1
|
Kuang P, Xie A, Deng J, Tang J, Wang P, Yu F. GTP-binding protein Di-RAS3 diminishes the migration and invasion of non-small cell lung cancer by inhibiting the RAS/extracellular-regulated kinase pathway. Bioengineered 2022; 13:5663-5674. [PMID: 35170376 PMCID: PMC8973588 DOI: 10.1080/21655979.2022.2031671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The GTP-binding protein Di-Ras3 (DIRAS3) has been established as a maternally imprinted tumor suppressor gene. Growing evidence has correlated the DIRAS3 gene with tumor progression, but its role in non-small cell lung cancer (NSCLC) is rarely reported. Accordingly, the current study sought to evaluate the role and mechanism of DIRAS3 in NSCLC cell progression. First, we uncovered that DIRAS3 was poorly expressed in NSCLC tissues and cells. Subsequently, we examined the effect of DIRAS3 over-expression or knockdown in different lung cancer cells on their malignant phenotypes, with the help of transwell cell migration and invasion assays, and Western blot analyses. It was found that the over-expression of DIRAS3 inhibited the migration and invasion of A549 cells or H520 cells, whereas knockdown of DIRAS3 led to opposing trends. In addition, over-expression of DIRAS3 attenuated the tumor growth and reduced the number of lung tumor nodules. Mechanistically, DIRAS3 may inhibit the migration and invasion of NSCLC cells by inhibiting the RAS/extracellular-regulated kinase (ERK) signaling pathway. Collectively, our findings indicate that DIRAS3 could serve as a potential therapeutic target biomarker for NSCLC.
Collapse
Affiliation(s)
- Peng Kuang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - An Xie
- Jiangxi Institute of Urology, The First Affiliated Hospital of Nanchang University, China
| | - Jianxiong Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaming Tang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peijun Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Rothhammer-Hampl T, Liesenberg F, Hansen N, Hoja S, Delic S, Reifenberger G, Riemenschneider MJ. Frequent Epigenetic Inactivation of DIRAS-1 and DIRAS-2 Contributes to Chemo-Resistance in Gliomas. Cancers (Basel) 2021; 13:cancers13205113. [PMID: 34680261 PMCID: PMC8534260 DOI: 10.3390/cancers13205113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We investigated the genes DIRAS-1 and DIRAS-2 in terms of their regulation and functional relevance in brain tumors (gliomas). We found that in a majority of patients the expression of both genes is strongly downregulated on the mRNA level when comparing tumors with healthy brain tissue. We could show that epigenetic mechanisms account for this downregulation. Both promoter methylation and histone modifications are accountable. We performed experiments in tumor tissues (direct bisulfite sequencing and chromatin-immunoprecipitation) and we treated glioblastoma cell lines in a way to overcome epigenetic inactivation of both genes. When genes were re-expressed, the tumor cells turned out more sensitive to alkylating chemotherapeutic agents such as Lomustin. Changes in intracellular pathways related to p53-mediated DNA damage response may explain for this observation. Abstract We previously reported that DIRAS-3 is frequently inactivated in oligodendrogliomas due to promoter hypermethylation and loss of the chromosomal arm 1p. DIRAS-3 inactivation was associated with better overall survival. Consequently, we now investigated regulation and function of its family members DIRAS-1 and DIRAS-2. We found that DIRAS-1 was strongly downregulated in 65% and DIRAS-2 in 100% of analyzed glioma samples compared to non-neoplastic brain tissue (NNB). Moreover, a significant down-regulation of DIRAS-1 and -2 was detected in glioma data obtained from the TCGA database. Mutational analyses did not reveal any inactivating mutations in the DIRAS-1 and -2 coding regions. Analysis of the DIRAS-1 and -2 promoter methylation status showed significantly higher methylation in IDH-mutant astrocytic and IDH-mutant and 1p/19q-codeleted oligodendroglial tumors compared to NNB. Treatment of U251MG and Hs683 glioblastoma cells lines with 5-azacytidine led to significant re-expression of DIRAS-1 and -2. For IDH-wild-type primary gliomas, however, we did not observe significantly elevated DIRAS-1 and -2 promoter methylation levels, but still detected strong downregulation of both DIRAS family members. Additional analyses revealed that DIRAS-1 and -2 expression was also regulated by histone modifications. We observed a shift towards promoter heterochromatinization for DIRAS-1 and less promoter euchromatinization for DIRAS-2 in IDH-wild-type glioblastomas compared to controls. Treatment of the two glioblastoma cell lines with a histone deacetylase inhibitor led to significant re-expression of DIRAS-1 and -2. Functionally, overexpression of DIRAS-1 and -2 in glioblastoma cells translated into significantly higher sensitivity to lomustine treatment. Analyses of DNA damage markers revealed that DIRAS-1 and -2 may play a role in p53-dependent response to alkylating chemotherapy.
Collapse
Affiliation(s)
- Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (T.R.-H.); (S.H.); (S.D.)
| | - Franziska Liesenberg
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany; (F.L.); (N.H.); (G.R.)
| | - Natalie Hansen
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany; (F.L.); (N.H.); (G.R.)
| | - Sabine Hoja
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (T.R.-H.); (S.H.); (S.D.)
| | - Sabit Delic
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (T.R.-H.); (S.H.); (S.D.)
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany; (F.L.); (N.H.); (G.R.)
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus J. Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (T.R.-H.); (S.H.); (S.D.)
- Correspondence: ; Tel.: +49-941-9445150
| |
Collapse
|
3
|
Liu X, Zhang T, Li Y, Zhang Y, Zhang H, Wang X, Li L. The Role of Methylation in the CpG Island of the ARHI Promoter Region in Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:123-132. [PMID: 32949395 DOI: 10.1007/978-981-15-4494-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypermethylation can downregulate many tumor suppressor gene expressions. Aplasia Ras homologue member I (ARHI, DIRAS3) is one of the maternally imprinted tumor suppressors in the RAS superfamily. This chapter overviewed the importance of ARHI methylation and expression phenomes in various types of cancers, although the exact mechanisms remain unclear. As an imprinted gene, aberrant DNA methylation of the paternal allele of ARHI was identified as a primary inhibitor of ARHI expression. The role of methylation in the CpG islands of the ARHI promoter region vary among ovarian cancers, breast cancers, hepatocellular carcinoma, colon cancers, pancreatic cancer osteosarcoma, glial tumors, follicular thyroid carcinoma, or lung cancers. The methylation of ARHI provides a new insight to understand molecular mechanisms of tumorigenesis and progression of cancers.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yanjun Li
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yuwei Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Hui Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Xiangdong Wang
- Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Li Li
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
- Henan University People's Hospital, Zhengzhou, Henan, China.
- Department of Scientific Research and Discipline Construction, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Blessing AM, Santiago-O'Farrill JM, Mao W, Pang L, Ning J, Pak D, Bollu LR, Rask P, Iles L, Yang H, Tran S, Elmir E, Bartholomeusz G, Langley R, Lu Z, Bast RC. Elimination of dormant, autophagic ovarian cancer cells and xenografts through enhanced sensitivity to anaplastic lymphoma kinase inhibition. Cancer 2020; 126:3579-3592. [PMID: 32484926 DOI: 10.1002/cncr.32985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Poor outcomes for patients with ovarian cancer relate to dormant, drug-resistant cancer cells that survive after primary surgery and chemotherapy. Ovarian cancer (OvCa) cells persist in poorly vascularized scars on the peritoneal surface and depend on autophagy to survive nutrient deprivation. The authors have sought drugs that target autophagic cancer cells selectively to eliminate residual disease. METHODS By using unbiased small-interfering RNA (siRNA) screens, the authors observed that knockdown of anaplastic lymphoma kinase (ALK) reduced the survival of autophagic OvCa cells. Small-molecule ALK inhibitors were evaluated for their selective toxicity against autophagic OvCa cell lines and xenografts. Autophagy was induced by reexpression of GTP-binding protein Di-Ras3 (DIRAS3) or serum starvation and was evaluated with Western blot analysis, fluorescence imaging, and transmission electron microscopy. Signaling pathways required for crizotinib-induced apoptosis of autophagic cells were explored with flow cytometric analysis, Western blot analysis, short-hairpin RNA knockdown of autophagic proteins, and small-molecule inhibitors of STAT3 and BCL-2. RESULTS Induction of autophagy by reexpression of DIRAS3 or serum starvation in multiple OvCa cell lines significantly reduced the 50% inhibitory concentration of crizotinib and other ALK inhibitors. In 2 human OvCa xenograft models, the DIRAS3-expressing tumors treated with crizotinib had significantly decreased tumor burden and long-term survival in 67% to 79% of mice. Crizotinib treatment of autophagic cancer cells further enhanced autophagy and induced autophagy-mediated apoptosis by decreasing phosphorylated STAT3 and BCL-2 signaling. CONCLUSIONS Crizotinib may eliminate dormant, autophagic, drug-resistant OvCa cells that remain after conventional cytoreductive surgery and combination chemotherapy. A clinical trial of ALK inhibitors as maintenance therapy after second-look operations should be seriously considered.
Collapse
Affiliation(s)
- Alicia M Blessing
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Janice M Santiago-O'Farrill
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Weiqun Mao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lan Pang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daewoo Pak
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lakshmi Reddy Bollu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip Rask
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - LaKesla Iles
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samantha Tran
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ezzeddine Elmir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert Langley
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Wang Y, Zhao W, Xiao Z, Guan G, Liu X, Zhuang M. A risk signature with four autophagy-related genes for predicting survival of glioblastoma multiforme. J Cell Mol Med 2020; 24:3807-3821. [PMID: 32065482 PMCID: PMC7171404 DOI: 10.1111/jcmm.14938] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating brain tumour without effective treatment. Recent studies have shown that autophagy is a promising therapeutic strategy for GBM. Therefore, it is necessary to identify novel biomarkers associated with autophagy in GBM. In this study, we downloaded autophagy-related genes from Human Autophagy Database (HADb) and Gene Set Enrichment Analysis (GSEA) website. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were performed to identify genes for constructing a risk signature. A nomogram was developed by integrating the risk signature with clinicopathological factors. Time-dependent receiver operating characteristic (ROC) curve and calibration plot were used to evaluate the efficiency of the prognostic model. Finally, four autophagy-related genes (DIRAS3, LGALS8, MAPK8 and STAM) were identified and were used for constructing a risk signature, which proved to be an independent risk factor for GBM patients. Furthermore, a nomogram was developed based on the risk signature and clinicopathological factors (IDH1 status, age and history of radiotherapy or chemotherapy). ROC curve and calibration plot suggested the nomogram could accurately predict 1-, 3- and 5-year survival rate of GBM patients. For function analysis, the risk signature was associated with apoptosis, necrosis, immunity, inflammation response and MAPK signalling pathway. In conclusion, the risk signature with 4 autophagy-related genes could serve as an independent prognostic factor for GBM patients. Moreover, we developed a nomogram based on the risk signature and clinical traits which was validated to perform better for predicting 1-, 3- and 5-year survival rate of GBM.
Collapse
Affiliation(s)
- Yulin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | | | - Zhe Xiao
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Gefei Guan
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xin Liu
- Department of StomatologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Minghua Zhuang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
6
|
Zhong C, Shu M, Ye J, Wang X, Chen X, Liu Z, Zhao W, Zhao B, Zheng Z, Yin Z, Gao M, Zhao H, Wang K, Zhao S. Oncogenic Ras is downregulated by ARHI and induces autophagy by Ras/AKT/mTOR pathway in glioblastoma. BMC Cancer 2019; 19:441. [PMID: 31088402 PMCID: PMC6515631 DOI: 10.1186/s12885-019-5643-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Glioblastoma is a disease with high heterogeneity that has long been difficult for doctors to identify and treat. ARHI is a remarkable tumor suppressor gene in human ovarian cancer and many other cancers. We found over-expression of ARHI can also inhibit cancer cell proliferation, decrease tumorigenicity, and induce autophagic cell death in human glioma and inhibition of the late stage of autophagy can further enhance the antitumor effect of ARHI through inducing apoptosis in vitro or vivo. METHODS Using MTT assay to detect cell viability. The colony formation assay was used to measure single cell clonogenicity. Autophagy associated morphological changes were tested by transmission electron microscopy. Flow cytometry and TUNEL staining were used to measure the apoptosis rate. Autophagy inhibitor chloroquine (CQ) was used to study the effects of inhibition at late stage of autophagy on ARHI-induced autophagy and apoptosis. Protein expression were detected by Western blot, immunofluorescence and immunohistochemical analyses. LN229-derived xenografts were established to observe the effect of ARHI in vivo. RESULTS ARHI induced autophagic death in glioma cells, and blocking late-stage autophagy markedly enhanced the antiproliferative activites of ARHI. In our research, we observed the inhibition of RAS-AKT-mTOR signaling in ARHI-glioma cells and blockade of autophagy flux at late stage by CQ enhanced the cytotoxicity of ARHI, caused accumulation of autophagic vacuoles and robust apoptosis. As a result, the inhibition of RAS augmented autophagy of glioma cells. CONCLUSION ARHI may also be a functional tumor suppressor in glioma. And chloroquine (CQ) used as an auxiliary medicine in glioma chemotherapy can enhance the antitumor effect of ARHI, and this study provides a novel mechanistic basis and strategy for glioma therapy.
Collapse
Affiliation(s)
- Chen Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, No. 157 Baojian Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Mengting Shu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Junyi Ye
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Zhendong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Wenyang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Zhixing Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Zhiqin Yin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Ming Gao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Haiqi Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Kaikai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| |
Collapse
|
7
|
Li X, Liu S, Fang X, He C, Hu X. The mechanisms of DIRAS family members in role of tumor suppressor. J Cell Physiol 2018; 234:5564-5577. [PMID: 30317588 DOI: 10.1002/jcp.27376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Abstract
DIRAS family is a group of GTPases belonging to the RAS superfamily and shares homology with the pro-oncogenic Ras GTPases. Currently, accumulating evidence show that DIRAS family members could be identified as putative tumor suppressors in various cancers. The either lost or reduced expression of DIRAS proteins play an important role in cancer development, including cell growth, migration, apoptosis, autophagic cell death, and tumor dormancy. This review focuses on the latest research regarding the roles and mechanisms of the DIRAS family members in regulating Ras function, cancer development, assessing potential challenges, and providing insights into the possibility of targeting them for therapeutic use.
Collapse
Affiliation(s)
- Xueli Li
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shuiping Liu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Cancer Pharmacology and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chao He
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Ouyang J, Pan X, Hu Z. The role of aplysia ras homolog I in colon cancer cell invasion and adhesion. Exp Ther Med 2017; 14:5193-5199. [PMID: 29201236 DOI: 10.3892/etm.2017.5122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/05/2017] [Indexed: 12/14/2022] Open
Abstract
Aplysia ras homolog I (ARHI) acts as a tumor suppressor in certain cancer cells. However, the role of ARHI in colon cancer development has not previously been reported. The present study aimed to investigate the functional role of ARHI in colon cancer focusing on the aspect of metastasis. Furthermore, the molecular mechanism underlying its function was explored. The present study detected the expression of ARHI in a human colon epithelial cell line and colon cancer cell lines using reverse transcription-quantitative polymerase chain reaction and western blotting analysis. It was demonstrated that ARHI expression was significantly downregulated in colon cancer cell lines compared with the normal colon epithelial cell line (P<0.05). An ARHI-pcDNA3.1 plasmid was transfected into HCT116 cells to overexpress ARHI. The number of invaded cells and the adhesive ability were significantly decreased in the ARHI overexpression group compared with the control group, as determined by cell invasion and adhesion assays (P<0.05). Furthermore, ARHI overexpression led to increased mRNA and protein expression levels of E-cadherin, and decreased mRNA and protein expression levels of N-cadherin and vimentin. Wnt/β-catenin signaling was suppressed in HCT116 cells overexpressing ARHI. Lithium chloride, a wnt/β-catenin signaling activator, was able to attenuate the effect of ARHI on HCT116 cell invasion and adhesion. In addition, the effect of ARHI on epithelial-mesenchymal transition (EMT) in HCT116 cells was reversed by the activation of wnt/β-catenin signaling. In conclusion, the present study provided novel evidence that ARHI could inhibit colon cancer cell invasion and adhesion through suppressing EMT, and these effects were achieved, at least partially, via the suppression of the wnt/β-catenin signaling pathway. The present findings may help in developing novel therapeutic approaches for colon cancer.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohui Pan
- Department of Urology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zecheng Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
9
|
Xu C, Zhang JG, Lin D, Zhang L, Shen H, Deng HW. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease. G3 (BETHESDA, MD.) 2017; 7:2271-2279. [PMID: 28500050 PMCID: PMC5499134 DOI: 10.1534/g3.117.042408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
Integrating diverse genomics data can provide a global view of the complex biological processes related to the human complex diseases. Although substantial efforts have been made to integrate different omics data, there are at least three challenges for multi-omics integration methods: (i) How to simultaneously consider the effects of various genomic factors, since these factors jointly influence the phenotypes; (ii) How to effectively incorporate the information from publicly accessible databases and omics datasets to fully capture the interactions among (epi)genomic factors from diverse omics data; and (iii) Until present, the combination of more than two omics datasets has been poorly explored. Current integration approaches are not sufficient to address all of these challenges together. We proposed a novel integrative analysis framework by incorporating sparse model, multivariate analysis, Gaussian graphical model, and network analysis to address these three challenges simultaneously. Based on this strategy, we performed a systemic analysis for glioblastoma multiforme (GBM) integrating genome-wide gene expression, DNA methylation, and miRNA expression data. We identified three regulatory modules of genomic factors associated with GBM survival time and revealed a global regulatory pattern for GBM by combining the three modules, with respect to the common regulatory factors. Our method can not only identify disease-associated dysregulated genomic factors from different omics, but more importantly, it can incorporate the information from publicly accessible databases and omics datasets to infer a comprehensive interaction map of all these dysregulated genomic factors. Our work represents an innovative approach to enhance our understanding of molecular genomic mechanisms underlying human complex diseases.
Collapse
Affiliation(s)
- Chao Xu
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
| | - Ji-Gang Zhang
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
| | - Dongdong Lin
- The Mind Research Network and Lovelace Biomedical and Environment Research Institute, Albuquerque, New Mexico 87106
| | - Lan Zhang
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
| | - Hui Shen
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana 70112
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
10
|
Kok DEG, Dhonukshe-Rutten RAM, Lute C, Heil SG, Uitterlinden AG, van der Velde N, van Meurs JBJ, van Schoor NM, Hooiveld GJEJ, de Groot LCPGM, Kampman E, Steegenga WT. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenetics 2015; 7:121. [PMID: 26568774 PMCID: PMC4644301 DOI: 10.1186/s13148-015-0154-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/04/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Folate and its synthetic form folic acid function as donor of one-carbon units and have been, together with other B-vitamins, implicated in programming of epigenetic processes such as DNA methylation during early development. To what extent regulation of DNA methylation can be altered via B-vitamins later in life, and how this relates to health and disease, is not exactly known. The aim of this study was to identify effects of long-term supplementation with folic acid and vitamin B12 on genome-wide DNA methylation in elderly subjects. This project was part of a randomized, placebo-controlled trial on effects of supplemental intake of folic acid and vitamin B12 on bone fracture incidence (B-vitamins for the PRevention Of Osteoporotic Fractures (B-PROOF) study). Participants with mildly elevated homocysteine levels, aged 65-75 years, were randomly assigned to take 400 μg folic acid and 500 μg vitamin B12 per day or a placebo during an intervention period of 2 years. DNA was isolated from buffy coats, collected before and after intervention, and genome-wide DNA methylation was determined in 87 participants (n = 44 folic acid/vitamin B12, n = 43 placebo) using the Infinium HumanMethylation450 BeadChip. RESULTS After intervention with folic acid and vitamin B12, 162 (versus 14 in the placebo group) of the 431,312 positions were differentially methylated as compared to baseline. Comparisons of the DNA methylation changes in the participants receiving folic acid and vitamin B12 versus placebo revealed one single differentially methylated position (cg19380919) with a borderline statistical significance. However, based on the analyses of differentially methylated regions (DMRs) consisting of multiple positions, we identified 6 regions that differed statistically significantly between the intervention and placebo group. Pronounced changes were found for regions in the DIRAS3, ARMC8, and NODAL genes, implicated in carcinogenesis and early embryonic development. Furthermore, serum levels of folate and vitamin B12 or plasma homocysteine were related to DNA methylation of 173, 425, and 11 regions, respectively. Interestingly, for several members of the developmental HOX genes, DNA methylation was related to serum levels of folate. CONCLUSIONS Long-term supplementation with folic acid and vitamin B12 in elderly subjects resulted in effects on DNA methylation of several genes, among which genes implicated in developmental processes.
Collapse
Affiliation(s)
- Dieuwertje E G Kok
- Division of Human Nutrition, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | | | - Carolien Lute
- Division of Human Nutrition, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Genetic Laboratory Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands ; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nathalie van der Velde
- Genetic Laboratory Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands ; Department of Internal Medicine, Section of Geriatrics, Academic Medical Center, Amsterdam, The Netherlands
| | - Joyce B J van Meurs
- Genetic Laboratory Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Lisette C P G M de Groot
- Division of Human Nutrition, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Wilma T Steegenga
- Division of Human Nutrition, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
11
|
Ye K, Wang S, Yang Y, Kang X, Wang J, Han H. Aplasia Ras homologue member Ⅰ overexpression inhibits tumor growth and induces apoptosis through inhibition of PI3K/Akt survival pathways in human osteosarcoma MG-63 cells in culture. Int J Mol Med 2015; 36:776-82. [PMID: 26165148 DOI: 10.3892/ijmm.2015.2278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Aplasia Ras homologue member Ⅰ (ARHI), an imprinted tumor-suppressor gene, is downregulated in various types of cancer. However, the expression, function and specific mechanisms of ARHI in human osteosarcoma (OS) cells remain unclear. The aim of the present study was to assess the effect of ARHI on OS cell proliferation and apoptosis and its associated mechanism. In the study, ARHI mRNA and protein levels were markedly downregulated in OS cells compared with the human osteoblast precursor cell line hFOB1.19. By generating stable transfectants, ARHI was overexpressed in OS cells that had low levels of ARHI. Overexpression of ARHI inhibited cell viability and proliferation and induced apoptosis. However, caspase‑3 activity was not changed by ARHI overexpression. In addition, phosphorylated Akt protein expression decreased in the ARHI overexpression group compared to that in the control vector group. The knockdown of ARHI also resulted in the promotion of cell proliferation and the attenuation of apoptosis in MG‑63 cells. Additionally, ARHI silencing increased the level of p‑Akt. The present results indicate that ARHI inhibits OS cell proliferation and may have a key role in the development of OS.
Collapse
Affiliation(s)
- Kaishan Ye
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Shuanke Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yong Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jing Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hua Han
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|