1
|
Ahamad Khan MM, Ganguly A, Barman S, Das C, Ganesan SK. Unveiling ferroptosis genes and inhibitors in diabetic retinopathy through single-cell analysis and docking simulations. Biochem Biophys Rep 2025; 41:101932. [PMID: 39968183 PMCID: PMC11833632 DOI: 10.1016/j.bbrep.2025.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetic retinopathy (DR) is a common microvascular complication of diabetes and a leading cause of vision loss worldwide. Although several mechanisms have been implicated in the pathogenesis of DR, emerging evidence suggests a link between ferroptosis and DR. Unfortunately, the exact mechanism underlying this connection is not clear. Therefore, investigating the role of ferroptosis in diabetic retinopathy holds promise for advancing our understanding of this complex disease and developing innovative treatments. We have identified differentially expressed genes (DEGs) and differentially expressed marker genes (DEMGs) from open-source single-cell RNA sequencing datasets by using in depth in silico approach. Subsequently, ferroptosis-associated DEGs (FA-DEGs), ferroptosis-associated DEMGs (FA-DEMGs), and ferroptosis-associated Hub Genes (FAHGs) were identified. The FDA-approved drugs for our target proteins were also identified, and their ADMET properties were assessed. Molecular docking and simulation were utilized to explore the interaction stability of the compounds with the target proteins. Overall, we identified 63 FA-DEMGs that were significantly enriched in Peroxiredoxin activity, Ferroptosis, Mitophagy, and Autophagy. Further analysis predicted that PRDX1 and UBC are candidate target proteins. Molecular docking results showed that dexamethasone has a high binding affinity for both PRDX1 and UBC. Additionally, molecular dynamics simulations revealed that dexamethasone (which showed the best hit in the docking analysis) exhibited a 'stable effect' on both PRDX1 and UBC. To summarize, this study showed that PRDX1 and UBC could be suitable therapeutic targets for dexamethasone, which might be helpful in the advance of DR treatments in the future.
Collapse
Affiliation(s)
- Md. Maqsood Ahamad Khan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
| | - Ananya Ganguly
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
| | - Shubhrajit Barman
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Chirasmita Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Senthil Kumar Ganesan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
2
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
3
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
4
|
Liu G, Miao F, Wang Y, Kou J, Yang K, Li W, Xiong C, Zhang F, Wang X, Yan H, Wei C, Zhao C, Yan G. Comparative proteomics analysis of Schistosoma japonicum developed in different Oncomelania snails as intermediate hosts. Front Cell Infect Microbiol 2022; 12:959766. [PMID: 36710964 PMCID: PMC9875565 DOI: 10.3389/fcimb.2022.959766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Schistosomiasis is a tropical parasitic disease that seriously endangers humans and animals. In this study, two Oncomelania snails, Oncomelania hupensis (O. hupensis) and Oncomelania weishan (O. weishan), were infected with Schistosoma japonicum (S. japonicum) cercariae during the early period, and ICR mice were subsequently infected with two kinds of miracidia that developed in male and female adult worms. In this study, isobaric tags for relative and absolute quantification (iTRAQ) were used to identify four channels: 113, 115, 117, and 119. A total of 2364 adult schistosome proteins were identified, and 1901 proteins were quantitative. Our results revealed 68 differentially expressed proteins (DEPs) in female adult worms, including 24 upregulated proteins and 44 downregulated proteins, and 55 DEPs in male adult worms, including 25 upregulated proteins and 30 downregulated proteins. LC-MS/MS and bioinformatics analysis indicated that these DEPs are mainly concentrated in cellular composition, molecular function, biological function and catabolism pathways. In summary, this proteomics analysis of adult schistosomes that hatched in two intermediate hosts helps to improve our understanding of the growth and developmental mechanisms of S. japonicum.
Collapse
Affiliation(s)
- Gongzhen Liu
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong Province, China,Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Feng Miao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China,*Correspondence: Feng Miao,
| | - Yongbin Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Jingxuan Kou
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Kun Yang
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Wei Li
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Chunrong Xiong
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Fengjian Zhang
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Xinyao Wang
- Jiangsu Institutes of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Haoyun Yan
- Fourth Hospital of Weishan, Jining, Shandong Province, China
| | - Changyin Wei
- Shandong Weishan Center for Disease Prevention and Control, Jining, Shandong Province, China
| | - Changlei Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Ge Yan
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| |
Collapse
|
5
|
Wu K, Liu F, Zhang T, Zhou Z, Yu S, Quan Y, Zhu S. miR-375 suppresses the growth and metastasis of esophageal squamous cell carcinoma by targeting PRDX1. J Gastrointest Oncol 2022; 13:2154-2168. [PMID: 36388649 PMCID: PMC9660039 DOI: 10.21037/jgo-22-929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Esophageal cancer (EC) is one of the most lethal cancers. Esophageal squamous cell carcinoma (ESCC) is the most common histological subtype in Asian people. Diverse microRNAs, such as miR-375, have been confirmed to be involved in the process of tumorigenesis and metastasis. However, the underlying mechanism through which miR-375 acts in ESCC patients remains unknown. METHODS We used The Cancer Genome Atlas (TCGA) database to analyze the association between miR-375 and the survival rate in patients with esophageal squamous cell carcinoma. Real Time quantitative PCR (RT-qPCR) analysis was performed to evaluate the level of miR-375 in EC tissues and cells. A luciferase reporter assay was used to confirm the target gene of miR-375. A colony formation assay as well as flow cytometric and transwell invasion experiments were employed to examine the effects of miR-375 and peroxiredoxin 1 (PRDX1) on ESCC cells. A tumor xenograft mouse model was then used to investigate the role of miR-375 on tumor growth in vivo. Moreover, we performed rescue experiments to evaluate the effect of PRDX1 on ESCC progression. RESULTS miR-375 expression was significantly downregulated in both ESCC clinical tissues and serum, and the reduction of miR-375 was remarkably linked to a poor prognosis in ESCC. Further investigation illustrated that aberrant expression of miR-375 dampened the growth and infiltration of ESCC cells both in vitro and in vivo. Bioinformatics and luciferase reporter analysis verified that the transcript of PRDX1 is a direct target of miR-375 and its expression in ESCC cells was found to be inversely modulated by miR-375. Moreover, the tumor formation experiment in nude mice confirmed that miR-375 can effectively dampen tumor growth in xenograft tumor mice models. Notably, over-expression of PRDX1 effectively counteracted the tumor-suppressing capabilities of miR-375. CONCLUSIONS We demonstrated the antitumor effect of miR-375 on ESCC by targeting PRDX1 both in vitro and in vivo.
Collapse
Affiliation(s)
- Kunpeng Wu
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Feng Liu
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Tingting Zhang
- Department of Gastroenterology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhiliang Zhou
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Shouqiang Yu
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Yonghui Quan
- Department of Thoracic Surgery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
6
|
Eshkoor SA, Ghodsian N, Akhtari-Zavare M. MicroRNAs influence and longevity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They can affect longevity positively and negatively through different aging pathways.
Main text
MiRNAs are a group of short non-coding RNAs that regulate gene expressions at post-transcriptional levels. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA-protein complexes can affect the regulation of normal post-transcriptional gene process, which may lead to aging, age-related diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age-related diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. Therefore, the expression and function of miRNAs should be studied more accurately with new applicable and validated experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence and some age-related diseases.
Conclusion
Despite several research indicating the key roles of miRNAs in aging and longevity, further investigations are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the aging process.
Collapse
|
7
|
Mujammami M, Rafiullah M, Alfadda AA, Akkour K, Alanazi IO, Masood A, Musambil M, Alhalal H, Arafah M, Rahman AMA, Benabdelkamel H. Proteomic Analysis of Endometrial Cancer Tissues from Patients with Type 2 Diabetes Mellitus. Life (Basel) 2022; 12:life12040491. [PMID: 35454982 PMCID: PMC9030544 DOI: 10.3390/life12040491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Endometrial cancer (EC) is the most common form of gynecological cancer. Type 2 diabetes mellitus is associated with an increased risk of EC. Currently, no proteomic studies have investigated the role of diabetes in endometrial cancers from clinical samples. The present study aims to elucidate the molecular link between diabetes and EC using a proteomic approach. Endometrial tissue samples were obtained from age-matched patients (EC Diabetic and EC Non-Diabetic) during surgery. Untargeted proteomic analysis of the endometrial tissues was carried out using a two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF). A total of 53 proteins were identified, with a significant difference in abundance (analysis of variance (ANOVA) test, p ≤ 0.05; fold-change ≥ 1.5) between the two groups, among which 30 were upregulated and 23 downregulated in the EC Diabetic group compared to EC Non-Diabetic. The significantly upregulated proteins included peroxiredoxin-1, vinculin, endoplasmin, annexin A5, calreticulin, and serotransferrin. The significantly downregulated proteins were myosin regulatory light polypeptide 9, Retinol dehydrogenase 12, protein WWC3, intraflagellar transport protein 88 homolog, superoxide dismutase [Cu-Zn], and retinal dehydrogenase 1. The network pathway was related to connective tissue disorder, developmental disorder, and hereditary disorder, with the identified proteins centered around dysregulation of ERK1/2 and F Actin signaling pathways. Cancer-associated protein alterations such as upregulation of peroxiredoxin-1, annexin 5, and iNOS, and downregulation of RDH12, retinaldehyde dehydrogenase 1, SOD1, and MYL 9, were found in the EC tissues of the diabetic group. Differential expression of proteins linked to cancer metastasis, such as the upregulation of vinculin and endoplasmin and downregulation of WWC3 and IFT88, was seen in the patients with diabetes. Calreticulin and alpha-enolase, which might have a role in the interplay between diabetes and EC, need further investigation.
Collapse
Affiliation(s)
- Muhammad Mujammami
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia;
- Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Mohamed Rafiullah
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Assim A. Alfadda
- Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.M.); (M.M.)
| | - Khalid Akkour
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.)
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.M.); (M.M.)
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.M.); (M.M.)
| | - Hani Alhalal
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.)
| | - Maria Arafah
- Department of Pathology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Anas M. Abdel Rahman
- Metabolomics Section, Center for Genome Medicine, Department of Clinical Genomics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.M.); (M.M.)
- Correspondence:
| |
Collapse
|
8
|
Jaiswal S, Joshi B, Chen J, Wang F, Dame MK, Spence JR, Newsome GM, Katz EL, Shah YM, Ramakrishnan SK, Li G, Lee M, Appelman HD, Kuick R, Wang TD. Membrane Bound Peroxiredoxin-1 Serves as a Biomarker for In Vivo Detection of Sessile Serrated Adenomas. Antioxid Redox Signal 2022; 36:39-56. [PMID: 34409853 PMCID: PMC8792500 DOI: 10.1089/ars.2020.8244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aim: Sessile serrated adenomas (SSAs) are premalignant lesions driven by the BRAFV600E mutation to give rise to colorectal cancers (CRCs). They are often missed during white light colonoscopy because of their subtle appearance. Previously, a fluorescently labeled 7mer peptide KCCFPAQ was shown to detect SSAs in vivo. We aim to identify the target of this peptide. Results: Peroxiredoxin-1 (Prdx1) was identified as the binding partner of the peptide ligand. In vitro binding assays and immunofluorescence staining of human colon specimens ex vivo supported this result. Prdx1 was overexpressed on the membrane of cells with the BRAFV600E mutation, and this effect was dependent on oxidative stress. RKO cells harboring the BRAFV600E mutation and human SSA specimens showed higher oxidative stress as well as elevated levels of Prdx1 on the cell membrane. Innovation and Conclusion: These results suggest that Prdx1 is overexpressed on the cell surface in the presence of oxidative stress and can serve as an imaging biomarker for in vivo detection of SSAs. Antioxid. Redox Signal. 36, 39-56.
Collapse
Affiliation(s)
- Sangeeta Jaiswal
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bishnu Joshi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jing Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fa Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael K Dame
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gina M Newsome
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Erica L Katz
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sadeesh K Ramakrishnan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gaoming Li
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Miki Lee
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry D Appelman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rork Kuick
- Department of Biostatistics, and University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas D Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Comparative Study of Protective Action of Exogenous 2-Cys Peroxiredoxins (Prx1 and Prx2) Under Renal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2020; 9:antiox9080680. [PMID: 32751232 PMCID: PMC7465264 DOI: 10.3390/antiox9080680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of ischemia-reperfusion (I/R) injuries is based on oxidative stress caused by a sharp increase in the concentration of free radicals, reactive oxygen species (ROS) and secondary products of free radical oxidation of biological macromolecules during reperfusion. Application of exogenous antioxidants lowers the level of ROS in the affected tissues, suppresses or adjusts the course of oxidative stress, thereby substantially reducing the severity of I/R injury. We believe that the use of antioxidant enzymes may be the most promising line of effort since they possess higher efficiency than low molecular weight antioxidants. Among antioxidant enzymes, of great interest are peroxiredoxins (Prx1–6) which reduce a wide range of organic and inorganic peroxide substrates. In an animal model of bilateral I/R injury of kidneys (using histological, biochemical, and molecular biological methods) it was shown that intravenous administration of recombinant typical 2-Cys peroxiredoxins (Prx1 and Prx2) effectively reduces the severity of I/R damage, contributing to the normalization of the structural and functional state of the kidneys and an almost 2-fold increase in the survival of experimental animals. The use of recombinant Prx1 or Prx2 can be an efficient approach for the prevention and treatment of renal I/R injury.
Collapse
|
10
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
11
|
Chen Q, Li J, Yang X, Ma J, Gong F, Liu Y. Prdx1 promotes the loss of primary cilia in esophageal squamous cell carcinoma. BMC Cancer 2020; 20:372. [PMID: 32357862 PMCID: PMC7195802 DOI: 10.1186/s12885-020-06898-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Loss of primary cilia is frequently observed in tumor cells, suggesting that the absence of this organelle may promote tumorigenesis through aberrant signal transduction, the inability to exit the cell cycle, and promotion of tumor cell invasion. Primary cilia loss also occurs in esophageal squamous cell carcinoma (ESCC) cells, but the molecular mechanisms that explain how ESCC cells lose primary cilia remain poorly understood. Methods Inhibiting the expression of Prdx1 in the ESCC cells to detect the up-regulated genes related to cilium regeneration and down-regulated genes related to cilium disassembly by Gene chip. And, mice and cell experiments were carried to confirm the role of the HEF1-Aurora A-HDAC6 signaling axis in ESCC. Results In this study, we found that silencing Peroxiredoxin 1 (Prdx1) restores primary cilia formation, and over-expressing Prdx1 induces primary cilia loss in ESCC cells. We also showed that the expression of Prdx1 regulates the action of the HEF1-Aurora A-HDAC6 signaling axis to promote the disassembly of primary cilia, and suppression of Prdx1 results in decreased tumor formation and tumor mass volume in vivo. Conclusions These results suggest that Prdx1 is a novel regulator of primary cilia formation in ESCC cells.
Collapse
Affiliation(s)
- Qiongzhen Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jinmeng Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiaoning Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Junfeng Ma
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China.
| | - Yu Liu
- The first affiliated hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
12
|
Nazri HM, Imran M, Fischer R, Heilig R, Manek S, Dragovic RA, Kessler BM, Zondervan KT, Tapmeier TT, Becker CM. Characterization of exosomes in peritoneal fluid of endometriosis patients. Fertil Steril 2020; 113:364-373.e2. [PMID: 32106990 PMCID: PMC7057257 DOI: 10.1016/j.fertnstert.2019.09.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To demonstrate the feasibility of studying exosomes directly from peritoneal fluid, we isolated exosomes from endometriosis patient samples and from controls, and characterized their cargo. DESIGN Case-control experimental study. SETTING Academic clinical center. PATIENT (S) Women with and without endometriosis who underwent laparoscopic surgery (n = 28 in total). INTERVENTION (S) None. MAIN OUTCOME MEASURE (S) Concentration of exosomes within peritoneal fluid and protein content of the isolated exosomes. RESULT (S) Peritoneal fluid samples were pooled according to the cycle phase and disease stage to form six experimental groups, from which the exosomes were isolated. Exosomes were successfully isolated from peritoneal fluid in all the study groups. The concentration varied with cycle phase and disease stage. Proteomic analysis showed specific proteins in the exosomes derived from endometriosis patients that were absent in the controls. Five proteins were found exclusively in the endometriosis groups: PRDX1, H2A type 2-C, ANXA2, ITIH4, and the tubulin α-chain. CONCLUSION (S) Exosomes are present in peritoneal fluid. The characterization of endometriosis-specific exosomes opens up new avenues for the diagnosis and investigation of endometriosis.
Collapse
Affiliation(s)
- Hannah M Nazri
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Maria Imran
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Raphael Heilig
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sanjiv Manek
- Department of Cellular Pathology, Oxford University Hospitals, Oxford, United Kingdom
| | - Rebecca A Dragovic
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Krina T Zondervan
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas T Tapmeier
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom.
| | - Christian M Becker
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Wang G, Zhong WC, Bi YH, Tao SY, Zhu H, Zhu HX, Xu AM. The Prognosis Of Peroxiredoxin Family In Breast Cancer. Cancer Manag Res 2019; 11:9685-9699. [PMID: 31814764 PMCID: PMC6861534 DOI: 10.2147/cmar.s229389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose PRDX (Peroxiredoxin) family has involved in breast cancer tumorigenesis from the evidence obtained from cell lines, human tissues and mouse models. Nonetheless, the diversified expression patterns, coupled with the prognostic values of PRDX family, still require explanation. This study aimed at investigating the clinical importance and biological of PRDXs in breast cancer. Patients and methods Specimens of paraffin sections used for immunohistochemistry were collected from the hospital and the remaining patient information was retrieved from online databases. The expression and survival data of PRDXs in patients with breast cancer were from ONCOMINE, GEPIA, Kaplan–Meier Plotter. cBioPortal, Metascape, String, Cytoscape and DAVID were used to predict functions and pathways of the changes in PRDXs and their frequently altered neighbor genes. Immunohistochemistry was used to detect the expression of PRDXs in breast cancer. Results We discovered the expression levels of PRDX1-5 were higher in breast cancer tissues than in normal tissues, whereas the expression level of PRDX6 was observed as lower in the former one in comparison with that of the latter one. There existed a correlation between the expression levels of PRDX4, 5 and the advanced tumor stage. Survival analysis revealed that the expression of PRDXs were all associated with relapse-free survival (RFS) in all of the patients with breast cancer. Eventually, we discovered significant regulation of the cellular oxidant detoxification and detoxification of ROS by the PRDX changes, together with obtaining the core modules of genes (TXN, TXN2, TXNRD1, TXNRD2, GPX1 and GPX2) linked to the PRDX family of genes in breast cancer. Conclusion The PRDX family is widely involved in the development of breast cancer and affects the prognosis of patients. The functions and pathways of the changes in PRDXs and their frequently altered neighbor genes can be further verified by wet experiments.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Wan-Chao Zhong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yi-Hui Bi
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei 230001, People's Republic of China
| | - Si-Yue Tao
- Department of Orthopaedics, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, Anhui 230001, People's Republic of China
| | - Hai Zhu
- Department of Gastrointestinal Surgery, Department Of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Hai-Xing Zhu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei 230001, People's Republic of China
| | - A-Man Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| |
Collapse
|
14
|
Sharapov MG, Novoselov VI. Catalytic and Signaling Role of Peroxiredoxins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:79-100. [PMID: 31216969 DOI: 10.1134/s0006297919020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cells experience strong oxidative stress caused by disorders in cell metabolism and action of external factors. For survival, cancer cells have developed a highly efficient system of antioxidant defense, some of the most important elements of which are peroxiredoxins (Prxs). Prxs are an evolutionarily ancient family of selenium-independent peroxidases that reduce a wide range of organic and inorganic hydroperoxides in the cell and the extracellular space. In addition, some Prxs exhibit chaperone and phospholipase activities. Prxs play an important role in the maintenance of the cell redox homeostasis; they prevent oxidation and aggregation of regulatory proteins, thereby affecting many cell signaling pathways. Prxs are involved in the regulation of cell growth, differentiation, and apoptosis. Due to their versatility and wide representation in all tissues and organs, Prxs participate in the development/suppression of many pathological conditions, among which cancer occupies a special place. This review focuses on the role of Prxs in the development of various forms of cancer. Understanding molecular mechanisms of Prx involvement in these processes will allow to develop new approaches to the prevention and treatment of cancer.
Collapse
Affiliation(s)
- M G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
15
|
Zhang Z, Dai DQ. MicroRNA-596 acts as a tumor suppressor in gastric cancer and is upregulated by promotor demethylation. World J Gastroenterol 2019; 25:1224-1237. [PMID: 30886505 PMCID: PMC6421237 DOI: 10.3748/wjg.v25.i10.1224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the present study, we investigated a suppressive role of microRNA-596 (miR-596) in gastric cancer (GC). Moreover, the downregulation of miR-596 in GC cell lines was associated with an increase of miR-596 promoter methylation. We also established that miR-596 controls the expression of peroxiredoxin 1 (PRDX1), which has never been reported before, suggesting that this interaction could play an important role in GC progression.
AIM To study the potential role and possible regulatory mechanism of miR-596 in GC.
METHODS The expression levels of miR-596 and PRDX1 in gastric cancer tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR). Western blot and luciferase reporter assay were used to detect the effect of miR-596 on PRDX1 expression. Then, the proliferation, metastasis, and invasion of GC cell lines transfected with miR-596 mimics were analyzed, respectively, by Cell Counting Kit-8 proliferation assay, wound healing assay, and transwell invasion assay. Meanwhile, the methylation status of the promoter CpG islands of miR-596 in GC cell lines was detected by methylation-specific PCR (MSP).
RESULTS Expression of miR-596 was decreased and PRDX1 was upregulated in GC tissues and cell lines. Overexpression of miR-596 decreased the expression of PRDX1 and luciferase reporter assays detected the direct binding of miR-596 to the 3'-untranslated region (UTR) of PRDX1 transcripts. Furthermore, we found that overexpression of miR-596 remarkably suppressed cell proliferation, migration, and invasion in GC cells. We further analyzed miR-596 promoter methylation by MSP and qRT-PCR, and found the downregulation of miR-596 was associated with promoter methylation status in GC cell lines. Moreover, DNA demethylation and reactivation of miR-596 after treatment with 5-Aza-2’-deoxycytidine inhibited the proliferative ability of GC cells.
CONCLUSION MiR-596 has a tumor suppressive role in GC and is downregulated partly due to promoter hypermethylation. Furthermore, PRDX1 is one of the putative target genes of miR-596.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Dong-Qiu Dai
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
16
|
Peroxiredoxin 1, a Novel HBx-Interacting Protein, Interacts with Exosome Component 5 and Negatively Regulates Hepatitis B Virus (HBV) Propagation through Degradation of HBV RNA. J Virol 2019; 93:JVI.02203-18. [PMID: 30567989 DOI: 10.1128/jvi.02203-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for the development of chronic liver diseases, including cirrhosis and hepatocellular carcinoma (HCC). A growing body of evidence suggests that HBV X protein (HBx) plays a crucial role in viral replication and HCC development. Here, we identified peroxiredoxin 1 (Prdx1), a cellular hydrogen peroxide scavenger, as a novel HBx-interacting protein. Coimmunoprecipitation analysis coupled with site-directed mutagenesis revealed that the region from amino acids 17 to 20 of the HBx, particularly HBx Cys17, is responsible for the interaction with Prdx1. Knockdown of Prdx1 by siRNA significantly increased the levels of intracellular HBV RNA, HBV antigens, and extracellular HBV DNA, whereas knockdown of Prdx1 did not increase the activities of HBV core, enhancer I (Enh1)/X, preS1, and preS2/S promoters. Kinetic analysis of HBV RNA showed that knockdown of Prdx1 inhibited HBV RNA decay, suggesting that Prdx1 reduces HBV RNA levels posttranscriptionally. The RNA coimmunoprecipitation assay revealed that Prdx1 interacted with HBV RNA. The exosome component 5 (Exosc5), a member of the RNA exosome complexes, was coimmunoprecipitated with Prdx1, suggesting its role in regulation of HBV RNA stability. Taken together, these results suggest that Prdx1 and Exosc5 play crucial roles in host defense mechanisms against HBV infection.IMPORTANCE Hepatitis B virus (HBV) infection is a major global health problem. HBx plays important roles in HBV replication and viral carcinogenesis through its interaction with host factors. In this study, we identified Prdx1 as a novel HBx-binding protein. We provide evidence suggesting that Prdx1 promotes HBV RNA decay through interaction with HBV RNA and Exosc5, leading to downregulation of HBV RNA. These results suggest that Prdx1 negatively regulates HBV propagation. Our findings may shed new light on the roles of Prdx1 and Exosc5 in host defense mechanisms in HBV infection.
Collapse
|
17
|
Li S, Hu X, Ye M, Zhu X. The prognostic values of the peroxiredoxins family in ovarian cancer. Biosci Rep 2018; 38:BSR20180667. [PMID: 30104402 PMCID: PMC6123065 DOI: 10.1042/bsr20180667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose: Peroxiredoxins (PRDXs) are a family of antioxidant enzymes with six identified mammalian isoforms (PRDX1-6). PRDX expression is up-regulated in various types of solid tumors; however, individual PRDX expression, and its impact on prognostic value in ovarian cancer patients, remains unclear.Methods: PRDXs family protein expression profiles in normal ovarian tissues and ovarian cancer tissues were examined using the Human Protein Atlas database. Then, the prognostic roles of PRDX family members in several sets of clinical data (histology, pathological grades, clinical stages, and applied chemotherapy) in ovarian cancer patients were investigated using the Kaplan-Meier plotter.Results: PRDXs family protein expression in ovarian cancer tissues was elevated compared with normal ovarian tissues. Meanwhile, elevated expression of PRDX3, PRDX5, and PRDX6 mRNAs showed poorer overall survival (OS); PRDX5 and PRDX6 also predicted poor progression-free survival (PFS) for ovarian cancer patients. Furthermore, PRDX3 played significant prognostic roles, particularly in poor differentiation and late-stage serous ovarian cancer patients. Additionally, PRDX5 predicted a lower PFS in all ovarian cancer patients treated with Platin, Taxol, and Taxol+Platin chemotherapy. PRDX3 and PRDX6 also showed poor PFS in patients treated with Platin chemotherapy. Furthermore, PRDX3 and PRDX5 indicated lower OS in patients treated with these three chemotherapeutic agents. PRDX6 predicted a poorer OS in patients treated with Taxol and Taxol+Platin chemotherapy.Conclusion: These results suggest that there are distinct prognostic values of PRDX family members in patients with ovarian cancer, and that the expression of PRDX3, PRDX5, and PRDX6 mRNAs are a useful prognostic indicator in the effect of chemotherapy in ovarian cancer patients.
Collapse
Affiliation(s)
- Saisai Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
18
|
Sun X, Kong L, Li B, Zhang Y, Yang H. Peroxiredoxin 1 silencing inhibited the growth and promoted apoptosis of pancreatic cancer cells via targeting FOXO3 gene. Cancer Manag Res 2018; 10:5019-5026. [PMID: 30464602 PMCID: PMC6208491 DOI: 10.2147/cmar.s177243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective Our study aimed to investigate the interaction between peroxiredoxin 1 (Prx1) and forkhead box O3 (FOXO3) and to explore the role of PI3K/AKT pathway in the development of pancreatic cancer. Material and methods Human pancreatic normal cells HPDE6-C7 and pancreatic cancer cells PANC-1 were randomly divided into control group, Prx1-silencing (si-Prx1) group, Prx1/FOXO3 dual-silencing (si-Prx1/FOXO3) group, and negative control group. Cell proliferation assay, clone formation assay, and cell apoptosis assay were performed to investigate the effects of Prx1 silencing and FOXO3 silencing on the proliferation and apoptosis ability of pancreatic cancer cells. qRT-PCR and Western blot were performed to study the Prx1 and FOXO3 mRNA in the two cells and FOXO3 protein expression in PANC-1 cells. Result We found Prx1 silencing could inhibit growth and promote apoptosis of PANC-1 cells. And Prx1 silencing could decrease the Prx1 mRNA level and increase FOXO3 mRNA level. To further explore the role of Prx1 in PI3K/AKT, we study the cell proliferation and apoptosis ability after adding the PI3K inhibitor and PI3K activator. We observed that PI3K inhibitor could inhibit tumor cell growth and promote cell apoptosis. And PI3K inhibitor also downregulated Prx1 protein expression. Conclusion We concluded that the Prx1 silencing inhibited the growth and promoted apoptosis of pancreatic cancer cells via modulation of PI3K/AKT pathway by targeting FOXO3 gene.
Collapse
Affiliation(s)
- Xianchun Sun
- Department of No. 2 Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Lingting Kong
- Department of Emergency, Yantaishan Hospital, Yantai 264000, China,
| | - Bingshu Li
- Department of Emergency, Yantaishan Hospital, Yantai 264000, China,
| | - Yan Zhang
- Department of Emergency, Yantaishan Hospital, Yantai 264000, China,
| | - Haiyan Yang
- Department of Emergency, Yantaishan Hospital, Yantai 264000, China,
| |
Collapse
|
19
|
Niu L, Liu A, Xu W, Yang L, Zhu W, Gu Y. Downregulation of peroxiredoxin II suppresses the proliferation and metastasis of gastric cancer cells. Oncol Lett 2018; 16:4551-4560. [PMID: 30214590 PMCID: PMC6126214 DOI: 10.3892/ol.2018.9208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Peroxiredoxin (Prx) II is an imperative member of the superfamily of peroxidases. It serves an essential role in scavenging organic hydroperoxide and H2O2. It is involved in the development of various malignant tumors. In order to investigate the significance of Prx II expressions level in gastric cancer (GC), downregulation of Prx II was performed to investigate its role in the proliferation and migration of gastric adenocarcinoma cells. In GC cells and 45 GC specimens, the mRNA and protein expression levels of Prx II were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. The Prx II expression profile in another 116 GC specimens was also detected with immunohistochemistry (IHC). The changes in the proliferation and migration of MKN45 and MGC-803 cells folllowing transfection with small interfering RNA (siRNA) were detected by cell counting kit (CCK)-8, western blot analysis, and Transwell migration and invasion assays. The results revealed that the expression of Prx II in GC tissues and GC cells were significantly upregulated compared with the normal control. There was a significant association between the expression level of Prx II and various factors, including tumor size, histological differentiation, the depth of invasion, the stage of tumor-node-metastasis (TNM) and lymph node metastasis in GC (P<0.05). Survival in patients with higher Prx II expression was significantly decreased compared with those with lower Prx II expression (P<0.01). Prx II, depth of invasion, lymph node metastasis and distant metastasis were identified as independent prognosis factors of GC (P<0.05). Knockdown of Prx II significantly suppressed the proliferation and the migration of GC cells. These experiments revealed that Prx II promotes the development of GC, affecting the survival of patients with GC.
Collapse
Affiliation(s)
- Linjun Niu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Ang Liu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Xu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Liang Yang
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wugang Zhu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuming Gu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
20
|
Sharapov MG, Fesenko EE, Novoselov VI. The Role of Peroxiredoxins in Various Diseases Caused by Oxidative Stress and the Prospects of Using Exogenous Peroxiredoxins. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
21
|
Dysregulated long non-coding RNAs in the temporal lobe epilepsy mouse model. Seizure 2018; 58:110-119. [DOI: 10.1016/j.seizure.2018.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
|
22
|
Yu W, Wu J, Ning ZL, Liu QY, Quan RL. High Expression of Peroxiredoxin 1 Is Associated with Epithelial-Mesenchymal Transition Marker and Poor Prognosis in Gastric Cancer. Med Sci Monit 2018; 24:2259-2270. [PMID: 29656298 PMCID: PMC5917825 DOI: 10.12659/msm.908722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Recent studies show that peroxiredoxin 1 (Prdx1) contributes to the progression and poor prognosis of carcinoma through multiple mechanisms. However, there is little information on its expression and prognostic value in gastric cancer. This study investigated the expression of Prdx1 in gastric cancer, along with evaluating its clinical-pathological and prognostic importance. Material/Methods A total of 189 pairs of gastric cancer and paracarcinomatous tissues were assessed for Prdx1 expression and its association with clinical characteristics. The molecular mechanism was further investigated through in vitro experimentation. Results The mRNA and protein levels of Prdx1 in the GC tissues were higher than in the peri-tumor tissues. We also found that high Prdx1 expression was positively correlated with the lymph node invasion and poor prognosis. It also served as an autonomous prognostic factor for patients with gastric cancer. Moreover, Prdx1 regulates the invasion and metastasis of GC cell lines through inhibiting E-Ca expression. Conclusions Prdx1 can promote epithelial-mesenchymal transition and gastric cancer progression. Therefore, it might be a therapeutic target and prognostic indicator for gastric cancer patients.
Collapse
Affiliation(s)
- Wei Yu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Jing Wu
- Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Zhong-Liang Ning
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Qiao-Yu Liu
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| | - Rui-Liang Quan
- Department of Gastrointestinal Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China (mainland)
| |
Collapse
|
23
|
Shi K, Zhang JZ, Zhao RL, Yang L, Guo D. PSMD7 downregulation induces apoptosis and suppresses tumorigenesis of esophageal squamous cell carcinoma via the mTOR/p70S6K pathway. FEBS Open Bio 2018; 8:533-543. [PMID: 29632807 PMCID: PMC5881544 DOI: 10.1002/2211-5463.12394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
PSMD7, a 19S proteasome subunit, is overexpressed in most carcinoma cells. It forms a dimer with PSMD14 that functions in the removal of attached ubiquitin chain. However, there is little knowledge about the cellular mechanism of PSMD7 and its exact biological function, especially in cancer cells. In this study, we explored the role of PSMD7 in proliferation, cell cycle, apoptosis, and proteasomal proteolysis in the esophageal squamous cell carcinoma (ESCC) cell line EC9706. Our results showed that PSMD7 was highly expressed in ESCC cells. Downregulation of PSMD7 by lentivirus‐mediated shRNA led to decreased proliferation, increased cell apoptosis, and reduced proteasomal function. Notably, lower expression level of mTOR and p70S6K and suppressed activity of mTOR/p70S6K pathway were detected after PSMD7 downregulation. By contrast, increased expression of p‐mTORSer2448 and p‐p70S6KThr421/Ser424 was discovered upon PSMD7 overexpression in Het‐1A cells. Furthermore, PSMD7 downregulation contributed to decelerated tumor growth, inhibition of proteasomal function, induced cell apoptosis and attenuated activity of mTOR/p70S6K pathway in vivo. These findings suggest that PSMD7 and the mTOR/p70S6K pathway may be a promising candidate for developing therapies for ESCC.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry and Molecular Biology Henan Medical College China
| | - Jin-Zhong Zhang
- Department of Biochemistry and Molecular Biology Henan Medical College China
| | - Rui-Li Zhao
- Editorial Department of Journal of Henan University of Technology Henan University of Technology Zhengzhou China.,College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Liang Yang
- Department of Microbiology and Immunology and Medicine Henan Medical College China
| | - Dan Guo
- Department of Biochemistry and Molecular Biology Henan Medical College China
| |
Collapse
|
24
|
Sharapov MG, Gordeeva AE, Goncharov RG, Tikhonova IV, Ravin VK, Temnov AA, Fesenko EE, Novoselov VI. The Effect of Exogenous Peroxiredoxin 6 on the State of Mesenteric Vessels and the Small Intestine in Ischemia–Reperfusion Injury. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350917060239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
25
|
Cai AL, Zeng W, Cai WL, Liu JL, Zheng XW, Liu Y, Yang XC, Long Y, Li J. Peroxiredoxin-1 promotes cell proliferation and metastasis through enhancing Akt/mTOR in human osteosarcoma cells. Oncotarget 2017; 9:8290-8302. [PMID: 29492195 PMCID: PMC5823593 DOI: 10.18632/oncotarget.23662] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/28/2017] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma is characterized by high propensity for metastasis, especially to the lung, which is the main cause of death. Peroxiredoxin-1 (PRDX1) plays significant roles in multiple processes of initiation and progression of tumorogenesis. However, whether PRDX1 participates in metastasis of osteosarcoma remains unknown. Here, we demonstrate that PRDX1 overexpressed in osteosarcoma tissues comparing to adjacent non-tumor tissues. Two independent cohorts of patients showed high level of PRDX1 correlated with clinicopathological features such as larger tumor size and advanced tumor metastasis stage. While patients with high PRDX1 level have poor prognosis. Notably, expression level of PRDX1 especially increased in lung lesion of osteosarcoma patients, indicating that PRDX1 may promote lung metastasis. Ectopic expression of PRDX1 promotes osteosarcoma cell migration and metastasis in vitro and in vivo, whereas knockdown of PRDX1 expression suppresses cell metastatic behaviors such as invasion and migration. Furthermore, we found that PRDX1 promotes cells metastasis through enhancing Akt/mTOR signal pathway. Taken together, our findings prove the important role of PRDX1 in the molecular etiology of osteosarcoma and suggest that PRDX1 may be a novel prognostic biomarker and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- An-Lie Cai
- Department of Orthopedics Surgery, Central Hospital of Zhuzhou city and The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, China
| | - Wei Zeng
- Department of Orthopedics Surgery, Central Hospital of Zhuzhou city and The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, China.,Department of Orthopedics Surgery, Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Wei-Liang Cai
- Department of Orthopedics Surgery, Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jing-Ling Liu
- Department of Orthopedics Surgery, Central Hospital of Zhuzhou city and The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, China
| | - Xue-Wen Zheng
- Department of Orthopedics Surgery, Central Hospital of Zhuzhou city and The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, China
| | - Ying Liu
- Department of Orthopedics Surgery, Central Hospital of Zhuzhou city and The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, China
| | - Xiang-Cheng Yang
- Department of Orthopedics Surgery, Central Hospital of Zhuzhou city and The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, China
| | - Yi Long
- Department of Orthopedics Surgery, Central Hospital of Zhuzhou city and The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, China
| | - Jie Li
- Department of Nephrology, Central Hospital of Zhuzhou City and Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, China
| |
Collapse
|
26
|
Shi XJ, Ding L, Zhou W, Ji Y, Wang J, Wang H, Ma Y, Jiang G, Tang K, Ke Y, Zhao W, Liu HM. Pro-Apoptotic Effects of JDA-202, a Novel Natural Diterpenoid, on Esophageal Cancer Through Targeting Peroxiredoxin I. Antioxid Redox Signal 2017; 27:73-92. [PMID: 27650197 PMCID: PMC5510680 DOI: 10.1089/ars.2016.6703] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS Esophageal cancer (EC) is an aggressive malignancy and the most common solid tumor of gastrointestinal tract all over the world, with high incidence in Asia. The current study was designed to investigate the anticancer efficacy and mechanism that is involved in the action of a natural ent-kaurene diterpenoid, JDA-202, targeting EC. RESULTS We found that an antioxidant protein peroxiredoxin I (Prx I) was upregulated in human EC tissues as well as in EC cell lines. JDA-202, a novel natural compound isolated from Isodon rubescens (Labiatae), was proved to possess strong anti-proliferative activities on those cell lines. Importantly, JDA-202 does not only bind to Prx I directly and markedly inhibit the activity of Prx I in vitro, but it also significantly induces hydrogen peroxide (H2O2)-related cell death. Furthermore, overexpression of Prx I significantly reversed EC109 cell apoptosis caused by JDA-202, whereas short interfering RNA (siRNA)-induced Prx I knockdown resulted in marked cell death even without JDA-202 pretreatment. On the other hand, the increased phosphorylation of mitogen-activated protein kinase (MAPK) proteins (c-Jun N-terminal kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) by JDA-202 was suppressed by N-acetylcysteine (NAC) or catalase, a known reactive oxygen species (ROS) or H2O2 scavenger. JDA-202 also significantly inhibited the growth of EC109 tumor xenograft, without significant body weight loss and multi-organ toxicities. Innovation and Conclusion: Our findings, for the first time, demonstrated that JDA-202 may serve as a lead compound, targeting the overexpressed Prx I in EC cell lines and ROS accumulation as well as inhibiting the activation of their downstream targets in MAPKs. Antioxid. Redox Signal. 27, 73-92.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Lina Ding
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Wenjuan Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Yage Ji
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Junwei Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Huimin Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Yongcheng Ma
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Guozhong Jiang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Kai Tang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Yu Ke
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, China
| |
Collapse
|
27
|
CXCL16 deficiency attenuates diabetic nephropathy through decreasing oxidative stress and inflammation. Biochem Biophys Res Commun 2017; 491:848-854. [PMID: 28478039 DOI: 10.1016/j.bbrc.2017.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/24/2022]
Abstract
Soluble C-X-C chemokine ligand 16 (CXCL16) is related to the inflammatory response in liver injury and involved in the pathogenesis of renal dysfunction in diabetes patients. However, the exact role of elevated CXCL16 in diabetic nephropathy (DN) remains unclear. In this study, we investigated the role of CXCL16 in streptozcin (STZ)-induced diabetic nephropathy (DN) in mice. The results showed that fasting blood glucose (FBG) and 24 h urinary protein, triglyceride, and cholesterol levels increased in diabetic mice, and these changes were partially ameliorated in CXCL16 KO mice. Meanwhile, the results also showed that ROS generation was suppressed and the expression levels of inflammatory factors and infiltration factors were inhibited both in vivo and in vitro using DN models. In addition, the total AKT protein and p-AKT levels were decreased in CXCL16-depleted HK-2 cells that were treated with LPS. These findings suggest that the CXCL16 gene product promotes inflammatory factors and cell infiltration factors, and inhibits the expression of antioxidant factors to accelerate the development of DN, and CXCL16 deficiency attenuates DN may be involved in the AKT signaling pathway.
Collapse
|
28
|
Zhu Z, Zheng X, Li D, Wang T, Xu R, Piao H, Liu K. Prx1 promotes the proliferation and migration of vascular smooth muscle cells in a TLR4-dependent manner. Mol Med Rep 2016; 15:345-351. [DOI: 10.3892/mmr.2016.5987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/02/2016] [Indexed: 11/06/2022] Open
|
29
|
Ding C, Fan X, Wu G. Peroxiredoxin 1 - an antioxidant enzyme in cancer. J Cell Mol Med 2016; 21:193-202. [PMID: 27653015 PMCID: PMC5192802 DOI: 10.1111/jcmm.12955] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs), a ubiquitous family of redox‐regulating proteins, are reported of potential to eliminate various reactive oxygen species (ROS). As a major member of the antioxidant enzymes, PRDX1 can become easily over‐oxidized on its catalytically active cysteine induced by a variety of stimuli in vitro and in vivo. In nucleus, oligomeric PRDX1 directly associates with p53 or transcription factors such as c‐Myc, NF‐κB and AR, and thus affects their bioactivities upon gene regulation, which in turn induces or suppresses cell death. Additionally, PRDX1 in cytoplasm has anti‐apoptotic potential through direct or indirect interactions with several ROS‐dependent (redox regulation) effectors, including ASK1, p66Shc, GSTpi/JNK and c‐Abl kinase. PRDX1 is proven to be a versatile molecule regulating cell growth, differentiation and apoptosis. Recent studies have found that PRDX1 and/or PRDX1‐regulated ROS‐dependent signalling pathways play an important role in the progression and metastasis of human tumours, particularly in breast, oesophageal and lung cancers. In this paper, we review the structure, effector functions of PRDX1, its role in cancer and the pivotal role of ROS in anticancer treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Li Q, Yang L, Han K, Zhu L, Zhang Y, Ma S, Zhang K, Yang B, Guan F. Ets2 knockdown inhibits tumorigenesis in esophageal squamous cell carcinoma in vivo and in vitro. Oncotarget 2016; 7:61458-61468. [PMID: 27556183 PMCID: PMC5308664 DOI: 10.18632/oncotarget.11369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/08/2016] [Indexed: 01/13/2023] Open
Abstract
Increased expression of Ets2 is reported upregulated in esophageal squamous cell carcinoma tissue. However, the function of Ets2 in carcinogenesis of ESCC is poorly understood. Here, the rise of Ets2 was confirmed in ESCC cells and Ets2 depletion by RNA interference promotes cell apoptosis, inhibits cell proliferation, attenuates cell invasion and induces cell cycle G0/G1 arrest in vitro. Moreover, in vivo, Xenograft mouse model studies showed Ets2 knockdown inhibits tumor formation and metastasis significantly. Furthermore, Ets2 depletion inactivates the mTOR/p70S6K signaling pathway both in vitro and in vivo. Taken together, these findings strongly suggest that a critical role of Ets2 in human ESCC pathogenesis via the inactivation of the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Qinghua Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Lu Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kang Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liqiang Zhu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fangxia Guan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
31
|
Park MH, Jo M, Kim YR, Lee CK, Hong JT. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 2016; 163:1-23. [PMID: 27130805 PMCID: PMC7112520 DOI: 10.1016/j.pharmthera.2016.03.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - MiRan Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Yu Ri Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951.
| |
Collapse
|
32
|
Codini M, Cataldi S, Lazzarini A, Tasegian A, Ceccarini MR, Floridi A, Lazzarini R, Ambesi-Impiombato FS, Curcio F, Beccari T, Albi E. Why high cholesterol levels help hematological malignancies: role of nuclear lipid microdomains. Lipids Health Dis 2016; 15:4. [PMID: 26754536 PMCID: PMC4709975 DOI: 10.1186/s12944-015-0175-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022] Open
Abstract
Background Diet and obesity are recognized in the scientific literature as important risk factors for cancer development and progression. Hypercholesterolemia facilitates lymphoma lymphoblastic cell growth and in time turns in hypocholesterolemia that is a sign of tumour progression. The present study examined how and where the cholesterol acts in cancer cells when you reproduce in vitro an in vivo hypercholesterolemia condition. Methods We used non-Hodgkin’s T cell human lymphoblastic lymphoma (SUP-T1 cell line) and we studied cell morphology, aggressiveness, gene expression for antioxidant proteins, polynucleotide kinase/phosphatase and actin, cholesterol and sphingomyelin content and finally sphingomyelinase activity in whole cells, nuclei and nuclear lipid microdomains. Results We found that cholesterol changes cancer cell morphology with the appearance of protrusions together to the down expression of β-actin gene and reduction of β-actin protein. The lipid influences SUP-T1 cell aggressiveness since stimulates DNA and RNA synthesis for cell proliferation and increases raf1 and E-cadherin, molecules involved in invasion and migration of cancer cells. Cholesterol does not change GRX2 expression but it overexpresses SOD1, SOD2, CCS, PRDX1, GSR, GSS, CAT and PNKP. We suggest that cholesterol reaches the nucleus and increases the nuclear lipid microdomains known to act as platform for chromatin anchoring and gene expression. Conclusion The results imply that, in hypercholesterolemia conditions, cholesterol reaches the nuclear lipid microdomains where activates gene expression coding for antioxidant proteins. We propose the cholesterolemia as useful parameter to monitor in patients with cancer.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, Perugia, Italy
| | - Anna Tasegian
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | | | - Remo Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, Perugia, Italy
| | | | - Francesco Curcio
- Department of Clinical and Biological Sciences, University of Udine, Udine, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
33
|
Sun YL, Cai JQ, Liu F, Bi XY, Zhou LP, Zhao XH. Aberrant expression of peroxiredoxin 1 and its clinical implications in liver cancer. World J Gastroenterol 2015; 21:10840-10852. [PMID: 26478675 PMCID: PMC4600585 DOI: 10.3748/wjg.v21.i38.10840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/02/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression characteristics of peroxiredoxin 1 (PRDX1) mRNA and protein in liver cancer cell lines and tissues.
METHODS: The RNA sequencing data from 374 patients with liver cancer were obtained from The Cancer Genome Atlas. The expression and clinical characteristics of PRDX1 mRNA were analyzed in this dataset. The Kaplan-Meier and Cox regression survival analysis was performed to determine the relationship between PRDX1 levels and patient survival. Subcellular fractionation and Western blotting were used to demonstrate the expression of PRDX1 protein in six liver cancer cell lines and 29 paired fresh tissue specimens. After bioinformatics prediction, a putative post-translational modification form of PRDX1 was observed using immunofluorescence under confocal microscopy and immunoprecipitation analysis in liver cancer cells.
RESULTS: The mRNA of PRDX1 gene was upregulated about 1.3-fold in tumor tissue compared with the adjacent non-tumor control (P = 0.005). Its abundance was significantly higher in men than women (P < 0.001). High levels of PRDX1 mRNA were associated with a shorter overall survival time (P = 0.04) but not with recurrence-free survival. The Cox regression analysis demonstrated that patients with high PRDX1 mRNA showed about 1.9-fold increase of risk for death (P = 0.03). In liver cancer cells, PRDX1 protein was strongly expressed with multiple different bands. PRDX1 in the cytosol fraction existed near the theoretical molecular weight, whereas two higher molecular weight bands were present in the membrane/organelle and nuclear fractions. Importantly, the theoretical PRDX1 band was increased, whereas the high molecular weight form was decreased in tumor tissues. Subsequent experiments revealed that the high molecular weight bands of PRDX1 might result from the post-translational modification by small ubiquitin-like modifier-1 (SUMO1).
CONCLUSION: PRDX1 was overexpressed in the tumor tissues of liver cancer and served as an independent poor prognostic factor for overall survival. PRDX1 can be modified by SUMO to play specific roles in hepatocarcinogenesis.
Collapse
|
34
|
Dey KK, Pal I, Bharti R, Dey G, Kumar BNP, Rajput S, Parekh A, Parida S, Halder P, Kulavi I, Mandal M. Identification of RAB2A and PRDX1 as the potential biomarkers for oral squamous cell carcinoma using mass spectrometry-based comparative proteomic approach. Tumour Biol 2015; 36:9829-37. [PMID: 26159854 DOI: 10.1007/s13277-015-3758-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022] Open
Abstract
Despite the recent advances in diagnostic and therapeutic strategies, oral squamous cell carcinoma (OSCC) remains a major health burden. Protein biomarker discovery for early detection will help to improve patient survival rate in OSCC. Mass spectrometry-based proteomics has emerged as an excellent approach for detection of protein biomarkers in various types of cancers. In the current study, we have used 4-Plex isobaric tags for relative and absolute quantitation (iTRAQ)-based shotgun quantitative proteomic approach to identify proteins that are differentially expressed in cancerous tissues compared to normal tissues. The high-resolution mass spectrometric analysis resulted in identifying 2,074 proteins, among which 288 proteins were differentially expressed. Further, it was noticed that 162 proteins were upregulated, while 125 proteins were downregulated in OSCC-derived cancer tissue samples as compared to the adjacent normal tissues. We identified some of the known molecules which were reported earlier in OSCC such as MMP-9 (8.4-fold), ZNF142 (5.6-fold), and S100A7 (3.5-fold). Apart from this, we have also identified some novel signature proteins which have not been reported earlier in OSCC including ras-related protein Rab-2A isoform, RAB2A (4.6-fold), and peroxiredoxin-1, PRDX1 (2.2-fold). The immunohistochemistry-based validation using tissue microarray slides in OSCC revealed overexpression of the RAB2A and PRDX1 gene in 80 and 68 % of the tested clinical cases, respectively. This study will not only serve as a resource of candidate biomarkers but will contribute towards the existing knowledge on the role of the candidate molecules towards disease progression and therapeutic potential.
Collapse
Affiliation(s)
- Kaushik Kumar Dey
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Ipsita Pal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Rashmi Bharti
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Goutam Dey
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - B N Prashanth Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Shashi Rajput
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Aditya Parekh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Sheetal Parida
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Priyanka Halder
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| | - Indranil Kulavi
- Bankura Sammilani Medical College, Bankura, West Bengal, 722101, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
35
|
Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 2015; 40:435-45. [PMID: 26067716 DOI: 10.1016/j.tibs.2015.05.001] [Citation(s) in RCA: 435] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 02/08/2023]
Abstract
Peroxiredoxins (Prxs) are a ubiquitous family of cysteine-dependent peroxidase enzymes that play dominant roles in regulating peroxide levels within cells. These enzymes, often present at high levels and capable of rapidly clearing peroxides, display a remarkable array of variations in their oligomeric states and susceptibility to regulation by hyperoxidative inactivation and other post-translational modifications. Key conserved residues within the active site promote catalysis by stabilizing the transition state required for transferring the terminal oxygen of hydroperoxides to the active site (peroxidatic) cysteine residue. Extensive investigations continue to expand our understanding of the scope of their importance as well as the structures and forces at play within these critical defense and regulatory enzymes.
Collapse
Affiliation(s)
- Arden Perkins
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333, USA
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333, USA.
| |
Collapse
|