1
|
Zhao T, Liu S, Ma X, Shuai Y, He H, Guo T, Huang W, Wang Q, Liu S, Wang Z, Gong G, Huang L. Lycium barbarum arabinogalactan alleviates intestinal mucosal damage in mice by restoring intestinal microbes and mucin O-glycans. Carbohydr Polym 2024; 330:121882. [PMID: 38368089 DOI: 10.1016/j.carbpol.2024.121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Structurally defined arabinogalactan (LBP-3) from Lycium barbarum have effect on improving intestinal barrier function. However, whether its intestinal barrier function depended on the changes of intestinal mucin O-glycans have not been investigated. A dextran sodium sulfate-induced acute colitis mouse model was employed to test prevention and treatment with LBP-3. The intestinal microbiota as well as colonic mucin O-glycan profiles were analyzed. Supplementation with LBP-3 inhibited harmful bacteria, including Desulfovibrionaceae, Enterobacteriaceae, and Helicobacteraceae while significantly increased the abundance of beneficial bacteria (e.g., Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae). Notably, LBP-3 augmented the content of neutral O-glycans by stimulating the fucosylation glycoforms (F1H1N2 and F1H2N2), short-chain sulfated O-glycans (S1F1H1N2, S1H1N2, and S1H2N3), and sialylated medium- and long-chain O-glycans (F1H2N2A1, H2N3A1, and F1H3N2A1). In summary, we report that supplement LBP-3 significantly reduced pathological symptoms, restored the bacterial community, and promoted the expression of O-glycans to successfully prevent and alleviate colitis in a mouse model, especially in the LBP-3 prevention testing group. The underlying mechanism of action was investigated using glycomics to better clarify which the structurally defined LBP-3 were responsible for its beneficial effect against ulcerative colitis and assess its use as a functional food or pharmaceutical supplement.
Collapse
Affiliation(s)
- Tong Zhao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Sining Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoran Ma
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yutong Shuai
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Houde He
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tongyi Guo
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wenqi Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shan Liu
- Tianren Goji Biotechnology Co., Ltd, Ningxia, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Ivanov AA, Tyapkin AV, Golubeva TS. How Does the Sample Preparation of Phytophthora infestans Mycelium Affect the Quality of Isolated RNA? Curr Issues Mol Biol 2023; 45:3517-3524. [PMID: 37185754 PMCID: PMC10136579 DOI: 10.3390/cimb45040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
RNA isolation from fungi and fungus-like organisms is not an easy task. Active endogenous RNases quickly hydrolyze RNA after the sample collection, and the thick cell wall prevents inhibitors from penetrating the cells. Therefore, the initial collection and grinding steps may be crucial for the total RNA isolation from the mycelium. When isolating RNA from Phytophthora infestans, we varied the grinding time of the Tissue Lyser and used TRIzol and beta-mercaptoethanol to inhibit the RNase. In addition, we tested the mortar and pestle grinding of mycelium in liquid nitrogen, with this method showing the most consistent results. During the sample grinding with the Tissue Lyser device, adding an RNase inhibitor proved to be a prerequisite, and the best results were achieved using TRIzol. We considered ten different combinations of grinding conditions and isolation methods. The classical combination of a mortar and pestle, followed by TRIzol, has proved to be the most efficient.
Collapse
Affiliation(s)
- Artemii A Ivanov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Department of Natural Science, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandr V Tyapkin
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Department of Natural Science, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatiana S Golubeva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Department of Natural Science, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Li X, Wajjiha B, Zhang P, Dang Y, Prasad R, Wei Y, Zhang SH. Serendipita indica chitinase protects rice from the blast and bakanae diseases. J Basic Microbiol 2023. [PMID: 37032320 DOI: 10.1002/jobm.202200349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/15/2023] [Accepted: 02/25/2023] [Indexed: 04/11/2023]
Abstract
Serendipita indica, a multifunctional and useful endophyte fungus, has been intensively investigated in promoting plant growth and resistance towards biotic and abiotic stress. Multiple chitinases from microorganisms or plants have been identified to have a high antifungal activity as a biological control. However, chitinase of S. indica still needs to be characterized. We functionally characterized a chitinase (SiChi) in S. indica. The result showed that the purified SiChi protein confers high chitinase activity; importantly, SiChi inhibits the conidial germination of Magnaporthe oryzae and Fusarium moniliforme. After the successful colonization of rice roots by S. indica, both the rice blast disease and bakanae disease were significantly reduced. Interestingly, the purified SiChi could promptly induce rice disease resistance towards M. oryzae and F. moniliforme pathogens when sprayed on rice leaves. Like S. indica, SiChi could upregulate rice pathogen-resistant proteins and defense enzymes. In conclusion, chitinase of S. indica has direct antifungal activity and indirect induced resistance activity, implying an efficient and economic strategy for rice disease control by applying S. indica and SiChi.
Collapse
Affiliation(s)
- Xinrui Li
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Plant Sciences, Jilin University, Changchun, Jilin, China
| | - Batool Wajjiha
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Penghui Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Plant Sciences, Jilin University, Changchun, Jilin, China
| | - Yuejia Dang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | | | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shi-Hong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Plant Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
A comparison of total RNA extraction methods for RT-PCR based differential expression of genes from Trichoderma atrobrunneum. METHODS IN MICROBIOLOGY 2022; 200:106535. [DOI: 10.1016/j.mimet.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
|
5
|
RNAi-mediated down-regulation of fasciclin-like protein (FoFLP) in Fusarium oxysporum f. sp. lycopersici results in reduced pathogenicity and virulence. Microbiol Res 2022; 260:127033. [DOI: 10.1016/j.micres.2022.127033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
|
6
|
Nóbrega BB, Soares DMM, Zamuner CK, Stevani CV. Optimized methodology for obtention of high-yield and -quality RNA from the mycelium of the bioluminescent fungus Neonothopanus gardneri. J Microbiol Methods 2021; 191:106348. [PMID: 34699864 DOI: 10.1016/j.mimet.2021.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Neonothopanus gardneri, also known as coconut flower mushroom (flor-de-coco), is a Brazilian bioluminescent basidiomycete found in Palm Forest, a transitional biome between the Amazonian Forest and Caatinga (Savanna-like vegetation) in Northeast Brazil, especially in Piauí State. Recent advances toward the elucidation of fungal bioluminescence have contributed to the discovery of four genes (hisps, h3h, luz and cph) involved with the bioluminescence process, the so-called Caffeic Acid Cycle (CAC) and to develop biotechnological applications such autoluminescent tobacco plants and luciferase-based reporter genes. High-yield and -quality RNA-extraction methods are required for most of these purposes. Herein, four methods for RNA isolation from the mycelium of N. gardneri were evaluated: RNeasy® kit (QIAGEN), TRI+, TRI18G+, and TRI26G+. Highest RNA yield was observed for TRI18G+ and TRI26G+ methods, an increase of ~130% in comparison to the RNeasy® method and of ~40% to the TRI+ protocol. All the RNA samples showed good purity and integrity, except by gDNA contamination in RNA samples produced with the RNeasy® method. High quality of RNA samples was confirmed by successful cDNA synthesis and PCR amplification of the coding sequence of h3h gene, responsible for the hydroxylation of the precursor of fungal luciferin (3-hydroxyhispidin). Similarly, RT-qPCR amplification of ef-tu gene, related to the protein biosynthesis in the cell, was demonstrated from RNA samples. This is the first report of a reproducible, time-saving and low-cost optimized method for isolation of high-quality and -yield, DNA-free RNA from a bioluminescent fungus, but that can also be useful for other basidiomycetes.
Collapse
Affiliation(s)
- Bianca B Nóbrega
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas M M Soares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Caio K Zamuner
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Jimenez J, Leiva AM, Olaya C, Acosta-Trujillo D, Cuellar WJ. An optimized nucleic acid isolation protocol for virus diagnostics in cassava ( Manihot esculenta Crantz.). MethodsX 2021; 8:101496. [PMID: 34754767 PMCID: PMC8563463 DOI: 10.1016/j.mex.2021.101496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
Our group works on the detection and characterization of cassava viruses, supporting projects that involve large scale pathogen surveillance activities and resistance screening assays in multiple and remote locations. In order to comply with these applications, nucleic acid isolation protocols need to be cost effective, adjusted for samples that will stand long distance transport and harsh storage conditions, while maximizing the yield and quality of the nucleic acid extracts obtained. The method we describe here has been widely used and validated using different downstream tests (including, but not limited to, Rolling Circle Amplification and Illumina and Nanopore sequencing), but is currently unpublished. The protocol begins with milligram amounts of dry leaf samples stored in silica gel, does not require liquid Nitrogen nor phenol extraction and produces an average of 2.11 µg of nucleic acids per mg of dry tissue.•DNA purity estimations reveal OD260/280 ratios above 2.0 and OD260/230 ratios above 1.7, even for samples stored in silica gel for several months.•The high quality of the extracts is suitable for detection of DNA and RNA viruses, with high efficiency.•We suggest this method could be used as part of a gold standard kit for virus detection in cassava.
Collapse
Affiliation(s)
- Jenyfer Jimenez
- Virology Laboratory, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia
| | - Ana Maria Leiva
- Virology Laboratory, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia
| | | | - Daniela Acosta-Trujillo
- Virology Laboratory, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia
| | - Wilmer Jose Cuellar
- Virology Laboratory, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), AA 6713, Cali, Colombia
| |
Collapse
|
8
|
Nili O, Azizi A, Abdollahzadeh J. Development of an efficient Tef-1α RNA hairpin structure to efficient management of Lasiodiplodia theobromae and Neofusicoccum parvum. Sci Rep 2021; 11:9612. [PMID: 33953257 PMCID: PMC8099910 DOI: 10.1038/s41598-021-88422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
Lasiodiplodia theobromae and Neofusicoccum parvum are serious worldwide-distributed plant pathogenic fungi with a wide host range in tropical and temperate climates. They cause fruit rot, canker, and dieback of twigs in various woody plants. Protection of pruning wounds using fungicides is the prevalent strategy for the management of the diseases caused by these fungi. Chemical control of plant diseases is not environmentally safe and the residues of fungicides are a threat to nature. Furthermore, genetic resources of resistance to plant diseases in woody plants are limited. The aim of this study was to investigate the efficiency of RNA silencing using an efficient hairpin structure based on Tef-1α gene for the management of L. theobromae and N. parvum. Hairpin structure of Tef-1α was cloned in pFGC5941 binary vector and the recombinant construct was named pFGC-TEF-d. Transient expression of pFGC-TEF-d using Agrobacterium LBA4404 in grapevine (Bidaneh Sefid cv.) and strawberry cultivars (Camarosa and Ventana) led to a reduction in disease progress of L. theobromae. The disease reduction in grapevine was estimated by 55% and in strawberries cultivars Camarosa and Ventana by 58% and 93%, respectively. Further analysis of transient expression of pFGC-TEF-d in strawberry (Camarosa) shown disease reduction using Neofusicoccum parvum. Here we introduce RNAi silencing using pFGC-TEF-d construct as an efficient strategy to the management of L. theobromae and N. parvum for the first time.
Collapse
Affiliation(s)
- Omid Nili
- Department of Plant Protection, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Jafar Abdollahzadeh
- Department of Plant Protection, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| |
Collapse
|
9
|
Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genet Biol 2021; 147:103517. [PMID: 33434644 DOI: 10.1016/j.fgb.2021.103517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022]
Abstract
For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.
Collapse
|
10
|
Comparison of various RNA extraction methods, cDNA preparation and isolation of calmodulin gene from a highly melanized isolate of apple leaf blotch fungus Marssonina coronaria. J Microbiol Methods 2018; 151:7-15. [DOI: 10.1016/j.mimet.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 11/19/2022]
|
11
|
Sandoval Pineda JF, Ochoa Corona F, Torres Rojas E. Evaluación de diferentes métodos de extracción de ARN a partir del hongo nativo Xylaria sp. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2017. [DOI: 10.15446/rev.colomb.biote.v19n1.57114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La extracción de ARN de calidad constituye el primer paso para el análisis de la expresión génica. Sin embargo, su obtención no es sencilla debido a la susceptibilidad de esta molécula a la presencia de contaminantes como ARNasas, proteínas y polisacáridos. Adicionalmente, debido a la diversa composición de la pared celular de los hongos se requiere optimizar los procesos de extracción de ARN para organismos específicos. Este estudio evalúo el uso de diferentes metodologías de homogeneización de tejido (nitrógeno líquido y liofilización) y extracción de ARN (Trizol, CTAB y RNeasy mini kit) a partir del hongo nativo ascomiceto Xylaria sp. Se determinó la pureza, concentración e integridad del ARN obtenido por medio de espectrofotometría y electroforesis. Adicionalmente, se diseñaron cebadores de referencia para el gen β-Tubulina a partir del alineamiento de secuencias de este gen obtenidas de diferentes ascomicetes. Estos cebadores fueron utilizados para evaluar si el ARN extraído es amplificable mediante RT-PCR. Se determinó que la homogeneización de tejido por medio de liofilización generó mayores rendimientos de extracción independientemente del protocolo de extracción utilizado; sin embargo, éstos alteraron la integridad del ARN. Se obtuvo un ARN con mayor pureza con el protocolo CTABy un mayor rendimiento con el RNeasy mini kit. Los resultados indican que el ARN extraído, independientemente de la metodología de homogeneización y extracción utilizada, es amplificable mediante RT-PCR. No obstante, se recomienda homogeneizar el tejido con nitrógeno líquido y extraer con RNeasy mini kit por la brevedad del protocolo de extracción y calidad obtenida.
Collapse
|
12
|
Sonawane KD, Dandagal NR, Naikwadi AG, Gurav PT, Anapat SV, Nadaf NH, Jadhav DB, Waghmare SR. Intergeneric fusant development using chitinase preparation of Rhizopus stolonifer NCIM 880. AMB Express 2016; 6:114. [PMID: 27844458 PMCID: PMC5108735 DOI: 10.1186/s13568-016-0287-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022] Open
Abstract
Fungal chitinase have tremendous applications in biotech industries, with this approach we focused on extracellular chitinase from Rhizopus stolonifer NCIM 880 for the formation of fungal protoplasts. The maximum chitinase production reached after 24 h at 2.5% colloidal chitin concentration in presence of starch as an inducer. Chitinase was extracted efficiently at 65% cold acetone concentration and then purified by using DEAE-Cellulose column chromatography. Purified chitinase having molecular weight 22 kDa with single polypeptide chain was optimally active at pH 5.0 and temperature 30 °C. The purified chitinase revealed kinetic properties like Km 1.66 mg/ml and Vmax 769 mM/min. Crude chitinase extract efficiently formed protoplasts from A. niger, A. oryzae, T. viride and F. moniliforme. The formed protoplasts of A. niger and T. viride showed 70 and 66% regeneration frequency respectively. Further, intergeneric fusants were developed successfully and identified at molecular level using RNA profiling. Thus, this study could be useful for strain improvement of various fungi for biotechnological applications.
Collapse
|
13
|
El-Maklizi MA, Ouf A, Ferreira A, Hedar S, Cruz-Rivera E. A localized PCR inhibitor in a porcelain crab suggests a protective role. PeerJ 2014; 2:e689. [PMID: 25493214 PMCID: PMC4260131 DOI: 10.7717/peerj.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022] Open
Abstract
A number of polymerase chain reaction (PCR) inhibitors have been identified from biological and environmental samples. By and large, such substances are treated as random nuisances and contaminants with alternate functions; their inhibitory effects on DNA replication being a coincidental property of their molecular structure. Here, we demonstrate the presence of a localized PCR inhibitor in the foregut of the porcelain crab Petrolisthes rufescens (Anomura: Porcellanidae) from the Red Sea. The inhibitor precluded amplification of 28s, 16s and 18s gene sequences effectively but lost activity at 10(-2) dilutions from initial concentration. Heat treatment was ineffective in arresting inhibition and spectrophotometric techniques suggested that the inhibitor was not a melanin-type compound. The compound was not detected from midgut, hindgut, or gills of the crab. Activity of the inhibitor was precluded when samples were treated with suspensions from the midgut, suggesting that enzymatic degradation of the inhibitor likely happens at that part of the gut. As many microbial pathogens invade their hosts via ingestion, we suggest the presence of the localized inhibitor could carry a defensive or immunological role for P. rufescens. The identity of the inhibitory molecule remains unknown.
Collapse
Affiliation(s)
| | - Amged Ouf
- Biology Department, The American University in Cairo , New Cairo , Egypt ; Biotechnology Program, The American University in Cairo , New Cairo , Egypt
| | - Ari Ferreira
- Biotechnology Program, The American University in Cairo , New Cairo , Egypt
| | - Shahyn Hedar
- Biology Department, The American University in Cairo , New Cairo , Egypt
| | - Edwin Cruz-Rivera
- Biological Sciences Program, Asian University for Women , Chittagong , Bangladesh
| |
Collapse
|
14
|
Portal O, Izquierdo Y, De Vleesschauwer D, Sánchez-Rodríguez A, Mendoza-Rodríguez M, Acosta-Suárez M, Ocaña B, Jiménez E, Höfte M. Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis-banana interaction. PLANT CELL REPORTS 2011; 30:913-28. [PMID: 21279642 DOI: 10.1007/s00299-011-1008-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/14/2023]
Abstract
Mycosphaerella fijiensis, a hemibiotrophic fungus, is the causal agent of black leaf streak disease, the most serious foliar disease of bananas and plantains. To analyze the compatible interaction of M. fijiensis with Musa spp., a suppression subtractive hybridization (SSH) cDNA library was constructed to identify transcripts induced at late stages of infection in the host and the pathogen. In addition, a full-length cDNA library was created from the same mRNA starting material as the SSH library. The SSH procedure was effective in identifying specific genes predicted to be involved in plant-fungal interactions and new information was obtained mainly about genes and pathways activated in the plant. Several plant genes predicted to be involved in the synthesis of phenylpropanoids and detoxification compounds were identified, as well as pathogenesis-related proteins that could be involved in the plant response against M. fijiensis infection. At late stages of infection, jasmonic acid and ethylene signaling transduction pathways appear to be active, which corresponds with the necrotrophic life style of M. fijiensis. Quantitative PCR experiments revealed that antifungal genes encoding PR proteins and GDSL-like lipase are only transiently induced 30 days post inoculation (dpi), indicating that the fungus is probably actively repressing plant defense. The only fungal gene found was induced 37 dpi and encodes UDP-glucose pyrophosphorylase, an enzyme involved in the biosynthesis of trehalose. Trehalose biosynthesis was probably induced in response to prior activation of plant antifungal genes and may act as an osmoprotectant against membrane damage.
Collapse
Affiliation(s)
- Orelvis Portal
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5, 54 830, Santa Clara, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rodríguez-García CM, Peraza-Echeverría L, Islas-Flores IR, Canto-Canché BB, Grijalva-Arango R. Isolation of retro-transcribed RNA from in vitro Mycosphaerella fijiensis-infected banana leaves. GENETICS AND MOLECULAR RESEARCH 2010; 9:1460-8. [PMID: 20677135 DOI: 10.4238/vol9-3gmr865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High polyphenol and polysaccharide levels in plant tissues such as banana fruit and leaves constitute a significant challenge to the extraction of sufficient amounts of high-quality RNA required for cDNA library synthesis and molecular analysis. To determine their comparative effectiveness at eliminating polyphenols, polysaccharides and proteins, three protocols for RNA extraction from in vitro banana plantlet leaves were tested: Concert(TM) Plant RNA isolation kit, a small-scale protocol based on Valderrama-Cháirez, and a modified version of the Valderrama-Cháirez protocol. RNA quantity and purity were evaluated by UV-spectrophotometry using DEPC-treated water and Tris-HCl, pH 7.5. Purity was greater using Tris-HCl. The Concert(TM) Plant protocol produced the poorest quality RNA. Reverse transcription into cDNAs from RNA isolated from in vitro banana plantlet leaves infected with Mycosphaerella fijiensis using the modified Valderrama-Cháirez protocol, followed by PCR using primers designed against gamma-actin from banana and M. fijiensis, yielded products of the anticipated size. In addition, this protocol reduced the processing time, lowered costs, used less expensive equipment, and could be used for other plants that have the same problems with high polyphenol and polysaccharide levels.
Collapse
Affiliation(s)
- C M Rodríguez-García
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | | | | | | | | |
Collapse
|