1
|
Smith RJ, Zollo R, Kalvapudi S, Vedire Y, Pachimatla AG, Petrucci C, Shaller G, Washington D, Rr V, Sass SN, Srinivasan A, Kannisto E, Bawek S, Jain P, Rosario S, Barbi J, Yendamuri S. Obesity-specific improvement of lung cancer outcomes and immunotherapy efficacy with metformin. J Natl Cancer Inst 2025; 117:673-684. [PMID: 39560490 PMCID: PMC11972684 DOI: 10.1093/jnci/djae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Preclinical cancer studies ascribe promising anticancer properties to metformin. Yet, clinical findings vary, casting uncertainty on its therapeutic value for non-small cell lung cancer (NSCLC) patients. We hypothesized that metformin could benefit obese and overweight patients with NSCLC. METHODS We retrospectively analyzed 2 clinical cohorts and employed complementary mouse models to test our hypothesis. One cohort included NSCLC patients with overweight body mass index (≥25 kg/m2, n = 511) and nonoverweight body mass index (<25 kg/m2, n = 232) who underwent lobectomy, evaluating metformin's impact on clinical outcomes. Another cohort examined metformin's effect on progression-free survival after immune checkpoint inhibitors in overweight (n = 284) vs nonoverweight (n = 184) NSCLC patients. Metformin's effects on tumor progression, antitumor immunity, and immune checkpoint inhibitor response in obese and normal-weight mice were assessed with lung cancer models. RESULTS Metformin is associated with increased recurrence-free survival in overweight patients (hazard ratio [HR] = 0.47, 95% confidence interval [CI] = 0.24 to 0.94; P = .035) after lobectomy. It also corrected accelerated tumor growth in diet-induced obese mouse models in a lymphocyte-specific manner while reversing several mechanisms of immune suppression potentiated by obesity. Programmed cell death 1 blockade coupled with metformin was more effective at limiting tumor burden in obese mice and correlated with progression-free survival only in overweight patients on immunotherapy (HR = 0.60, 95% CI = 0.39 to 0.93; P = .024). CONCLUSIONS Metformin may improve lung cancer-specific clinical outcomes in obese and overweight lung cancer patients and enhance immunotherapy efficacy in this growing population. This work identifies obesity as a potential predictive biomarker of metformin's anticancer and immunotherapy-enhancing properties in lung cancer while shedding light on the underlying immunological phenomena.
Collapse
Affiliation(s)
- Randall J Smith
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Robert Zollo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Sukumar Kalvapudi
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Yeshwanth Vedire
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Akhil Goud Pachimatla
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Cara Petrucci
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Garrison Shaller
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Deschana Washington
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Vethanayagam Rr
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Stephanie N Sass
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Aravind Srinivasan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Eric Kannisto
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Sawyer Bawek
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY 14263, United States
| | - Prantesh Jain
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| |
Collapse
|
2
|
Zhou H, Xiao J, Cheng Q, Wang W, Peng H, Lin X, Chen J, Wang X. Metformin inhibits migration and epithelial-to-mesenchymal transition in non-small cell lung cancer cells through AMPK-mediated GDF15 induction. Eur J Pharmacol 2024; 985:177127. [PMID: 39528101 DOI: 10.1016/j.ejphar.2024.177127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The growth differentiation factor 15 (GDF15) may serve as a biomarker of metformin, which mediates the bodyweight lowering effect of metformin. However, whether GDF15 also serves as a molecular target of metformin to inhibit carcinogenesis remains largely unknown. This study examined the role and molecular mechanisms of GDF15 in the anticancer effects of metformin in non-small cell lung cancer (NSCLC) cells, which has never been reported before. We found that metformin significantly inhibited the migration of NSCLC A549 and NCI-H460 cells and reduced the expression of epithelial-to-mesenchymal transition (EMT)-related molecules, including neuro-cadherin (N-cadherin), matrix metalloproteinase 2 (MMP2), and the zinc finger transcription factor Snail, but increased epithelial cadherin (E-cadherin) expression. Furthermore, metformin increased GDF15 and its upstream transcription factors activated transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP) expressions and increased AMP-activated protein kinase (AMPK) phosphorylation in NSCLC cells. GDF15 siRNA partially reverses the inhibitory effect of metformin on NSCLC cell migration. Moreover, metformin-induced increases in GDF15, CHOP, and ATF4 expression and the inhibition of migration were partially reversed by treatment with Compound C, a specific AMPK inhibitor. Meanwhile, metformin significantly inhibited NCI-H460 xenograft tumor growth in nude mice, increased GDF15 expression, and regulated EMT- and migration-related protein expression in xenograft tumors. In conclusion, our results provide novel insights into revealing that GDF15 can serve as a potential molecular target of metformin owing to its anti-cancer effect in NSCLC, which is mediated by AMPK activation.
Collapse
Affiliation(s)
- Hongyu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Jun Xiao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Qi Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Wen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| |
Collapse
|
3
|
Jonusas J, Patasius A, Drevinskaite M, Ladukas A, Linkeviciute-Ulinskiene D, Zabuliene L, Smailyte G. Metformin in Chemoprevention of Lung Cancer: A Retrospective Population-Based Cohort Study in Lithuania. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1275. [PMID: 39202556 PMCID: PMC11356288 DOI: 10.3390/medicina60081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: This study aimed to evaluate the potential chemopreventive effect of antidiabetic medications, specifically metformin and pioglitazone, on lung cancer in patients with type 2 diabetes mellitus (T2DM). Additionally, the potential dose-response relationship for metformin use was analyzed. Methods: We conducted a retrospective cohort study utilizing comprehensive national health insurance and cancer registry databases to gather a large cohort of T2DM patients. Cox proportional hazards regression models were used to assess the risk of lung cancer across different antidiabetic medication groups, adjusting for potential confounders such as age and gender. A dose-response analysis was conducted for metformin users. Results: Our results indicated that metformin users had a significantly lower lung cancer risk than the reference group (HR = 0.69, 95% CI [0.55-0.86], p = 0.001). The risk reduction increased with higher cumulative metformin doses: a metformin cumulative dose between 1,370,000 and 2,976,000 had an HR of 0.61 (95% CI [0.49-0.75], p < 0.001) vs. cumulative metformin dose >2,976,000 which had an HR of 0.35 (95% CI [0.21-0.59], p < 0.001). No significant association between pioglitazone use and the risk of lung cancer was found (HR = 1.00, 95% CI [0.25-4.02]). Conclusions: This study shows that metformin may have a dose-dependent chemopreventive effect against lung cancer in T2DM, while the impact of pioglitazone remains unclear and requires further investigation.
Collapse
Affiliation(s)
- Justinas Jonusas
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Brachytherapy, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Ausvydas Patasius
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Public Health, Institute of Health Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Mingaile Drevinskaite
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Adomas Ladukas
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | | | - Lina Zabuliene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Giedre Smailyte
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Public Health, Institute of Health Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| |
Collapse
|
4
|
Decaudin D, Némati F, Masliah Planchon J, Seguin-Givelet A, Lefevre M, Etienne V, Ahnine H, Peretti Q, Sourd L, El-Botty R, Huguet L, Lagha S, Hegarat N, Roman-Roman S, Bièche I, Girard N, Montaudon E. Evaluation of Combined Chemotherapy and Genomic-Driven Targeted Therapy in Patient-Derived Xenografts Identifies New Therapeutic Approaches in Squamous Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2024; 16:2785. [PMID: 39199558 PMCID: PMC11352497 DOI: 10.3390/cancers16162785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The combination of chemotherapy and targeted therapy has been validated in non-small-cell lung cancer (NSCLC) patients with EGFR mutations. We therefore investigated whether this type of combined approach could be more widely used by targeting other genetic alterations present in NSCLC. PDXs were generated from patients with NSCLC adenocarcinomas (ADCs) and squamous-cell carcinomas (SCCs). Targeted NGS analyses identified various molecular abnormalities in the MAPK and PI3K pathways and in the cell cycle process in our PDX panel. The antitumor efficacy of targeted therapies alone or in combination with chemotherapy was then tested in vivo. We observed that trametinib, BKM120, AZD2014 and palbociclib increased the efficacy of each chemotherapy in SCC PDXs, in contrast to a non-insignificant or slight improvement in ADCs. Furthermore, we observed high efficacy of trametinib in KRAS-, HRAS- and NRAS-mutated tumors (ADCs and SCCs), suggesting that the MEK inhibitor may be useful in a wider population of NSCLC patients, not just those with KRAS-mutated ADCs. Our results suggest that the detection of pathogenic variants by NGS should be performed in all NSCLCs, and particularly in SCCs, to offer patients a more effective combination of chemotherapy and targeted therapy.
Collapse
Affiliation(s)
- Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, 75005 Paris, France; (F.N.); (V.E.); (L.S.); (R.E.-B.); (L.H.)
- Department of Medical Oncology, Institut Curie, 75005 Paris, France; (S.L.); (N.H.); (N.G.)
| | - Fariba Némati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, 75005 Paris, France; (F.N.); (V.E.); (L.S.); (R.E.-B.); (L.H.)
| | | | - Agathe Seguin-Givelet
- Department of Thoracic Surgery, Curie-Montsouris Thorax Institute, Institut Mutualiste Montsouris, 75014 Paris, France;
- Faculty of Medicine SMBH, Paris 13 University, Sorbonne Paris Cité, 75013 Bobigny, France
| | - Marine Lefevre
- Department of Pathology, Institut Mutualiste Montsouris, 75014 Paris, France;
| | - Vesnie Etienne
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, 75005 Paris, France; (F.N.); (V.E.); (L.S.); (R.E.-B.); (L.H.)
| | - Harry Ahnine
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, 75005 Paris, France; (F.N.); (V.E.); (L.S.); (R.E.-B.); (L.H.)
| | - Quentin Peretti
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, 75005 Paris, France; (F.N.); (V.E.); (L.S.); (R.E.-B.); (L.H.)
| | - Laura Sourd
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, 75005 Paris, France; (F.N.); (V.E.); (L.S.); (R.E.-B.); (L.H.)
| | - Rania El-Botty
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, 75005 Paris, France; (F.N.); (V.E.); (L.S.); (R.E.-B.); (L.H.)
| | - Lea Huguet
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, 75005 Paris, France; (F.N.); (V.E.); (L.S.); (R.E.-B.); (L.H.)
| | - Sarah Lagha
- Department of Medical Oncology, Institut Curie, 75005 Paris, France; (S.L.); (N.H.); (N.G.)
| | - Nadia Hegarat
- Department of Medical Oncology, Institut Curie, 75005 Paris, France; (S.L.); (N.H.); (N.G.)
| | - Sergio Roman-Roman
- Department of Translationnal Research, Institut Curie, PSL University Paris, 75006 Paris, France;
| | - Ivan Bièche
- Department of Genetic, Institut Curie, 75005 Paris, France; (J.M.P.); (I.B.)
| | - Nicolas Girard
- Department of Medical Oncology, Institut Curie, 75005 Paris, France; (S.L.); (N.H.); (N.G.)
- Paris Saclay University, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), 91405 Versailles, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, 75005 Paris, France; (F.N.); (V.E.); (L.S.); (R.E.-B.); (L.H.)
| |
Collapse
|
5
|
Xu K, Lu W, Yu A, Wu H, He J. Effect of the STK11 mutation on therapeutic efficacy and prognosis in patients with non-small cell lung cancer: a comprehensive study based on meta-analyses and bioinformatics analyses. BMC Cancer 2024; 24:491. [PMID: 38632512 PMCID: PMC11025184 DOI: 10.1186/s12885-024-12130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND This study aimed to systematically analyze the effect of a serine/threonine kinase (STK11) mutation (STK11mut) on therapeutic efficacy and prognosis in patients with non-small cell lung cancer (NSCLC). METHODS Candidate articles were identified through a search of relevant literature published on or before April 1, 2023, in PubMed, Embase, Cochrane Library, CNKI and Wanfang databases. The extracted and analyzed data included the hazard ratios (HRs) of PFS and OS, the objective response rate (ORR) of immune checkpoint inhibitors (ICIs), and the positive rates of PD-L1 expression. The HR of PFS and OS and the merged ratios were calculated using a meta-analysis. The correlation between STK11mut and clinical characteristics was further analyzed in NSCLC datasets from public databases. RESULTS Fourteen retrospective studies including 4317 patients with NSCLC of whom 605 had STK11mut were included. The meta-analysis revealed that the ORR of ICIs in patients with STK11mut was 10.1% (95%CI 0.9-25.2), and the positive rate of PD-L1 expression was 41.1% (95%CI 25.3-57.0). STK11mut was associated with poor PFS (HR = 1.49, 95%CI 1.28-1.74) and poor OS (HR = 1.44, 95%CI 1.24-1.67). In the bioinformatics analysis, PFS and OS in patients with STK11 alterations were worse than those in patients without alterations (p < 0.001, p = 0.002). Nutlin-3a, 5-fluorouracil, and vinorelbine may have better sensitivity in patients with STK11mut than in those with STK11wt. CONCLUSIONS Patients with STK11-mutant NSCLC had low PD-L1 expression and ORR to ICIs, and their PFS and OS were worse than patients with STK11wt after comprehensive treatment. In the future, more reasonable systematic treatments should be explored for this subgroup of patients with STK11-mutant NSCLC.
Collapse
Affiliation(s)
- Ke Xu
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Weinan Lu
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Airu Yu
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hongwei Wu
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jie He
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China.
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|