1
|
Ahanger IA, Hajam IB, Wani OH. Modulation of conformational integrity and aggregation propensity of α-synuclein by osmolytes: Implications in therapeutic intervention of Parkinson's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 211:63-87. [PMID: 39947754 DOI: 10.1016/bs.pmbts.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Understanding the factors capable of modulation of conformational stability and aggregation propensity of α-synuclein (α-Syn), a hallmark of Parkinson's disease (PD), is crucial for developing future therapeutic interventions for this disease. This chapter aims at exploring the roles of osmolytes in affecting the structural dynamics of α-Syn as well as focuses on how these osmolytes impact folding, stability, and aggregation behavior of this important intrinsically disordered protein. A number of potent osmolytes, including trimethylamine N-oxide (TMAO), trehalose, myo-inositol, taurine, glycine, glutamate, and glycerol were discussed along with their overall effect on α-Syn. These osmolytes can stabilize native conformations or promote alternative folding pathways, thereby influencing α-Syn aggregation. The chapter highlights the dual role of osmolytes in either preventing or exacerbating aggregation, depending on their concentration and interaction mechanism with α-Syn. Moreover, by integrating current research results, the chapter provides insights into how osmolytes might be utilized for therapeutic interventions with potential avenues for managing PD. Overall, the chapter underscores the significance of osmolyte-induced modulation of α-Syn aggregation in the context of PD and highlights future research areas in this direction.
Collapse
Affiliation(s)
| | | | - Owais Hassan Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India
| |
Collapse
|
2
|
Pepelnjak M, Velten B, Näpflin N, von Rosen T, Palmiero UC, Ko JH, Maynard HD, Arosio P, Weber-Ban E, de Souza N, Huber W, Picotti P. In situ analysis of osmolyte mechanisms of proteome thermal stabilization. Nat Chem Biol 2024; 20:1053-1065. [PMID: 38424171 PMCID: PMC11288892 DOI: 10.1038/s41589-024-01568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
Organisms use organic molecules called osmolytes to adapt to environmental conditions. In vitro studies indicate that osmolytes thermally stabilize proteins, but mechanisms are controversial, and systematic studies within the cellular milieu are lacking. We analyzed Escherichia coli and human protein thermal stabilization by osmolytes in situ and across the proteome. Using structural proteomics, we probed osmolyte effects on protein thermal stability, structure and aggregation, revealing common mechanisms but also osmolyte- and protein-specific effects. All tested osmolytes (trimethylamine N-oxide, betaine, glycerol, proline, trehalose and glucose) stabilized many proteins, predominantly via a preferential exclusion mechanism, and caused an upward shift in temperatures at which most proteins aggregated. Thermal profiling of the human proteome provided evidence for intrinsic disorder in situ but also identified potential structure in predicted disordered regions. Our analysis provides mechanistic insight into osmolyte function within a complex biological matrix and sheds light on the in situ prevalence of intrinsically disordered regions.
Collapse
Affiliation(s)
- Monika Pepelnjak
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Britta Velten
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre for Organismal Studies (COS) & Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Nicolas Näpflin
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Tatjana von Rosen
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Packebush MH, Sanchez-Martinez S, Biswas S, Kc S, Nguyen KH, Ramirez JF, Nicholson V, Boothby TC. Natural and engineered mediators of desiccation tolerance stabilize Human Blood Clotting Factor VIII in a dry state. Sci Rep 2023; 13:4542. [PMID: 36941331 PMCID: PMC10027729 DOI: 10.1038/s41598-023-31586-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Biologics, pharmaceuticals containing or derived from living organisms, such as vaccines, antibodies, stem cells, blood, and blood products are a cornerstone of modern medicine. However, nearly all biologics have a major deficiency: they are inherently unstable, requiring storage under constant cold conditions. The so-called 'cold-chain', while effective, represents a serious economic and logistical hurdle for deploying biologics in remote, underdeveloped, or austere settings where access to cold-chain infrastructure ranging from refrigerators and freezers to stable electricity is limited. To address this issue, we explore the possibility of using anhydrobiosis, the ability of organisms such as tardigrades to enter a reversible state of suspended animation brought on by extreme drying, as a jumping off point in the development of dry storage technology that would allow biologics to be kept in a desiccated state under not only ambient but elevated temperatures. Here we examine the ability of different protein and sugar-based mediators of anhydrobiosis derived from tardigrades and other anhydrobiotic organisms to stabilize Human Blood Clotting Factor VIII under repeated dehydration/rehydration cycles, thermal stress, and long-term dry storage conditions. We find that while both protein and sugar-based protectants can stabilize the biologic pharmaceutical Human Blood Clotting Factor VIII under all these conditions, protein-based mediators offer more accessible avenues for engineering and thus tuning of protective function. Using classic protein engineering approaches, we fine tune the biophysical properties of a protein-based mediator of anhydrobiosis derived from a tardigrade, CAHS D. Modulating the ability of CAHS D to form hydrogels make the protein better or worse at providing protection to Human Blood Clotting Factor VIII under different conditions. This study demonstrates the effectiveness of tardigrade CAHS proteins and other mediators of desiccation tolerance at preserving the function of a biologic without the need for the cold-chain. In addition, our study demonstrates that engineering approaches can tune natural products to serve specific protective functions, such as coping with desiccation cycling versus thermal stress. Ultimately, these findings provide a proof of principle that our reliance on the cold-chain to stabilize life-saving pharmaceuticals can be broken using natural and engineered mediators of desiccation tolerance.
Collapse
Affiliation(s)
| | | | - Sourav Biswas
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Shraddha Kc
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Kenny H Nguyen
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - John F Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
4
|
Gorensek-Benitez AH, Kirk B, Myers JK. Protein Fibrillation under Crowded Conditions. Biomolecules 2022; 12:biom12070950. [PMID: 35883507 PMCID: PMC9312947 DOI: 10.3390/biom12070950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/04/2022] Open
Abstract
Protein amyloid fibrils have widespread implications for human health. Over the last twenty years, fibrillation has been studied using a variety of crowding agents to mimic the packed interior of cells or to probe the mechanisms and pathways of the process. We tabulate and review these results by considering three classes of crowding agent: synthetic polymers, osmolytes and other small molecules, and globular proteins. While some patterns are observable for certain crowding agents, the results are highly variable and often depend on the specific pairing of crowder and fibrillating protein.
Collapse
Affiliation(s)
- Annelise H. Gorensek-Benitez
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, CO 80903, USA
- Correspondence: (A.H.G.-B.); (J.K.M.)
| | - Bryan Kirk
- Department of Biology, Davidson College, Davidson, NC 28035, USA;
| | - Jeffrey K. Myers
- Department of Chemistry, Davidson College, Davidson, NC 28035, USA
- Correspondence: (A.H.G.-B.); (J.K.M.)
| |
Collapse
|
5
|
Trimethylamine N-oxide alters structure-function integrity of β-casein: Structural disorder co-regulates the aggregation propensity and chaperone activity. Int J Biol Macromol 2021; 182:921-930. [PMID: 33872615 DOI: 10.1016/j.ijbiomac.2021.04.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs), involved in the regulation and function of various cellular processes like transcription, translation, cell cycle etc., exist as ensembles of rapidly interconverting structures with functional plasticity. Among numerous cellular regulatory mechanisms involved in structural and functional regulation of IDPs, osmolytes are emerging as promising regulatory agents due to their ability to affect the structure-function integrity of IDPs. The present study investigated the effect of methylamine osmolytes on β-casein, an IDP essential for maintaining the overall stability of casein complex in milk. It was observed that trimethylamine N-oxide induces a compact structural state in β-casein with slightly decreased chaperone activity and insignificant aggregation propensity. However, the other two osmolytes from this group, i.e., sarcosine and betaine, had no significant effect on the overall structure and chaperone activity of the IDP. The present study hints towards the possible evolutionary selection of higher structural disorder in β-casein, compared to α-casein, for stability of the casein complex and prevention of amyloidosis in the mammary gland.
Collapse
|
6
|
Li J, Chen J, An L, Yuan X, Yao L. Polyol and sugar osmolytes can shorten protein hydrogen bonds to modulate function. Commun Biol 2020; 3:528. [PMID: 32968183 PMCID: PMC7511342 DOI: 10.1038/s42003-020-01260-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Polyol and sugar osmolytes are commonly used in therapeutic protein formulations. How they may affect protein structure and function is an important question. In this work, through NMR measurements, we show that glycerol and sorbitol (polyols), as well as glucose (sugar), can shorten protein backbone hydrogen bonds. The hydrogen bond shortening is also captured by molecular dynamics simulations, which suggest a hydrogen bond competition mechanism. Specifically, osmolytes weaken hydrogen bonds between the protein and solvent to strengthen those within the protein. Although the hydrogen bond change is small, with the average experimental cross hydrogen bond 3hJNC' coupling of two proteins GB3 and TTHA increased by ~ 0.01 Hz by the three osmolytes (160 g/L), its effect on protein function should not be overlooked. This is exemplified by the PDZ3-peptide binding where several intermolecular hydrogen bonds are formed and osmolytes shift the equilibrium towards the bound state.
Collapse
Affiliation(s)
- Jingwen Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jingfei Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Liaoyuan An
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiang Yuan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lishan Yao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
7
|
Khalifeh M, Barreto GE, Sahebkar A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson's disease. Br J Pharmacol 2019; 176:1173-1189. [PMID: 30767205 PMCID: PMC6468260 DOI: 10.1111/bph.14623] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement disorder resulting primarily from loss of nigrostriatal dopaminergic neurons. PD is characterized by the accumulation of protein aggregates, and evidence suggests that aberrant protein deposition in dopaminergic neurons could be related to the dysregulation of the lysosomal autophagy pathway. The therapeutic potential of autophagy modulators has been reported in experimental models of PD. Trehalose is a natural disaccharide that has been considered as a new candidate for the treatment of neurodegenerative diseases. It has a chaperone-like activity, prevents protein misfolding or aggregation, and by promoting autophagy, contributes to the removal of accumulated proteins. In this review, we briefly summarize the role of aberrant autophagy in PD and the underlying mechanisms that lead to the development of this disease. We also discuss reports that used trehalose to counteract the neurotoxicity in PD, focusing particularly on the autophagy promoting, protein stabilization, and anti-neuroinflammatory effects of trehalose.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical Biotechnology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de CienciasPontificia Universidad JaverianaBogotáColombia
- Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileSantiagoChile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
8
|
Chen JY, Parekh M, Seliman H, Bakshinskaya D, Dai W, Kwan K, Chen KY, Liu AYC. Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction. J Biol Chem 2018; 293:15581-15593. [PMID: 30143534 PMCID: PMC6177601 DOI: 10.1074/jbc.ra118.002933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
PolyQ-expanded huntingtin (mHtt) variants form aggregates, termed inclusion bodies (IBs), in individuals with and models of Huntington's disease (HD). The role of IB versus diffusible mHtt in neurotoxicity remains unclear. Using a ponasterone (PA)-inducible cell model of HD, here we evaluated the effects of heat shock on the appearance and functional outcome of Htt103QExon1-EGFP expression. Quantitative image analysis indicated that 80-90% of this mHtt protein initially appears as "diffuse" signals in the cytosol, with IBs forming at high mHtt expression. A 2-h heat shock during the PA induction reduced the diffuse signal, but greatly increased mHtt IB formation in both cytosol and nucleus. Dose- and time-dependent mHtt expression suggested that nucleated polymerization drives IB formation. RNA-mediated knockdown of heat shock protein 70 (HSP70) and heat shock cognate 70 protein (HSC70) provided evidence for their involvement in promoting diffuse mHtt to form IBs. Reporter gene assays assessing the impacts of diffuse versus IB mHtt showed concordance of diffuse mHtt expression with the repression of heat shock factor 1, cAMP-responsive element-binding protein (CREB), and NF-κB activity. CREB repression was reversed by heat shock coinciding with mHtt IB formation. In an embryonic striatal neuron-derived HD model, the chemical chaperone sorbitol similarly promoted the structuring of diffuse mHtt into IBs and supported cell survival under stress. Our results provide evidence that mHtt IB formation is a chaperone-supported cellular coping mechanism that depletes diffusible mHtt conformers, alleviates transcription factor dysfunction, and promotes neuron survival.
Collapse
Affiliation(s)
- Justin Y Chen
- From the Department of Cell Biology and Neuroscience and
| | - Miloni Parekh
- From the Department of Cell Biology and Neuroscience and
| | - Hadear Seliman
- From the Department of Cell Biology and Neuroscience and
| | | | - Wei Dai
- From the Department of Cell Biology and Neuroscience and
| | - Kelvin Kwan
- From the Department of Cell Biology and Neuroscience and
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, New Jersey 08854
| | - Alice Y C Liu
- From the Department of Cell Biology and Neuroscience and
| |
Collapse
|
9
|
Wlodarczyk SR, Custódio D, Pessoa A, Monteiro G. Influence and effect of osmolytes in biopharmaceutical formulations. Eur J Pharm Biopharm 2018; 131:92-98. [DOI: 10.1016/j.ejpb.2018.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/28/2018] [Accepted: 07/22/2018] [Indexed: 02/05/2023]
|
10
|
Rumjanek FD. Osmolyte Induced Tumorigenesis and Metastasis: Interactions With Intrinsically Disordered Proteins. Front Oncol 2018; 8:353. [PMID: 30234016 PMCID: PMC6127622 DOI: 10.3389/fonc.2018.00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
In spite of a great deal of work, the biochemical mechanisms underlying tumorigenesis and metastasis are not yet fully understood. Specifically regarding metastasis many authors consider that malignancy is caused by the accumulation of mutations. However, evidence is gathering to show that tumors are composed of heterogeneous cell populations subjected to selective pressures. In this micro evolutionary scenario, intra- and extra-cellular selective pressures will determine which subpopulations of tumor cells will thrive and be able to dissociate from the tumor as autonomous metastatic cells. We propose here that alteration of conformations of transcription factors confer novel non-canonical functions that may induce oncogenesis and metastasis in a mutation independent manner. We argue that the functional plasticity of transcription factors is due to intrinsically disordered domains (IDRs) of proteins. IDRs prevent spontaneous folding of proteins into well-defined three-dimensional structures. Because most transcription factors contain IDRs, each could potentially interact with many ligands. This high degree of functional pleiotropy would then be ultimately responsible for the metastatic phenotype. The conformations of proteins can be altered by chemical chaperones collectively known as osmolytes. Osmolytes are small organic molecules permeable through biological membranes that can accumulate in cells, increase the thermodynamic stability of proteins, modulate enzyme activity and prevent protein aggregation. Thus, by modifying IDRs, osmolytes could subvert the homeostatic regulatory network of cells. Untargeted metabolomic analysis of oral cancer cells showed that those with the greatest metastatic potential contained several osmolytes that were absent in the non-metastatic cells. We hypothesize that high concentrations of osmolytes might promote conformational alterations of transcription factors that favor metastatic behavior. This hypothesis is eminently testable by investigating whether: (a) the intracellular microenvironment of metastatic cells differs from non-metastatic cells and whether osmolytes are responsible for this change and (b) high intracellular concentrations of osmolytes are sufficient to induce structural modifications in regulatory protein so as to establish novel interactive networks that will constitute the metastatic phenotype. Synthetic cell penetrating peptides mimicking IDRs could act as sensitive probes. By exposing the peptides to the microenvironments of living tumor and metastatic tumor cells one should be able to compare the chemical shifts as revealed by spectra obtained by nuclear magnetic resonance (NMR).
Collapse
Affiliation(s)
- Franklin D Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Cox D, Raeburn C, Sui X, Hatters DM. Protein aggregation in cell biology: An aggregomics perspective of health and disease. Semin Cell Dev Biol 2018; 99:40-54. [PMID: 29753879 DOI: 10.1016/j.semcdb.2018.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/21/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
Abstract
Maintaining protein homeostasis (proteostasis) is essential for cellular health and is governed by a network of quality control machinery comprising over 800 genes. When proteostasis becomes imbalanced, proteins can abnormally aggregate or become mislocalized. Inappropriate protein aggregation and proteostasis imbalance are two of the central pathological features of common neurodegenerative diseases including Alzheimer, Parkinson, Huntington, and motor neuron diseases. How aggregation contributes to the pathogenic mechanisms of disease remains incompletely understood. Here, we integrate some of the key and emerging ideas as to how protein aggregation relates to imbalanced proteostasis with an emphasis on Huntington disease as our area of main expertise. We propose the term "aggregomics" be coined in reference to how aggregation of particular proteins concomitantly influences the spatial organization and protein-protein interactions of the surrounding proteome. Meta-analysis of aggregated interactomes from various published datasets reveals chaperones and RNA-binding proteins are common components across various disease contexts. We conclude with an examination of therapeutic avenues targeting proteostasis mechanisms.
Collapse
Affiliation(s)
- Dezerae Cox
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Candice Raeburn
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Xiaojing Sui
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia.
| |
Collapse
|
12
|
Katyal N, Agarwal M, Sen R, Kumar V, Deep S. Paradoxical Effect of Trehalose on the Aggregation of α-Synuclein: Expedites Onset of Aggregation yet Reduces Fibril Load. ACS Chem Neurosci 2018; 9:1477-1491. [PMID: 29601727 DOI: 10.1021/acschemneuro.8b00056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aggregation of α-synuclein is closely connected to the pathology of Parkinson's disease. The phenomenon involves multiple steps, commenced by partial misfolding and eventually leading to mature amyloid fibril formation. Trehalose, a widely accepted osmolyte, has been shown previously to inhibit aggregation of various globular proteins owing to its ability to prevent the initial unfolding of protein. In this study, we have examined if it behaves in a similar fashion with intrinsically disordered protein α-synuclein and possesses the potential to act as therapeutic agent against Parkinson's disease. It was observed experimentally that samples coincubated with trehalose fibrillate faster compared to the case in its absence. Molecular dynamics simulations suggested that this initial acceleration is manifestation of trehalose's tendency to perturb the conformational transitions between different conformers of monomeric protein. It stabilizes the aggregation prone "extended" conformer of α-synuclein, by binding to its exposed acidic residues of the C terminus. It also favors the β-rich oligomers once formed. Interestingly, the total fibrils formed are still promisingly less since it accelerates the competing pathway toward formation of amorphous aggregates.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Manish Agarwal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Raktim Sen
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Vinay Kumar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| |
Collapse
|