1
|
Otero IVR, Haslbeck M, Sieber V, Sette LD. Pichia Toolkit: Use of the combinatorial library screening system for expression of a marine laccase. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01276-2. [PMID: 40411648 DOI: 10.1007/s12223-025-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 05/15/2025] [Indexed: 05/26/2025]
Abstract
Pnh_Lac1 (Lac1) gene from the marine-derived fungus Peniophora sp. CBMAI 1063 was expressed in Pichia pastoris using the Pichia Toolkit system. Constitutive (pGAP, pPET9, pG1, pG6, and pADH2) and methanol-inducible (pAOX1, pDAS1, and pPMP20) promoters were assessed in combination with 21 different signal peptides and His-tag about efficiency in laccase production. Next, 3,200 variants were screened, different culture conditions were evaluated, and an investigation was performed in a bench-scale bioreactor for the best variant selected. The influence of promoters and signal peptides on Lac1 expression was demonstrated in the constitutive libraries. The change from pG6 to pGAP resulted in a 171-fold increase in production. Changing the alpha-mating factor peptide by the native signal peptide of the Lac1 gene decreased laccase production 22-fold. The promoters pGAP (constitutive library) and pAOX1 (inductive library) performed best. The association with the signal peptide αAmylase-αMFD was more efficient for both promoters. The constitutive expression of Lac1 had a 1.37-fold greater production compared to the inducible expression achieved by pAOX1 and was considered more suitable for laccase expression. Culturing the best producer variant pGAP_αA1 at pH 6 and 18 °C resulted in the best production rate in deep-well plates (90 U/L). Constitutive laccase production in a 2-L bioreactor resulted in a peak production of 178 U/L after 78 h. Pichia Toolkit was efficient in the selection of the best molecular regulation and secretion of Lac1. Our findings contribute to the development of marine biotechnology and will serve as the basis for Lac1 production optimization.
Collapse
Affiliation(s)
- Igor Vinicius Ramos Otero
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, Avenida 24-A, 1515, Rio Claro, 13606-900, Brazil
- Chair of Chemistry of Biogenic Resources, Technical University of Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Magdalena Haslbeck
- Chair of Chemistry of Biogenic Resources, Technical University of Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany.
| | - Lara Durães Sette
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, Avenida 24-A, 1515, Rio Claro, 13606-900, Brazil.
| |
Collapse
|
2
|
Zhang LB, Qiu XG, Qiu TT, Cui Z, Zheng Y, Meng C. A complex metabolic network and its biomarkers regulate laccase production in white-rot fungus Cerrena unicolor 87613. Microb Cell Fact 2024; 23:167. [PMID: 38849849 PMCID: PMC11162070 DOI: 10.1186/s12934-024-02443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND White-rot fungi are known to naturally produce high quantities of laccase, which exhibit commendable stability and catalytic efficiency. However, their laccase production does not meet the demands for industrial-scale applications. To address this limitation, it is crucial to optimize the conditions for laccase production. However, the regulatory mechanisms underlying different conditions remain unclear. This knowledge gap hinders the cost-effective application of laccases. RESULTS In this study, we utilized transcriptomic and metabolomic data to investigate a promising laccase producer, Cerrena unicolor 87613, cultivated with fructose as the carbon source. Our comprehensive analysis of differentially expressed genes (DEGs) and differentially abundant metabolites (DAMs) aimed to identify changes in cellular processes that could affect laccase production. As a result, we discovered a complex metabolic network primarily involving carbon metabolism and amino acid metabolism, which exhibited contrasting changes between transcription and metabolic patterns. Within this network, we identified five biomarkers, including succinate, serine, methionine, glutamate and reduced glutathione, that played crucial roles in co-determining laccase production levels. CONCLUSIONS Our study proposed a complex metabolic network and identified key biomarkers that determine the production level of laccase in the commercially promising Cerrena unicolor 87613. These findings not only shed light on the regulatory mechanisms of carbon sources in laccase production, but also provide a theoretical foundation for enhancing laccase production through strategic reprogramming of metabolic pathways, especially related to the citrate cycle and specific amino acid metabolism.
Collapse
Affiliation(s)
- Long-Bin Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Xiu-Gen Qiu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ting-Ting Qiu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhou Cui
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chun Meng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
3
|
Bucchieri D, Mangiagalli M, Martani F, Butti P, Lotti M, Serra I, Branduardi P. A novel laccase from Trametes polyzona with high performance in the decolorization of textile dyes. AMB Express 2024; 14:32. [PMID: 38506984 PMCID: PMC10954600 DOI: 10.1186/s13568-024-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Laccases are multicopper oxidases able to oxidize several phenolic compounds and find application in numerous industrial applications. Among laccase producers, white-rot fungi represent a valuable source of multiple isoforms and isoenzymes of these multicopper oxidases. Here we describe the identification, biochemical characterization, and application of laccase 2 from Trametes polyzona (TP-Lac2), a basidiomycete fungus emerged among others that have been screened by plate assay. This enzyme has an optimal temperature of 50 °C and in acidic conditions it is able to oxidize both phenolic and non-phenolic compounds. The ability of TP-Lac2 to decolorize textile dyes was tested in the presence of natural and synthetic mediators at 30 °C and 50 °C. Our results indicate that TP-Lac2 most efficiently decolorizes (decolorization rate > 75%) malachite green oxalate, orange G, amido black10B and bromocresol purple in the presence of acetosyringone and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonate)-ABTS. Overall, the laccase mediator system consisting of TP-Lac2 and the natural mediator acetosyringone has potential as an environmentally friendly alternative for wastewater treatment in the textile industry.
Collapse
Affiliation(s)
- Daniela Bucchieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
- Department of Material Science and Nanotechnology, CORIMAV Program, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Francesca Martani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Pietro Butti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Immacolata Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy.
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| |
Collapse
|
4
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
5
|
Zhang LB, Qiu TT, Qiu XG, Yang WWJ, Ye XY, Meng C. Transcriptomic and metabolomic analysis unveils a negative effect of glutathione metabolism on laccase activity in Cerrena unicolor 87613. Microbiol Spectr 2024; 12:e0340523. [PMID: 38230929 PMCID: PMC10846260 DOI: 10.1128/spectrum.03405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
The white rot fungus Cerrena unicolor 87613 has been previously shown to be a promising resource in laccase production, an enzyme with significant biotechnological applications. Conventional methods face technical challenges in improving laccase activity. Attempts are still being made to develop novel approaches for further enhancing laccase activity. This study aimed to understand the regulation of laccase activity in C. unicolor 87613 for a better exploration of the novel approach. Transcriptomic and metabolomic analyses were performed to identify key genes and metabolites involved in extracellular laccase activity. The findings indicated a strong correlation between the glutathione metabolism pathway and laccase activity. Subsequently, experimental verifications were conducted by manipulating the pathway using chemical approaches. The additive reduced glutathione (GSH) dose-dependently repressed laccase activity, while the GSH inhibitors (APR-246) and reactive oxygen species (ROS) inducer (H2O2) enhanced laccase activity. Changes in GSH levels could determine the intracellular redox homeostasis in interaction with ROS and partially affect the expression level of laccase genes in C. unicolor 87613 in turn. In addition, GSH synthetase was found to mediate GSH abundance in a feedback loop. This study suggests that laccase activity is negatively influenced by GSH metabolism and provides a theoretical basis for a novel strategy to enhance laccase activity by reprogramming glutathione metabolism at a specific cultivation stage.IMPORTANCEThe production of laccase activity is limited by various conventional approaches, such as heterologous expression, strain screening, and optimization of incubation conditions. There is an urgent need for a new strategy to meet industrial requirements more effectively. In this study, we conducted a comprehensive analysis of the transcriptome and metabolome of Cerrena unicolor 87613. For the first time, we discovered a negative role played by reduced glutathione (GSH) and its metabolic pathway in influencing extracellular laccase activity. Furthermore, we identified a feedback loop involving GSH, GSH synthetase gene, and GSH synthetase within this metabolic pathway. These deductions were confirmed through experimental investigations. These findings not only advanced our understanding of laccase activity regulation in its natural producer but also provide a theoretical foundation for a strategy to enhance laccase activity by reprogramming glutathione metabolism at a specific cultivation stage.
Collapse
Affiliation(s)
- Long-Bin Zhang
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Ting-Ting Qiu
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiu-Gen Qiu
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Wu-Wei-Jie Yang
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiu-Yun Ye
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Chun Meng
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| |
Collapse
|
6
|
Van La T, Sung BH, Kim S. Biocatalytic characterization of Hericium erinaceus laccase isoenzymes for the oxidation of lignin derivative substrates. Int J Biol Macromol 2023; 241:124658. [PMID: 37119916 DOI: 10.1016/j.ijbiomac.2023.124658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Mushroom laccases are biocatalysts that oxidize various substrates. To identify a novel enzyme involved in lignin valorization, we isolated and characterized laccase isoenzymes from the mushroom Hericium erinaceus. The laccase cDNAs (Lac1a and Lac1b) cloned from the mushroom mycelia consisted of 1536 bp and each encoded a protein with 511 amino acids, containing a 21-amino-acid signal peptide. Comparative phylogenetic analysis revealed high homology between the deduced amino acid sequences of Lac1a and Lac1b and those from basidiomycetous fungi. In the Pichia pastoris expression system, high extracellular production of Lac1a, a glycoprotein, was achieved, whereas Lac1b was not expressed as a secreted protein because of hyper-glycosylation. Biochemical characterization of the purified recombinant Lac1a (rLac1a) protein revealed its oxidizing efficacy toward 14 aromatic substrates. The highly substrate-specific rLac1a showed catalytic efficiencies of 877 s-1 mM-1, 829 s-1 mM-1, 520 s-1 mM-1, and 467 s-1 mM-1 toward 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), hydroquinone, guaiacol, and 2,6-dimethylphenol, respectively. Moreover, rLac1a showed approximately 10 % higher activity in non-ionic detergents and >50 % higher residual activity in various organic solvents. These results indicate that rLac1a is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products.
Collapse
Affiliation(s)
- Thuat Van La
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Bong Huyn Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Jiang J, Deng JL, Wang ZG, Chen XY, Wang SJ, Wang YC. Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability. Molecules 2023; 28:molecules28073037. [PMID: 37049802 PMCID: PMC10096025 DOI: 10.3390/molecules28073037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Laccases have been widely used for fruit juice clarification, food modification, and paper pulp delignification. In addition, laccases exhibit remarkable performance in the degradation of toxic substances, including pesticides, organic synthetic dyes, antibiotics, and organic pollutants. Thus, the screening and development of robust laccases has attracted significant attention. In this study, Vibrio sp. LA is a strain capable of producing cold-adapted laccases. The laccase coding gene L01 was cloned from this strain and expressed in Yarrowia lipolytica, a host with good secretion ability. The secreted L01 (approximate MW of 56,000 Da) had the activity and specific activity of 18.6 U/mL and 98.6 U/mg toward ABTS, respectively. The highest activity occurred at 35 °C. At 20 °C, L01 activity was over 70% of the maximum activity in pH conditions ranging from 4.5–10.0. Several synthetic dyes were efficiently degraded by L01. Owing to its robustness, salt tolerance, and pH stability, L01 is a promising catalytic tool for potential industrial applications.
Collapse
Affiliation(s)
- Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence:
| | - Jing-Ling Deng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Gang Wang
- Training Center, Qingdao Harbour Vocational & Technical College, Qingdao 266404, China
| | - Xiao-Yu Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shu-Jie Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong-Chuang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
8
|
Hao S, Fu C, Zhou L, Guo Z, Song Q. Tartaric acid stabilized iridium nanoparticles with excellent laccase-like activity. J Mater Chem B 2023; 11:2770-2777. [PMID: 36883554 DOI: 10.1039/d2tb02798d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Iridium nanoparticles with an average size of 1.7 nm (Tar-IrNPs) were synthesized by the reduction of IrCl3 with NaBH4 in the presence of tartaric acid. As prepared Tar-IrNPs showed not only oxidase, peroxidase and catalase activities but also exhibited unprecedented laccase-like activity, which can catalyze the oxidation of the substrates o-phenylenediamine (OPD) and p-phenylenediamine (PPD) accompanied by significant color changes. The superb catalytic performance is evidenced by the fact that Tar-IrNPs can achieve better laccase-like activity with only 2.5% of the dosage of natural laccase. Furthermore, they also exhibited superior thermal stability and broader pH adaptability (2.0-11) over that of natural laccase. Tar-IrNPs can retain more than 60% of their initial activity at 90 °C, while the natural laccase has totally lost its activity at 70 °C. At a prolonged reaction time, the oxidation products of OPD and PPD can form precipitates due to oxidation induced polymerization. Thus Tar-IrNPs have been successfully used for the determination and degradation of PPD and OPD.
Collapse
Affiliation(s)
- Shanhao Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China.
| | - Cheng Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China.
| | - Lin Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China.
| | - Zhanghong Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, P. R. China.
| |
Collapse
|
9
|
Dong CD, Tiwari A, Anisha GS, Chen CW, Singh A, Haldar D, Patel AK, Singhania RR. Laccase: A potential biocatalyst for pollutant degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120999. [PMID: 36608728 DOI: 10.1016/j.envpol.2023.120999] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In the continual march to a predominantly urbanized civilization, anthropogenic activities have increased scrupulously, industrialization have occurred, economic growth has increased, and natural resources are being exploited, causing huge waste management problems, disposal issues, and the evolution of several pollutants. In order to have a sustainable environment, these pollutants need to be removed and degraded. Bioremediation employing microorganisms or enzymes can be used to treat the pollutants by degrading and/or transforming the pollutants into different form which is less or non-toxic to the environment. Laccase is a diverse enzyme/biocatalyst belonging to the oxidoreductase group of enzymes produced by microorganisms. Due to its low substrate specificity and monoelectronic oxidation of substrates in a wide range of complexes, it is most commonly used to degrade chemical pollutants. For degradation of emerging pollutants, laccase can be efficiently employed; however, large-scale application needs reusability, thermostability, and operational stability which necessitated strategies like immobilization and engineering of robust laccase possessing desirable properties. Immobilization of laccase for bioremediation, and treatment of wastewater for degrading emerging pollutants have been focussed for sustainable development. Challenges of employing biocatalysts for these applications as well as engineering robust laccase have been highlighted in this study.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anusuiya Singh
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
10
|
Nakagame S, Minagawa H, Motegi N. Purification and Characterization of Class III Lipase from a White-Rot Fungus Pleurotus ostreatus. Appl Biochem Biotechnol 2023; 195:1085-1095. [PMID: 36322285 DOI: 10.1007/s12010-022-04211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 01/20/2023]
Abstract
Pleurotus ostreatus is an edible white-rot fungus with lignocellulosic biomass degrading enzymes that have been studied extensively. However, until now, lipolytic enzymes from P. ostreatus, which degrade extractives in lignocellulosic biomass, have not been purified and characterized. In this study, P. ostreatus was inoculated into the rapeseed oil containing culture to induce lipase. The lipase in the culture broth was successfully purified to homogeneity by chromatographic methods. The molecular weight of the purified lipase was 27 kDa, and its optimal pH and temperature were 5.0 and 30 °C, respectively. The purified lipase showed high activity with the substrates 4-methylumbelliferyl (4-MU) decanoate (C10:0) and 4-MU oleate (C18:1), and no activity with 4-MU acetate (C2:0) and 4-MU butyrate (C4:0). The amino acid sequences and substrate specificities of the purified lipase suggested that it belonged to class III. Kinetic parameters measurements (Km and Vmax) showed that 4-MU palmitate had a high affinity for the purified lipase, and it was the substrate most efficiently hydrolyzed by the purified lipase.
Collapse
Affiliation(s)
- Seiji Nakagame
- Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan.
| | - Hu Minagawa
- Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
| | - Nagi Motegi
- Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
| |
Collapse
|
11
|
Khatami SH, Vakili O, Movahedpour A, Ghesmati Z, Ghasemi H, Taheri-Anganeh M. Laccase: Various types and applications. Biotechnol Appl Biochem 2022; 69:2658-2672. [PMID: 34997643 DOI: 10.1002/bab.2313] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Laccase belongs to the polyphenol oxidase family and is very important in removing environmental pollutants due to its structural and functional properties. Recently, the ability of laccase to oxidize phenolic and nonphenolic substances has been considered by many researchers. This enzyme's application scope includes a broad range of chemical processes and industrial usages, such as bioremediation, nanobiotechnology, woodworking industries, bleaching of paper pulp, dyeing in the textile industry, biotechnological uses in food industries, biorefining, detoxification from wastewater, production of organic matter from phenolic and amine substrates, and biofuels. Although filamentous fungi produce large amounts of laccase, high-yield industrial-scale production of laccase is still faced with many problems. At present, researchers are trying to increase the efficiency and productivity and reduce the final price of laccase by finding suitable microorganisms and improving the process of production and purification of laccase. This article reviews the introduction of laccase, its properties, production processes, and the effect of various factors on the enzyme's stability and activity, and some of its applications in various industries.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Valorization of Lignin and Its Derivatives Using Yeast. Processes (Basel) 2022. [DOI: 10.3390/pr10102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As the third most plentiful biopolymer after other lignocellulosic derivates such as cellulose and hemicellulose, lignin carries abundant potential as a substitute for petroleum-based products. However, the efficient, practical, value-added product valorization of lignin remains quite challenging. Although several studies have reviewed the valorization of lignin by microorganisms, this present review covers recent studies on the valorization of lignin by employing yeast to obtain products such as single-cell oils (SCOs), enzymes, and other chemical compounds. The use of yeasts has been found to be suitable for the biological conversion of lignin and might provide new insights for future research to develop a yeast strain for lignin to produce other valuable chemical compounds.
Collapse
|
13
|
Structural Properties, Genomic Distribution of Laccases from Streptomyces and Their Potential Applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Jia Y, Huang Q, Zhu L, Pan C. Characterization of a Recombinant Laccase B from Trametes hirsuta MX2 and Its Application for Decolorization of Dyes. Molecules 2022; 27:1581. [PMID: 35268682 PMCID: PMC8912056 DOI: 10.3390/molecules27051581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Trametes hirsuta is able to secrete laccase isoenzymes including constitutive and inducible forms, and has potential application for bioremediation of environmental pollutants. Here, an inducible group B laccase from T. hirsuta MX2 was heterologously expressed in Pichia pastoris, and its yield reached 2.59 U/mL after 5 days of methanol inducing culture. The optimal pH and temperature of recombinant laccase (rLac1) to 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were 2.5 and 60 °C, respectively. Metal ions showed different effect on rLac1 which Mg2+, Cu2+, and K+ increased enzyme activity as their concentration increased, whereas Zn2+, Na+, and Fe2+ inhibited enzyme activity as their concentration increased. rLac1 showed good tolerance to organic solvents, and more than 42% of its initial activity remained in 10% organic solvents. Additionally, rLac1 exhibited a more efficient decolorization ability for remazol brilliant blue R (RBBR) than for acid red 1 (AR1), crystal violet (CV), and neutral red (NR). Molecular docking results showed RBBR has a stronger binding affinity with laccase than other dyes by interacting with substrate binding cavity of enzyme. The results indicated rLac1 may be a potential candidate for dye removal from textile wastewater.
Collapse
Affiliation(s)
- Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Qianqian Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Lanlan Zhu
- Science and Technology Service Center of Lin’an, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| |
Collapse
|
15
|
Backes E, Kato CG, Corrêa RCG, Peralta Muniz Moreira RDF, Peralta RA, Barros L, Ferreira IC, Zanin GM, Bracht A, Peralta RM. Laccases in food processing: Current status, bottlenecks and perspectives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Enhancing the expression of recombinant small laccase in Pichia pastoris by a double promoter system and application in antibiotics degradation. Folia Microbiol (Praha) 2021; 66:917-930. [PMID: 34216383 DOI: 10.1007/s12223-021-00894-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022]
Abstract
Low-expression levels remain a challenge in the quest to use the small laccase (rSLAC) as a viable catalyst. In this study, a recombinant Pichia pastoris strain (rSLAC-GAP-AOX) producing rSLAC under both AOX and GAP promoters (located in two different plasmids) was generated and cultivated in the presence of methanol and mixed feed (methanol:glycerol). Induction with methanol resulted in a maximum laccase activity of 1200 U/L for rSLAC-GAP-AOX which was approximately 2.4-fold higher than rSLAC-AOX and 5.1-fold higher than rSLAC-GAP. The addition of methanol:glycerol in a stoichiometric ratio of 9:1 consistently improved biomass and led to a 1.5-fold increase in rSLAC production as compared to induction with methanol alone. The rSLAC removed 95% of 5 mg/L ciprofloxacin (CIP) and 99% of 100 mg/L tetracycline (TC) in the presence of a mediator. Removal of TC resulted in complete elimination of antibacterial activity while up to 48% reduction in antibacterial activity was observed when CIP was removed. Overall, the present study highlights the effectiveness of a double promoter system in enhancing SLAC production.
Collapse
|
17
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|
18
|
Maryskova M, Linhartova L, Novotny V, Rysova M, Cajthaml T, Sevcu A. Laccase and horseradish peroxidase for green treatment of phenolic micropollutants in real drinking water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31566-31574. [PMID: 33606164 DOI: 10.1007/s11356-021-12910-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Biologically active micropollutants that contain diverse phenolic/aromatic structures are regularly present in wastewater effluents and are even found in drinking water. Advanced green technologies utilizing immobilized laccase and/or peroxidase, which target these micropollutants directly, may provide a reasonable alternative to standard treatments. Nevertheless, the use of these enzymes is associated with several issues that may prevent their application, such as the low activity of laccase at neutral and basic pH or the necessity of hydrogen peroxide addition as a co-substrate for peroxidases. In this study, the activity of laccase from Trametes versicolor and horseradish peroxidase was evaluated across a range of commonly used substrates (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine, and guaiacol). Moreover, conditions for their optimal performance were explored along with an assessment of whether these conditions accurately reflect the effectivity of both enzymes in the degradation of a mixture of bisphenol A, 17α-ethinylestradiol, triclosan, and diclofenac in tap drinking water and secondary wastewater effluent. Laccase and horseradish peroxidase showed optimal activity at strongly acidic pH if ABTS was used as a substrate. Correspondingly, the activities of both enzymes detected using ABTS in real waters were significantly enhanced by adding approximately 2.5% (v/v) of McIlvaine's buffer. Degradation of a mixture of micropollutants in wastewater with 2.5% McIlvaine's buffer (pH 7) resulted in a substantial decrease in estrogenic activity. Low degradation efficiency of micropollutants by laccase was observed in pure McIlvaine's buffer of pH 3 and 7, compared with efficient degradation in tap water of pH 7.5 without buffer. This study clearly shows that enzyme activity needs to be evaluated on micropollutants in real waters as the assessment of optimal conditions based on commonly used substrates in pure buffer or deionized water can be misleading.
Collapse
Affiliation(s)
- Milena Maryskova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 461 17, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 461 17, Liberec, Czech Republic.
| | - Lucie Linhartova
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 128 01, Prague 2, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vit Novotny
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 461 17, Liberec, Czech Republic
| | - Miroslava Rysova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 461 17, Liberec, Czech Republic
| | - Tomas Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 128 01, Prague 2, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 461 17, Liberec, Czech Republic.
| |
Collapse
|
19
|
Huy ND, My Le NT, Chew KW, Park SM, Show PL. Characterization of a recombinant laccase from Fusarium oxysporum HUIB02 for biochemical application on dyes removal. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
An alkaline thermostable laccase from termite gut associated strain of Bacillus stratosphericus. Int J Biol Macromol 2021; 179:270-278. [PMID: 33676982 DOI: 10.1016/j.ijbiomac.2021.02.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 02/01/2023]
Abstract
Laccase, an important oxidoreductase, is widely distributed in various organisms. Termites are known to decompose lignocellulose efficiently with the aid of gut microorganisms. However, few laccases have been characterized from termite or its gut microbes. We aimed to screen the strain capable of degrading lignocellulose from fungus-growing termites. In this study, Bacillus stratosphericus BCMC2 with lignocellulolytic activity was firstly isolated from the hindgut of fungus-growing termite Macrotermes barneyi. The laccase gene (BaCotA) was cloned both from the BCMC2 strain and termite intestinal metagenomic DNA. BaCotA was overexpressed in E. coli, and the recombinant BaCotA showed high specific activity (554.1 U/mg). BaCotA was thermostable with an optimum temperature of 70 °C, pH 5.0. Furthermore, BaCotA was resistant to alkali and organic solvents. The enzyme remained more than 70% residual activity at pH 8.0 for 120 min; and the organic solvents such as methanol, ethanol and acetone (10%) had no inhibitory effect on laccase activity. Additionally, BaCotA exhibited efficient decolorization ability towards indigo and crystal violet. The multiple enzymatic properties suggested the presented laccase as a potential candidate for industrial applications. Moreover, this study highlighted that termite intestine is a good resource for either new strains or enzymes.
Collapse
|
21
|
Aviel YB, Ofir A, Ben-Izhak O, Vlodavsky E, Karbian N, Brik R, Mevorach D, Magen D. A novel loss-of-function mutation in LACC1 underlies hereditary juvenile arthritis with extended intra-familial phenotypic heterogeneity. Rheumatology (Oxford) 2021; 60:4888-4898. [PMID: 33493343 DOI: 10.1093/rheumatology/keab017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To investigate phenotypic and molecular characteristics of a consanguineous family with autosomal-recessive, polyarticular, juvenile idiopathic arthritis (JIA) with extra-articular manifestations, including renal amyloidosis and Crohn's disease, associated with a novel homozygous truncating variant in LACC1. METHODS Whole exome sequencing (WES) or targeted Sanger verification were performed in 15 participants. LACC1 expression and cytokine array were analyzed in patient-derived and CRISPR/Cas9-generated LACC1-knockout macrophages (Mϕ). RESULTS A homozygous truncating variant (p.Glu348Ter) in LACC1 was identified in three affected and one asymptomatic family member, and predicted harmful by causing premature stop of the LACC1 protein sequences, and by absence from ethnically-matched controls and public variation databases. Expression studies in patient-derived macrophages (Mϕ) showed no endogenous p. Glu348Ter-LACC1 RNA transcription or protein expression, compatible with nonsense-mediated mRNA decay. WES analysis in the asymptomatic homozygous subject for p. Glu348Ter-LACC1 detected an exclusive heterozygous variant (p.Arg928Gln) in complement component C5. Further complement activity analysis suggested a protective role for the p. Arg928Gln-C5 variant as a phenotypic modifier of LACC1-associated disease. Finally, cytokine profile analysis indicated increased levels of pro-inflammatory cytokines in LACC1-disrupted as compared with wild-type Mϕ. CONCLUSIONS Our findings reinforce the role of LACC1 disruption in autosomal-recessive JIA, extend the clinical spectrum and intra-familial heterogeneity of the disease-associated phenotype, indicate a modulatory effect of complement factor C5 on phenotypic severity, and suggest an inhibitory role for wild-type LACC1 on pro-inflammatory pathways.
Collapse
Affiliation(s)
- Yonatan Butbul Aviel
- Department of Pediatrics and Pediatric Rheumatology Service, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ayala Ofir
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ofer Ben-Izhak
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Euvgeni Vlodavsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Netanel Karbian
- Rheumatology Research Center, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Riva Brik
- Department of Pediatrics and Pediatric Rheumatology Service, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror Mevorach
- Rheumatology Research Center, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniella Magen
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Pediatric Nephrology Institute, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
22
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
23
|
Ardila-Leal LD, Poutou-Piñales RA, Morales-Álvarez ED, Rivera-Hoyos CM, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE, Pérez-Flórez A. Methanol addition after glucose depletion improves rPOXA 1B production under the pGap in P. pastoris X33: breaking the habit. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04093-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractThe purpose of this study was to demonstrate that methanol addition after glucose depletion has a positive effect on improving rPOXA 1B production under the control of pGap in P. pastoris. Four different culture media (A, B, C and D) were used to culture P. pastoris X33/pGapZαA-LaccPost-Stop (clone 1), containing a previously optimized POXA 1B synthetic gene coding for P. ostreatus laccase, which after glucose depletion was supplemented or not with methanol. Enzyme activity in culture media without methanol (A, B, C and D) was influenced by media components, presenting activity of 1254.30 ± 182.44, 1373.70 ± 182.44, 1343.50 ± 40.30 and 8771.61 ± 218.79 U L−1, respectively. In contrast, the same culture media (A, B, C and D) with methanol addition 24 h after glucose depletion attained activity of 4280.43 ± 148.82, 3339.02 ± 64.36, 3569.39 ± 68.38 and 14,868.06 ± 461.58 U L−1 at 192 h, respectively, representing an increase of approximately 3.9-, 2.4-, 3.3- and 1.6-fold compared with culture media without methanol. Methanol supplementation had a greater impact on volumetric enzyme activity in comparison with biomass production. We demonstrated what was theoretically and biochemically expected: recombinant protein production under pGap control by methanol supplementation after glucose depletion was successful, as a feasible laboratory production strategy of sequential carbon source addition, breaking the habit of utilizing pGap with glucose.
Collapse
|
24
|
Tülek A, Karataş E, Çakar MM, Aydın D, Yılmazcan Ö, Binay B. Optimisation of the Production and Bleaching Process for a New Laccase from Madurella mycetomatis, Expressed in Pichia pastoris: from Secretion to Yielding Prominent. Mol Biotechnol 2020; 63:24-39. [PMID: 33058020 DOI: 10.1007/s12033-020-00281-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/06/2023]
Abstract
Laccases are polyphenol oxidoreductases used in a number of industrial applications. Due to the increasing demand for these "green catalysis" enzymes, the identification and biochemical characterisation of their novel properties is essential. In our study, cloned Madurella mycetomatis laccase (mmlac) genes were heterologously expressed in the methylotrophic yeast host Pichia pastoris. The high yield of the active recombinant protein in P. pastoris demonstrates the efficiency of a reliably constructed plasmid to express the laccase gene. The optimal biochemical conditions for the successfully expressed MmLac enzyme were identified. Detailed structural properties of the recombinant laccase were determined, and its utility in decolourisation and textile bleaching applications was examined. MmLac demonstrates good activity in an acidic pH range (4.0-6.0); is stable in the presence of cationic metals, organic solvents and under high temperatures (50-60 °C); and is stable for long-term storage at - 20 °C and - 80 °C for up to eight weeks. The structural analysis revealed that the catalytic residues are partially similar to other laccases. MmLac resulted in an increase in whiteness, whilst demonstrating high efficiency and stability and requiring the input of fewer chemicals. The performance of this enzyme makes it worthy of investigation for use in textile biotechnology applications, as well as within environmental and food technologies.
Collapse
Affiliation(s)
- Ahmet Tülek
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ersin Karataş
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Derya Aydın
- Ak-Kim Kimya San. Ve Tic. A.S., 77600, Çiftlikköy, Yalova, Turkey
| | - Özlem Yılmazcan
- Ak-Kim Kimya San. Ve Tic. A.S., 77600, Çiftlikköy, Yalova, Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
25
|
Demkiv OM, Gayda GZ, Broda D, Gonchar MV. Extracellular laccase from Monilinia fructicola: isolation, primary characterization and application. Cell Biol Int 2020; 45:536-548. [PMID: 32052524 DOI: 10.1002/cbin.11316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/02/2020] [Indexed: 01/16/2023]
Abstract
Laccases are enzymes belonging to the family of blue copper oxidases. Due to their broad substrate specificity, they are widely used in many industrial processes and environmental bioremediations for removal of a large number of pollutants. During last decades, laccases attracted scientific interest also as highly promising enzymes to be used in bioanalytics. The aim of this study is to obtain a highly purified laccase from an efficient fungal producer and to demonstrate the applicability of this enzyme for analytics and bioremediation. To select the best microbial source of laccase, a screening of fungal strains was carried out and the fungus Monilinia fructicola was chosen as a producer of an extracellular enzyme. Optimal cultivation conditions for the highest yield of laccase were established; the enzyme was purified by a column chromatography and partially characterized. Molecular mass of the laccase subunit was determined to be near 35 kDa; the optimal pH ranges for the highest activity and stability are 4.5-5.0 and 3.0-5.0, respectively; the optimal temperature for laccase activity is 30°C. Laccase preparation was successfully used as a biocatalyst in the amperometric biosensor for bisphenol A assay and in the bioreactor for bioremediation of some xenobiotics.
Collapse
Affiliation(s)
- Olga M Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine
| | - Galina Z Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine
| | - Daniel Broda
- Faculty of Biotechnology, University of Rzeszów, 1 Pigonia Str., 35-310, Rzeszów, Poland
| | - Mykhailo V Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine.,Drohobych Ivan Franko State Pedagogical University, 24 Ivan Franko Str., 82100, Drohobych, Ukraine
| |
Collapse
|
26
|
Kwiatos N, Jędrzejczak-Krzepkowska M, Krzemińska A, Delavari A, Paneth P, Bielecki S. Evolved Fusarium oxysporum laccase expressed in Saccharomyces cerevisiae. Sci Rep 2020; 10:3244. [PMID: 32094483 PMCID: PMC7039978 DOI: 10.1038/s41598-020-60204-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Fusarium oxysporum laccase was functionally expressed in Saccharomyces cerevisiae and engineered towards higher expression levels and higher reactivity towards 2,6-dimethoxyphenol, that could be used as a mediator for lignin modification. A combination of classical culture optimization and protein engineering led to around 30 times higher activity in the culture supernatant. The winner mutant exhibited three times lower Km, four times higher kcat and ten times higher catalytic efficiency than the parental enzyme. The strategy for laccase engineering was composed of a combination of random methods with a rational approach based on QM/MM MD studies of the enzyme complex with 2,6-dimethoxyphenol. Laccase mediator system with 2,6-dimethoxyphenol caused fulvic acids release from biosolubilized coal.
Collapse
Affiliation(s)
- Natalia Kwiatos
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Marzena Jędrzejczak-Krzepkowska
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Agnieszka Krzemińska
- Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924, Lodz, Poland
| | | | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wróblewskiego 15, 93-590, Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland.
| |
Collapse
|
27
|
Liu N, Shen S, Jia H, Yang B, Guo X, Si H, Cao Z, Dong J. Heterologous expression of Stlac2, a laccase isozyme of Setosphearia turcica, and the ability of decolorization of malachite green. Int J Biol Macromol 2019; 138:21-28. [PMID: 31301394 DOI: 10.1016/j.ijbiomac.2019.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/31/2019] [Accepted: 07/03/2019] [Indexed: 02/01/2023]
Abstract
The active laccases of ascomycetous fungus Setosphaeria turcica were identified by Native-PAGE and ESI-MS/MS, and one of these isozymes Stlac2 was heterologous expressed to investigate the decolorization of malachite green. Setosphaeria turcica produced three active laccase isozymes: Stlac1, Stlac2, and Stlac6. Stlac2 was heterologously expressed in both eukaryotic and prokaryotic expression systems. The eukaryotic recombinant Stlac2 expressed in Pichia pastoris was inactive, and also showed a higher molecular weight than predicted because of glycosylation. The depression of laccase activity was attributable to the incorrect glycosylation at Asn97. Stlac2 expressed in Escherichia coli and the recombinant Stlac2 exhibited activity of 28.23 U/mg with 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate. The highest activity was observed at pH of 4.5 and the temperature of 60 °C. The activity of recombinant Stlac2 was inhibited by 10 mM Na+, Mg2+, Ca2+, Mn2+, and increased by 10 mM of Fe3+ with a relatively activity of 315% compared with no addition. Cu2+ did not affect enzyme activity. Recombinant Stlac2 was capable of decolorizing 67.08% of 20 mg/L malachite green in 15 min without any mediators. CONCLUSIONS: Generally, recombinant protein of fungal laccase Stlac2 was active without glycosylation and decolorize malachite green efficiently, which has potential industrial applications.
Collapse
Affiliation(s)
- Ning Liu
- Mycotoxin and Molecular Plant Pathology Laboratory, College of Plant Protection, Hebei Agricultural University, 071000 Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071000 Baoding, China; College of Life Sciences, Hebei Agricultural University, 071000 Baoding, China
| | - Shen Shen
- Mycotoxin and Molecular Plant Pathology Laboratory, College of Plant Protection, Hebei Agricultural University, 071000 Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071000 Baoding, China; College of Life Sciences, Hebei Agricultural University, 071000 Baoding, China
| | - Hui Jia
- Mycotoxin and Molecular Plant Pathology Laboratory, College of Plant Protection, Hebei Agricultural University, 071000 Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071000 Baoding, China; College of Life Sciences, Hebei Agricultural University, 071000 Baoding, China
| | - Beibei Yang
- Mycotoxin and Molecular Plant Pathology Laboratory, College of Plant Protection, Hebei Agricultural University, 071000 Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071000 Baoding, China; College of Life Sciences, Hebei Agricultural University, 071000 Baoding, China
| | - Xiaoyue Guo
- Mycotoxin and Molecular Plant Pathology Laboratory, College of Plant Protection, Hebei Agricultural University, 071000 Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071000 Baoding, China; College of Life Sciences, Hebei Agricultural University, 071000 Baoding, China
| | - Helong Si
- Mycotoxin and Molecular Plant Pathology Laboratory, College of Plant Protection, Hebei Agricultural University, 071000 Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071000 Baoding, China; College of Life Sciences, Hebei Agricultural University, 071000 Baoding, China
| | - Zhiyan Cao
- Mycotoxin and Molecular Plant Pathology Laboratory, College of Plant Protection, Hebei Agricultural University, 071000 Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071000 Baoding, China; College of Life Sciences, Hebei Agricultural University, 071000 Baoding, China.
| | - Jingao Dong
- Mycotoxin and Molecular Plant Pathology Laboratory, College of Plant Protection, Hebei Agricultural University, 071000 Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, 071000 Baoding, China; College of Life Sciences, Hebei Agricultural University, 071000 Baoding, China.
| |
Collapse
|
28
|
Xu G, Wang J, Yin Q, Fang W, Xiao Y, Fang Z. Expression of a thermo- and alkali-philic fungal laccase in Pichia pastoris and its application. Protein Expr Purif 2019; 154:16-24. [DOI: 10.1016/j.pep.2018.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/24/2022]
|
29
|
Herkommerová K, Dostál J, Pichová I. Decolorization and detoxification of textile wastewaters by recombinant Myceliophthora thermophila and Trametes trogii laccases. 3 Biotech 2018; 8:505. [PMID: 30555766 DOI: 10.1007/s13205-018-1525-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022] Open
Abstract
Laccases are multi-copper oxidoreductases with broad biotechnological applications. Here, we report detailed biochemical characterization of purified recombinant laccases originating from Myceliophthora thermophila (MtL) and Trametes trogii (TtL). We identified optimal conditions for decolorization of commercial dyes and textile wastewater samples. We also tested the toxicity of decolorized wastewater samples using human peripheral blood mononuclear cells. MtL and TtL were expressed in Saccharomyces cerevisiae, and secreted enzymes were purified by consecutive hydrophobic and gel chromatography. The molecular masses of TtL (~ 65 kDa) and MtL (> 100 kDa) suggested glycosylation of the recombinant enzymes. Deglycosylation of MtL and TtL led to 25% and 10% decreases in activity, respectively. In a thermal stability assay, TtL retained 61% and MtL 86% of the initial activity at 40 °C. While TtL retained roughly 50% activity at 60 °C, MtL lost stability at temperatures higher than 40 °C. MtL and TtL preferred syringaldazine as a substrate, and the catalytic efficiencies for ABTS oxidation were 7.5 times lower than for syringaldazine oxidation. In the presence of the mediator HBT, purified TtL almost completely decolorized dyes within 30 min and substantially decolorized wastewater samples from a textile factory (up to 74%) within 20 h. However, products of TtL-catalyzed decolorization were more toxic than MtL-decolorized products, which were almost completely detoxified.
Collapse
|
30
|
Rational design for fungal laccase production in the model host Aspergillus nidulans. SCIENCE CHINA-LIFE SCIENCES 2018; 62:84-94. [DOI: 10.1007/s11427-017-9304-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
|
31
|
|
32
|
Rivera-Hoyos CM, Morales-Álvarez ED, Abelló-Esparza J, Buitrago-Pérez DF, Martínez-Aldana N, Salcedo-Reyes JC, Poutou-Piñales RA, Pedroza-Rodríguez AM. Detoxification of pulping black liquor with Pleurotus ostreatus or recombinant Pichia pastoris followed by CuO/TiO 2/visible photocatalysis. Sci Rep 2018; 8:3503. [PMID: 29472555 PMCID: PMC5823849 DOI: 10.1038/s41598-018-21597-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022] Open
Abstract
Cellulose-pulping requires chemicals such as Cl2, ClO2, H2O2, and O2. The black liquor (BL) generated exhibits a high chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), and chlorophenol content, along with an augmented colour and increased pH. BL is often discharged into water bodies, where it has a negative impact on the environment. Towards that end, laccases are of great interest for bioremediation, since they can degrade aromatic and non-aromatic compounds while reducing O2 to water instead of H2O2. As such, we evaluated Pleurotus ostreatus and Pichia pastoris (which produces rPOXA 1B laccase) in the treatment of synthetic BL (SBL) in an "in vitro" modified Kraft process followed by CuO/TiO2/visible light photocatalysis. Treating SBL with P. ostreatus viable biomass (VB) followed by CuO/TiO2/visible light photocatalysis resulted in 80.3% COD removal and 70.6% decolourisation. Toxic compounds such as 2-methylphenol, 4-methylphenol, and 2-methoxyphenol were eliminated. Post-treated SBL exhibited low phytotoxicity, as evidenced by a Lactuca sativa L seed germination index (GI) > 50%. Likewise, SBL treatment with P. pastoris followed by VB/CuO/TiO2/visible light photocatalysis resulted in 63.7% COD removal and 46% decolourisation. Moreover, this treatment resulted in the elimination of most unwanted compounds, with the exception of 4-chlorophenol. The Lactuca sativa L seed GI of the post-treated SBL was 40%, indicating moderate phytotoxicity.
Collapse
Affiliation(s)
- Claudia M Rivera-Hoyos
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI) Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Edwin D Morales-Álvarez
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI) Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas. Manizales, Caldas, Colombia
| | - Juanita Abelló-Esparza
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI) Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Daniel F Buitrago-Pérez
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI) Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Nicolás Martínez-Aldana
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI) Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Juan C Salcedo-Reyes
- Laboratorio de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Aura M Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI) Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
33
|
Efficient secretion of three fungal laccases fromSaccharomyces cerevisiaeand their potential for decolorization of textile industry effluent-A comparative study. Biotechnol Prog 2017; 34:69-80. [DOI: 10.1002/btpr.2559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/18/2017] [Indexed: 11/07/2022]
|
34
|
Savinova OS, Moiseenko KV, Vavilova EA, Tyazhelova TV, Vasina DV. Properties of two laccases from the Trametes hirsuta 072 multigene family: Twins with different faces. Biochimie 2017; 142:183-190. [PMID: 28943302 DOI: 10.1016/j.biochi.2017.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Abstract
Utilization of laccases in biotechnology and bioremediation has created a strong demand for the characterization of new enzymes and an increase in production of known laccases. Thus, additional research into these enzymes is critically needed. In this study, we report a comparative study of the biochemical and transcriptional properties of two different laccase isozymes from Trametes hirsuta 072 - the constitutive and inducible forms. A recombinant LacC enzyme was expressed in Penicillium canescens to characterize its properties. LacC is single-purpose enzyme, unlike LacA, which can operate efficiently under a wide range of temperatures and pHs (55-70 °C and pH 3-5, respectively). LacC has a lower RedOx potential than LacA and does not oxidize substrates containing amine groups. Expression of the lacC gene was selective compared to that of the lacA gene and increased significantly in the presence of complex synthetic compounds such as dyes and xenobiotics. This study shows that laccases from the multigene families of basidiomycetes differ significantly in their properties, thus providing a complementary effect during lignin degradation.
Collapse
Affiliation(s)
- Olga S Savinova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2, Leninsky Ave., Moscow, 119071, Russia.
| | - Konstantin V Moiseenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2, Leninsky Ave., Moscow, 119071, Russia.
| | - Ekaterina A Vavilova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2, Leninsky Ave., Moscow, 119071, Russia.
| | - Tatiana V Tyazhelova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2, Leninsky Ave., Moscow, 119071, Russia.
| | - Daria V Vasina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2, Leninsky Ave., Moscow, 119071, Russia.
| |
Collapse
|
35
|
Olicón-Hernández DR, González-López J, Aranda E. Overview on the Biochemical Potential of Filamentous Fungi to Degrade Pharmaceutical Compounds. Front Microbiol 2017; 8:1792. [PMID: 28979245 PMCID: PMC5611422 DOI: 10.3389/fmicb.2017.01792] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Pharmaceuticals represent an immense business with increased demand due to intensive livestock raising and an aging human population, which guarantee the quality of human life and well-being. However, the development of removal technologies for these compounds is not keeping pace with the swift increase in their use. Pharmaceuticals constitute a potential risk group of multiclass chemicals of increasing concern since they are extremely frequent in all environments and have started to exhibit negative effects on micro- and macro-fauna as well as on human health. In this context, fungi are known to be extremely diverse and poorly studied microorganisms despite being well suited for bioremediation processes, taking into account their metabolic and physiological characteristics for the transformation of even highly toxic xenobiotic compounds. Increasing studies indicate that fungi can transform many structures of pharmaceutical compounds, including anti-inflammatories, β-blockers, and antibiotics. This is possible due to different mechanisms in combination with the extracellular and intracellular enzymes, which have broad of biotechnological applications. Thus, fungi and their enzymes could represent a promising tool to deal with this environmental problem. Here, we review the studies performed on pharmaceutical compounds biodegradation by the great diversity of these eukaryotes. We examine the state of the art of the current application of the Basidiomycota division, best known in this field, as well as the assembly of novel biodegradation pathways within the Ascomycota division and the Mucoromycotina subdivision from the standpoint of shared enzymatic systems, particularly for the cytochrome P450 superfamily of enzymes, which appear to be the key enzymes in these catabolic processes. Finally, we discuss the latest advances in the field of genetic engineering for their further application.
Collapse
Affiliation(s)
- Darío R Olicón-Hernández
- Environmental Microbiology Group, Department of Microbiology, Institute for Water Research, University of GranadaGranada, Spain
| | - Jesús González-López
- Environmental Microbiology Group, Department of Microbiology, Institute for Water Research, University of GranadaGranada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of GranadaGranada, Spain
| | - Elisabet Aranda
- Environmental Microbiology Group, Department of Microbiology, Institute for Water Research, University of GranadaGranada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of GranadaGranada, Spain
| |
Collapse
|
36
|
Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front Microbiol 2017; 8:832. [PMID: 28559880 PMCID: PMC5432550 DOI: 10.3389/fmicb.2017.00832] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023] Open
Abstract
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Wenjuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Xiangzhen Deng
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| |
Collapse
|
37
|
PİNAR O, TAMERLER C, YAZGAN KARATAŞ A. Heterologous expression and characterization of a high redox potential laccase from Coriolopsis polyzona MUCL 38443. Turk J Biol 2017. [DOI: 10.3906/biy-1605-51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
38
|
High-level production and characterization of laccase from a newly isolated fungus Trametes sp. LS-10C. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|