1
|
Lee MJ, Huang LK, Huang WH, Chan PY, Yang ZS, Chien CM, Chieng CC, Huang H. Aromatic residues in the oligonucleotide binding domain are essential to the function of the single-stranded DNA binding protein of Helicobacter pylori. J Biosci Bioeng 2025; 139:7-13. [PMID: 39490297 DOI: 10.1016/j.jbiosc.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/05/2024]
Abstract
Single-stranded DNA-binding protein (SSB) is essential to DNA replication, DNA repair, and homologous genetic recombination. Our previous study on the crystal structure of a C-terminally truncated SSB from Helicobacter pylori, HpSSBc, in complex with single-stranded DNA (ssDNA) suggests that several aromatic residues, including Phe37, Phe50, Phe56, and Trp84, were involved in ssDNA binding. To investigate the importance of these aromatic residues, the binding activity of four site-directed HpSSB mutants, including F37A HpSSB, F50A HpSSB, F56A HpSSB, and W84A HpSSB, was compared to that of wild-type HpSSB and HpSSBc by means of electrophoresis mobility shift assay (EMSA), tryptophan quenching fluorescence titration, and surface plasmon resonance (SPR). Molecular docking and molecular dynamic (MD) simulation of a F37A and a quadruple mutation model of HpSSBc support that the ssDNA-HpSSBc complex was destabilized when either one or four of the aromatic residues were mutated. The findings of this study suggest that mutation of the phenylalanine and tryptophan residues within the oligonucleotide-binding domain significantly diminished the ssDNA binding capability of HpSSB, highlighting the crucial role these aromatic residues play in the binding of ssDNA by HpSSB.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, Tainan, Taiwan; Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | - Li-Kun Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Hsin Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Yu Chan
- Department of Medical Science Industries, Chang Jung Christian University, Tainan, Taiwan
| | - Zi-Sin Yang
- Department of Medical Science Industries, Chang Jung Christian University, Tainan, Taiwan
| | - Ching-Ming Chien
- Department of Applied Chemistry, National Chiayi University, Chiayi, Taiwan
| | - Ching-Chang Chieng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Haimei Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Zhao Y, Ding WJ, Xu L, Sun JQ. A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas. Front Microbiol 2024; 15:1395477. [PMID: 38817968 PMCID: PMC11138164 DOI: 10.3389/fmicb.2024.1395477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wen-Jing Ding
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Kim S, Chang JH. Structural Analysis of Spermidine Synthase from Kluyveromyces lactis. Molecules 2023; 28:molecules28083446. [PMID: 37110680 PMCID: PMC10146546 DOI: 10.3390/molecules28083446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Spermidine is a polyamine molecule that performs various cellular functions, such as DNA and RNA stabilization, autophagy modulation, and eIF5A formation, and is generated from putrescine by aminopropyltransferase spermidine synthase (SpdS). During synthesis, the aminopropyl moiety is donated from decarboxylated S-adenosylmethionine to form putrescine, with 5'-deoxy-5'-methylthioadenosine being produced as a byproduct. Although the molecular mechanism of SpdS function has been well-established, its structure-based evolutionary relationships remain to be fully understood. Moreover, only a few structural studies have been conducted on SpdS from fungal species. Here, we determined the crystal structure of an apo-form of SpdS from Kluyveromyces lactis (KlSpdS) at 1.9 Å resolution. Structural comparison with its homologs revealed a conformational change in the α6 helix linked to the gate-keeping loop, with approximately 40° outward rotation. This change caused the catalytic residue Asp170 to move outward, possibly due to the absence of a ligand in the active site. These findings improve our understanding of the structural diversity of SpdS and provide a missing link that expands our knowledge of the structural features of SpdS in fungal species.
Collapse
Affiliation(s)
- Seongjin Kim
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Science Education Research Institute, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Yoshino R, Yasuo N, Hagiwara Y, Ishida T, Inaoka DK, Amano Y, Tateishi Y, Ohno K, Namatame I, Niimi T, Orita M, Kita K, Akiyama Y, Sekijima M. In silico, in vitro, X-ray crystallography, and integrated strategies for discovering spermidine synthase inhibitors for Chagas disease. Sci Rep 2017; 7:6666. [PMID: 28751689 PMCID: PMC5532286 DOI: 10.1038/s41598-017-06411-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/14/2017] [Indexed: 01/23/2023] Open
Abstract
Chagas disease results from infection by Trypanosoma cruzi and is a neglected tropical disease (NTD). Although some treatment drugs are available, their use is associated with severe problems, including adverse effects and limited effectiveness during the chronic disease phase. To develop a novel anti-Chagas drug, we virtually screened 4.8 million small molecules against spermidine synthase (SpdSyn) as the target protein using our super computer “TSUBAME2.5” and conducted in vitro enzyme assays to determine the half-maximal inhibitory concentration values. We identified four hit compounds that inhibit T. cruzi SpdSyn (TcSpdSyn) by in silico and in vitro screening. We also determined the TcSpdSyn–hit compound complex structure using X-ray crystallography, which shows that the hit compound binds to the putrescine-binding site and interacts with Asp171 through a salt bridge.
Collapse
Affiliation(s)
- Ryunosuke Yoshino
- Advanced Computational Drug Discovery Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, Yokohama, 226-8501, Japan.,Global Scientific Information and Computing Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.,Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Nobuaki Yasuo
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, Yokohama, 226-8501, Japan.,Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yohsuke Hagiwara
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, Yokohama, 226-8501, Japan.,Medicinal Chemistry Research Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Takashi Ishida
- Advanced Computational Drug Discovery Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, Yokohama, 226-8501, Japan.,Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, 852-8523, Japan
| | - Yasushi Amano
- Medicinal Chemistry Research Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Yukihiro Tateishi
- Medicinal Chemistry Research Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Kazuki Ohno
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, Yokohama, 226-8501, Japan.,Medicinal Chemistry Research Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.,Catalyst Inc., Risona Kudan Building 5F KS Floor, 1-5-6 Kudan Minami, Chiyoda-ku, Tokyo, 102-0074, Japan
| | - Ichiji Namatame
- Medicinal Chemistry Research Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Tatsuya Niimi
- Medicinal Chemistry Research Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Masaya Orita
- Medicinal Chemistry Research Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, 852-8523, Japan
| | - Yutaka Akiyama
- Advanced Computational Drug Discovery Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, Yokohama, 226-8501, Japan.,Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masakazu Sekijima
- Advanced Computational Drug Discovery Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan. .,Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, Yokohama, 226-8501, Japan. .,Global Scientific Information and Computing Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
6
|
Pothipongsa A, Jantaro S, Salminen TA, Incharoensakdi A. Molecular characterization and homology modeling of spermidine synthase from Synechococcus sp. PCC 7942. World J Microbiol Biotechnol 2017; 33:72. [PMID: 28299555 DOI: 10.1007/s11274-017-2242-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
Spermidine synthase (Spds) catalyzes the formation of spermidine by transferring the aminopropyl group from decarboxylated S-adenosylmethionine (dcSAM) to putrescine. The Synechococcus spds gene encoding Spds was expressed in Escherichia coli. The purified recombinant enzyme had a molecular mass of 33 kDa and showed optimal activity at pH 7.5, 37 °C. The enzyme had higher affinity for dcSAM (K m, 20 µM) than for putrescine (K m, 111 µM) and was highly specific towards the diamine putrescine with no activity observed towards longer chain diamines. The three-dimensional structural model for Synechococcus Spds revealed that most of the ligand binding residues in Spds from Synechococcus sp. PCC 7942 are identical to those of human and parasite Spds. Based on the model, the highly conserved acidic residues, Asp89, Asp159 and Asp162, are involved in the binding of substrates putrescine and dcSAM and Pro166 seems to confer substrate specificity towards putrescine.
Collapse
Affiliation(s)
- Apiradee Pothipongsa
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Jielile J, Asilehan B, Wupuer A, Qianman B, Jialihasi A, Tangkejie W, Maimaitiaili A, Shawutali N, Badelhan A, Niyazebieke H, Aizezi A, Aisaiding A, Bakyt Y, Aibek R, Wuerliebieke J. Early Ankle Mobilization Promotes Healing in a Rabbit Model of Achilles Tendon Rupture. Orthopedics 2016; 39:e117-26. [PMID: 26821224 DOI: 10.3928/01477447-20160106-01] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/15/2015] [Indexed: 02/03/2023]
Abstract
The use of early mobilization of the ankle joint without orthosis in the treatment of Achilles tendon rupture has been advocated as the optimal management. The goal of this study was to compare outcomes in a postoperative rabbit model of Achilles tendon rupture between early mobilization and immobilized animals using a differential proteomics approach. In total, 135 rabbits were randomized into the control group (n=15), the postoperative cast immobilization (PCI) group (n=60), and the early mobilization (EM) group (n=60). A rupture of the Achilles tendon was created in each animal model and repaired microsurgically, and tendon samples were removed at 3, 7, 14, and 21 days postoperatively. Proteins were separated using 2-dimensional polyacrylamide gel electrophoresis and identified using peptide mass fingerprinting, tandem mass spectrometry, NCBI database searches, and bioinformatics analyses. A series of differentially expressed proteins were identified between groups, some of which may play an important role in Achilles tendon healing. Notable candidate proteins that were upregulated in the EM group were identified, such as CRMP-2, galactokinase 1, tropomyosin-4, and transthyretin. The healing of ruptured Achilles tendons appears to be affected at the level of protein expression with the use of early mobilization. The classic postoperative treatment of Achilles tendon rupture with an orthosis ignored the self-protecting instinct of humans. With a novel operative technique, the repaired tendon can persist the load that comes from traction in knee and ankle joint functional movement. In addition, kinesitherapy provided an excellent experimental outcome via a mechanobiological mechanism.
Collapse
|
8
|
Sprenger J, Svensson B, Hålander J, Carey J, Persson L, Al-Karadaghi S. Three-dimensional structures of Plasmodium falciparum spermidine synthase with bound inhibitors suggest new strategies for drug design. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:484-93. [PMID: 25760598 PMCID: PMC4356361 DOI: 10.1107/s1399004714027011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023]
Abstract
The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5'-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substrate putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS.
Collapse
Affiliation(s)
- Janina Sprenger
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Bo Svensson
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
- SARomics Biostructures AB, Box 724, SE-220 07 Lund, Sweden
| | - Jenny Hålander
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, New Jersey, USA
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Salam Al-Karadaghi
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|