or combinations with: i) other chemotherapeutic drugs; ii) novel targeted compounds; iii) radiotherapy; iv) mAbs; v) siRNA strategies; and vi) traditional Chinese medicine extracts. Moreover, advances to overcome or determine 5-FU adverse effects and effectiveness are described. Finally, the authors introduce the ongoing clinical trials and highlight the main challenges to be addressed in the future. EXPERT OPINION Although in the past few years there has been a great advancement in the antitumor effectiveness and selectivity of 5-FU-based therapies, it is envisaged that future approaches using 'omics' technologies that could determine the tumor heterogeneity may help in identifying additional candidate genes, microRNAs or cytokines involved in both the path mechanisms of 5-FU-related toxicity and its therapeutic efficacy. Moreover, the development of novel targeted 5-FU derivatives or 5-FU-based therapies tailored to individual patients opens up new possibilities in the improvement of the quality of life and survival for those suffering from this devastating disease.
Collapse
Affiliation(s)
- Esmeralda Carrillo
- a 1 University of Granada, Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , Granada E-18100, Spain +34 958 249 321 ; +34 958 246 296 ; .,b 2 University of Granada, Faculty of Medicine, Department of Human Anatomy and Embryology , Granada E-18012, Spain.,c 3 University Hospitals of Granada-Univesity of Granada, Biosanitary Institute of Granada (ibs.GRANADA) , Granada, Spain
| | - Saúl Abenhamar Navarro
- d 4 University of Granada, Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , Granada E-18100, Spain
| | - Alberto Ramírez
- e 5 University of Jaén, Department of Health Sciences , Jaén E-23071, Spain
| | - María Ángel García
- f 6 University Hospitals of Granada-Univesity of Granada, Biosanitary Institute of Granada (ibs.GRANADA), Department of Oncology , Granada, Spain
| | - Carmen Griñán-Lisón
- a 1 University of Granada, Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , Granada E-18100, Spain +34 958 249 321 ; +34 958 246 296 ;
| | - Macarena Perán
- e 5 University of Jaén, Department of Health Sciences , Jaén E-23071, Spain
| | - Juan Antonio Marchal
- a 1 University of Granada, Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , Granada E-18100, Spain +34 958 249 321 ; +34 958 246 296 ; .,b 2 University of Granada, Faculty of Medicine, Department of Human Anatomy and Embryology , Granada E-18012, Spain.,c 3 University Hospitals of Granada-Univesity of Granada, Biosanitary Institute of Granada (ibs.GRANADA) , Granada, Spain
| |
Collapse
|
49
|
Dang K, Myers KA. The role of hypoxia-induced miR-210 in cancer progression. Int J Mol Sci 2015; 16:6353-72. [PMID: 25809609 PMCID: PMC4394536 DOI: 10.3390/ijms16036353] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/23/2022] Open
Abstract
Prolonged hypoxia, the event of insufficient oxygen, is known to upregulate tumor development and growth by promoting the formation of a neoplastic environment. The recent discovery that a subset of cellular microRNAs (miRs) are upregulated during hypoxia, where they function to promote tumor development, highlights the importance of hypoxia-induced miRs as targets for continued investigation. miRs are short, non-coding transcripts involved in gene expression and regulation. Under hypoxic conditions, miR-210 becomes highly upregulated in response to hypoxia inducing factors (HIFs). HIF-1α drives miR-210’s overexpression and the resultant alteration of cellular processes, including cell cycle regulation, mitochondria function, apoptosis, angiogenesis and metastasis. Here we discuss hypoxia-induced dysregulation of miR-210 and the resultant changes in miR-210 protein targets that regulate cancer progression. Potential methods of targeting miR-210 as a therapeutic tool are also explored.
Collapse
Affiliation(s)
- Kyvan Dang
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd Str., Philadelphia, PA 19104, USA.
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd Str., Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Lv ZC, Fan YS, Chen HB, Zhao DW. Investigation of microRNA-155 as a serum diagnostic and prognostic biomarker for colorectal cancer. Tumour Biol 2014; 36:1619-25. [PMID: 25528214 DOI: 10.1007/s13277-014-2760-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/21/2014] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to explore serum microRNA-155 (miR-155) expression in patients with colorectal cancer (CRC) and examined the potential usefulness of this molecule as a biomarker for diagnosis and prognosis in CRC. Serum samples were obtained between May 2007 and March 2013 from 146 CRC patients and 60 healthy controls. Serum miR-155 expression levels were measured by quantitative real time reverse transcription-polymerase chain reaction (qRT-PCR). Survival curves were obtained using the Kaplan-Meier method and assessed by the log-rank test. The receiver operating characteristic (ROC) curve was used for the prediction of cut-off values of the markers. Serum miR-155 expression level on average was upregulated in CRC patients compared with the matched healthy controls (P < 0.001). ROC curve analysis showed that miR-155 was a useful marker for discriminating cases from healthy controls, with an area under the ROC curve (AUC) of 0.776 (95% confidence interval (CI) 0.714 to 0.837, P < 0.001). Kaplan-Meier analysis with the log-rank test indicated that high serum miR-155 expression had a significant impact on overall survival (38.2 vs. 69.9%; P < 0.001) and progression-free survival (34.8 vs. 66.0%; P < 0.001). In conclusion, the detection of miR-155 levels in the serum might serve as a new tumor biomarker in the diagnosis and assessment of prognosis of CRC.
Collapse
Affiliation(s)
- Zhong-chuan Lv
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China,
| | | | | | | |
Collapse
|