1
|
Ahmad MS, Shah N, Akbar Z, Khan T, Ali A. Simple two-step purification and characterisation of peroxidase from Citrullus colocynthis. Nat Prod Res 2024; 38:3374-3383. [PMID: 37621192 DOI: 10.1080/14786419.2023.2248644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Peroxidase is a biotechnologically important enzyme. The purification of peroxidase from the root of Citrullus colocynthis was carried out in a simple two-step process with maximum purity level. The sample was extracted in a high salt buffer, and the enzyme was partially purified with a Q-Sepharose anion exchange column. Final purification was carried out with HighLoad 16/600 Superdex G-75 column. The purified protein was analysed with SDS gel electrophoresis, which suggested a single band of approximately 35 kDa. Further, the enzyme was identified with the help of Mass spectrometric analysis using an ESI-QTOF Mass spectrometer. The study will be helpful for the isolation and its commercial uses in biotechnology.
Collapse
Affiliation(s)
- Malik Shoaib Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nayab Shah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zeeshan Akbar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Tajwali Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Öztürk C, Küfrevioğlu Öİ. Affinity gel synthesis from the p-aminobenzoic acid derivative 4-amino-2-methylbenzoic acid and purification of polyphenol oxidase from various plant sources. Protein Expr Purif 2024; 219:106474. [PMID: 38518927 DOI: 10.1016/j.pep.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The polyphenol oxidase (PPO) enzyme, which causes enzymatic browning, has been repeatedly purified from fruit and vegetables by affinity chromatography. In the present research, Sepharose 4B-l-tyrosine-4-amino-2-methylbenzoic acid, a novel affinity gel for the purification of the PPO enzyme with high efficiency, was synthesized. Additionally, Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity gel, known in the literature, was also synthesized, and 9.02, 16.57, and 28.13 purification folds were obtained for the PPO enzymes of potato, mushroom, and eggplant by the reference gel. The PPO enzymes of potato, mushroom, and eggplant were purified 41.17, 64.47, and 56.78-fold from the new 4-amino-2-methylbenzoic acid gel. Following their isolation from the new affinity column, the assessment of PPO enzyme purity involved the utilization of SDS-PAGE. According to the results from SDS-PAGE and native PAGE, the molecular weight of each enzyme was 50 kDa. Then, the inhibition effects of naringin, morin hydrate, esculin hydrate, homovanillic acid, vanillic acid, phloridzin dihydrate, and p-coumaric acid phenolic compounds on purified potato, mushroom, and eggplant PPO enzyme were investigated. Among the tested phenolic compounds, morin hydrate was determined to be the most potent inhibitor on the potato (Ki: 0.07 ± 0.03 μM), mushroom (Ki: 0.7 ± 0.3 μM), and eggplant (Ki: 4.8 ± 1.2 μM) PPO enzymes. The studies found that the weakest inhibitor was homovanillic acid for the potato (Ki: 1112 ± 324 μM), mushroom (Ki: 567 ± 81 μM), and eggplant (Ki: 2016.7 ± 805.6 μM) PPO enzymes. Kinetic assays indicated that morin hydrate was a remarkable inhibitor on PPO.
Collapse
Affiliation(s)
- Cansu Öztürk
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
3
|
Urgessa OE, Koyamo R, Dinka H, Tefese K, Gemeda MT. Review on Desirable Microbial Phytases as a Poultry Feed Additive: Their Sources, Production, Enzymatic Evaluation, Market Size, and Regulation. Int J Microbiol 2024; 2024:9400374. [PMID: 38962397 PMCID: PMC11221984 DOI: 10.1155/2024/9400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 07/05/2024] Open
Abstract
Poultry's digestive tract lacks hydrolytic phytase enzymes, which results in chelation of dietary minerals, vital amino acids, proteins, and carbohydrates, phytate-phosphate unavailability, and contamination of the environment due to phosphorus. Therefore, it is necessary to use exogenous microbial phytases as feed additive to chicken feed to catalyze the hydrolysis of dietary phytate. Potential sources of microbial isolates that produce desired phytases for chicken feed supplementation have been isolated from agricultural croplands. It is achievable to isolate phytase-producing bacteria isolates using both broth and agar phytase screening media. Potential substrates for submerged fermentation (SmF) for bacterial phytase production and solid-state fermentation (SSF) for fungal phytase production include rice and wheat bran. Following fermentation, saturated ammonium sulphate precipitation is typically used to partially purify microbial culture filtrate. The precipitate is then desalted. Measurements of the pH optimum and stability, temperature optimum and stability, metal ions stability, specificity and affinity to target substrate, proteolysis resistance, storage stability, and in vitro feed dephosphorylation are used to perform an enzymatic evaluation of phytase as an additive for poultry feed. The growth of the feed phytase market is primarily due to the expansion of chicken farms to meet the demand for meat and eggs from humans. The Food and Drug Administration in the USA and the European Food and Safety Authority are primarily in charge of putting rules pertaining to feed phytase use in chicken feed into effect. Conclusively, important components of the production of phytase additives for poultry feed include identifying a reliable source for potential microbe isolation, selecting an economical method of phytase production, thoroughly characterizing the biochemical properties of phytase, and comprehending the size and regulation of the current feed phytase market.
Collapse
Affiliation(s)
- Olyad Erba Urgessa
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Rufael Koyamo
- Department of Biology, College of Natural and Computational Sciences, Oda Bultum University, Chiro, Ethiopia
| | - Hunduma Dinka
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Ketema Tefese
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Institute of Pharmaceutical Science, Adama Science and Technology University, Adama, Ethiopia
| | - Mesfin Tafesse Gemeda
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Jiang H, Shi R, Li X, Tang J, Min D. Insight into the thrombolytic ability of an extracellular fibrinolytic enzyme from Bacillus amyloliquefaciens GXU-1 isolated from Sipunculus nudus. Protein Expr Purif 2024; 213:106371. [PMID: 37709210 DOI: 10.1016/j.pep.2023.106371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Bacterial fibrinolytic enzymes have an important role in thrombolytic therapy due to their ability to dissolve fibrin. Therefore, purification, characterization and activity determination are of prime importance for bacterial fibrinolytic enzymes. In the current study, marine Bacillus amyloliquefaciens was first screened from Sipunculus nudus living in the Beibu Gulf of China and denoted as Guangxi University-1 (GXU-1). Then, an extracellular fibrinolytic enzyme (FEB-1) was purified from GXU-1 using ammonium sulfate precipitation, hydrophobic chromatography and gel filtration chromatography. The specific activity of FEB-1 was determined to be as high as 6789.74 U/mg. The relative molecular weight of FEB-1 was measured as 30 kDa through SDS‒PAGE. The optimum in vitro fibrinolytic activity of FEB-1 was identified at 37 °C and pH = 8. Furthermore, the activity of FEB-1 can be well preserved at 20-45 °C and pH = 6.0 to 9.0. The combination analysis of SDS‒PAGE and the molecular docking calculation revealed that FEB-1 can cleave more Aα- and Bβ-chains of fibrinogen than γ-chain. It is noteworthy that FEB-1 is comparatively stable under human-body environmental conditions, indicating its potential application in thrombosis therapy.
Collapse
Affiliation(s)
- Hongrui Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ruiyuan Shi
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaomei Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jiale Tang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Sanni DM, Jimoh MB, Lawal OT, Bamidele SO. Purification and biochemical characterization of phytase from Bacillus cereus isolated from gastrointestinal tract of African giant snail (Achatina fulica). Int Microbiol 2023; 26:961-972. [PMID: 37020067 DOI: 10.1007/s10123-023-00350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Phytases are specialized enzymes meant for phytic acid degradation. They possess ability to prevent phytic acid indigestion, including its attendant environmental pollution. This study was aimed at investigating biochemical properties of purified phytase of B. cereus isolated from Achatina fulica. Phytase produced from Bacillus cereus that exhibited optimal phytate degrading-ability of all the bacteria isolated was purified in a three-step purification. The biochemical properties of the purified enzyme were also determined. The phytase homogeny of approximately 45 kDa exhibited 12.8-purification fold and 1.6% yield with optima phytate degrading efficiency and maximum stability at pH 7 and 50 °C. Remaining activity of 52 and 47% obtained between 60 and 70 °C after 2 h further established thermostability of the purified phytase. Mg2+ and Zn2+ enhanced phytate hydrolysis by the enzyme, while Na+ showed mild inhibition but Hg2+ severely inhibited the enzymatic activity. Km and Vmax were estimated to be 0.11 mM and 55.6 μmol/min/mL, displaying enzyme-high substrate affinity and catalytic efficiency, respectively. Phytase purified from Bacillus cereus, isolated from African giant snails, has shown excellent characteristics suitable for phytic acid hydrolysis and could be employed in industrial and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Olusola Tosin Lawal
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
6
|
Faizal FA, Ahmad NH, Yaacob JS, Abdul Halim Lim S, Abd Rahim MH. Food processing to reduce antinutrients in plant-based foods. INTERNATIONAL FOOD RESEARCH JOURNAL 2023; 30:25-45. [DOI: 10.47836/ifrj.30.1.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Antinutrients such as phytic acids, tannins, saponin, and enzyme inhibitors are phytochemicals that can decrease the bioavailability of micro- and macronutrients, thus causing them to be unavailable for absorptions in the digestive system. Antinutrients are a major concern especially in countries where plant-based commodities such as wheat, legumes, and cereals are staple foods, for the antinutrients can cause not only mineral deficiencies, but also lead to more serious health issues. Although various thermal and non-thermal processing methods such as cooking, boiling, and fermentation processes have been practiced to decrease the level of antinutrients, these processes may also undesirably influence the final products. More advanced practices, such as ozonation and cold plasma processing (CPP), have been applied to decrease the antinutrients without majorly affecting the physicochemical and nutritional aspects of the commodities post-processing. This review will cover the types of antinutrients that are commonly found in plants, and the available processing methods that can be used, either singly or in combination, to significantly decrease the antinutrients, thus rendering the foods safe for consumption.
Collapse
|
7
|
Dikbaş N, Parlakova Karagöz F, Uçar S, Demir Y. Ornamental cabbage (Brassica oleracea var. acephala) responses to phytase enzyme purified from Lactobacillus coryniformis application. Biotechnol Appl Biochem 2023. [PMID: 36779503 DOI: 10.1002/bab.2449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/04/2023] [Indexed: 02/14/2023]
Abstract
In order to increase the quality and yield of ornamental plants, especially potted ornamental plants, it is necessary to enrich the physical properties of the growing medium and to ensure the continuity of the growing medium. In order to achieve this, organic substances that create a serious cost in ornamental plant cultivation are added to the growing medium. This study was planned to assess the role of inoculation of different levels in the seeds and soaking times of purified phytase, on the plant growth and ornamental plant decorative values in ornamental cabbage plants under nutrient limiting condition in greenhouse. Different doses (E0 : 0 EU, E1 : 5 EU, E2 : 10 EU), soaking times (W15 : 15 min, W30 : 30 min, W60 : 60 min), and their combinations (W15 + E0 , W15 + E1 , W15 + E2 , W30 + E0 , W30 + E1 , W30 + E2 , W60 + E0 , W60 + E1 , W60 + E2 ) of phytase enzyme purified and isolated from the Lactobacillus coryniformis were applied to ornamental cabbage seeds, and they were sown in plug trays filled with appropriate growing medium. Seedlings were planted in plastic pots during their period when the seedlings had four to five true leaves. Treatments of phytase enzyme purified and isolated from the microorganism generally improved the observed parameters. The application of, especially, the highest level of phytase enzyme doses increased the plant height, main stem height, and stem diameter of ornamental cabbage as compared to control (E0 treatment: distilled water). While the highest number of leaves per plant was obtained at E1 and E2 application doses and W30 and W60 soaking times; the highest stem diameter was obtained at E2 application doses and W30 and W60 soaking times. The present study clarified that the purified phytase enzyme can increase ornamental cabbage quality at the appropriate concentration and soaking time and is a promising biotechnology material for agricultural applications, and especially in different ornamental plant species.
Collapse
Affiliation(s)
- Neslihan Dikbaş
- Department of Agricultural Biotechnology, Agricultural Faculty, Ataturk University, Erzurum, Turkey
| | | | - Sevda Uçar
- Department of Herbal Production and Technologies, Faculty of Agricultural Sciences and Technology, Sivas Science and Technology University, Sivas, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
8
|
Spatial-temporal variations of proline and related amino acids reveal distinct nitrogenous utilization strategies in rice during detoxification of exogenous cyanide. Chem Biol Interact 2023; 369:110267. [PMID: 36403783 DOI: 10.1016/j.cbi.2022.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Cyanide (CN-) pollution in agricultural systems impairs amino acid metabolism in rice plants, hence decreasing their quality and yield. Meanwhile, little is known about the effects of CN- assimilation on the innate pool of proline (Pro) and its synthesis-related amino acids (Pro-AAs) in rice plants. In this study, a hydroponic experiment was carried out to investigate the effect of exogenous KCN on indigenous levels of Pro-AAs, i.e., Pro, glutamate (Glu), arginine (Arg), and ornithine (Orn) in rice seedlings fertilized with either nitrate (NO3-) or ammonium (NH4+) through the biochemical and RT-qPCR analysis. At the same KCN treatment concentration, the relative growth rate of NH4+-fed rice seedlings was considerably higher than that of NO3--fed rice seedlings, but the residual concentration of CN- in NH4+-fed rice tissues was lower than that of NO3--fed rice tissues. Based on the UPLC and stoichiometry molar ratio calculations, it is evident that the Glu pathway contributed significantly to Pro synthesis in rice under KCN + NO3- treatments; whereas the Orn pathway governed the synthesis of Pro in rice under KCN + NH4+ treatments. Moreover, transcriptional and bioinformatics analysis revealed that NH4+ fertilization resulted in spatial-temporal differences in the genetic response in rice tissue during detoxification of CN- compared with KCN + NO3- treatments. These findings suggested that the innate level of Pro serves as "a fishing float" to balance the flux between Pro and Pro-AAs in exogenous KCN-treated rice plants under different nitrogenous nutritional conditions.
Collapse
|
9
|
Wang L, Guan H, Hu J, Feng Y, Li X, Yusef KK, Gao H, Tian D. Aspergillus niger Enhances Organic and Inorganic Phosphorus Release from Wheat Straw by Secretion of Degrading Enzymes and Oxalic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10738-10746. [PMID: 36027054 DOI: 10.1021/acs.jafc.2c03063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To explore the mechanisms of crop straw degradation and phosphorus (P) release by phosphate-solubilizing fungi (PSF), a typical PSF Aspergillus niger (A. niger, ANG) was investigated for the degradation of wheat straw (WST) in this work. The results revealed that A. niger significantly increased wheat straw degradation (30%) compared with no A. niger treatment (7.7%). Meanwhile, more than 92% of total P was released from WST by A. niger, much higher than from WST treatment (69.5%). Although the ratios of inorganic P release between WST and WST + ANG treatments were similar (17.6 vs 19.7%), a significant difference occurred between their release of organic P, i.e., WST (51.9%) vs WST + ANG (72.5%). The high enzyme activity of β-1,4-glucanase and β-glucosidase produced by A. niger contributed to the wheat straw degradation and organic P release compared with no A. niger treatment. Oxalic acid secreted by A. niger dominated the release of inorganic P from WST. Our findings suggested that A. niger is an efficient microbial agent for crop straw degradation and P release, which could be a candidate in the pathway of straw return.
Collapse
Affiliation(s)
- Liyan Wang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Hao Guan
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Jun Hu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Yi Feng
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Li
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Kianpoor Kalkhajeh Yusef
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Hongjian Gao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Da Tian
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
10
|
Abstract
In this study, aldose reductase (AR) was purified from sheep kidney using chromatographic methods and examined the interactions between some sulfonamides and the enzyme. According to results, sulfonamides display effective inhibitor features for sheep kidney AR with IC50 values in the range of 37.27-87.65 μM and Kis in the range of 25.72 ± 6.45 to 73.56 ± 17.49 μM. The sulfonamides displayed different inhibition mechanisms. It was found that studied all compounds displayed non-competitive inhibition type except for 5-chlorothiophene-2-sulfonamide (1). It showed competitive inhibition. Among these compounds, 2,5-dichlorothiophene-3-sulfonamide compound (2) was showed the most potent AR inhibitor (Ki: 25.72 ± 6.45). These compounds may be useful in the treatment of diabetic complications.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Zeynep Köksal
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
11
|
Baltaci MO. Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2038581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
12
|
BALTACI MUSTAFAO, OMEROGLU MEHMETA, ALBAYRAK SEYDA, ADIGUZEL GULSAH, ADIGUZEL AHMET. Production of Endoglucanase by Exiguobacterium mexicanum OB24 Using Waste Melon Peels as Substrate. AN ACAD BRAS CIENC 2022; 94:e20220151. [DOI: 10.1590/0001-3765202220220151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 12/23/2022] Open
|
13
|
Öztürk C, Bayrak S, Demir Y, Aksoy M, Alım Z, Özdemir H, İrfan Küfrevioglu Ö. Some indazoles as alternative inhibitors for potato polyphenol oxidase. Biotechnol Appl Biochem 2021; 69:2249-2256. [PMID: 34775655 DOI: 10.1002/bab.2283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/09/2021] [Indexed: 01/12/2023]
Abstract
Fresh-cut vegetables and fruits have gained attention among consumers because of their fresh appearance, lack of pollution, nutrition, and convenience. However, in fresh-cut foods, enzymatic browning is the main problem. Polyphenol oxidase (PPO) is a vital enzyme involved in the process of enzymatic browning. In this study, PPO was purified from potato using Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity chromatography and the effect of some indazoles on the enzyme was determined. The enzyme was purified with a specific activity of 52,857.14 EU/mg protein and 21.26-purification fold. Indazoles exhibited inhibitor properties for PPO with IC50 values in the range of 0.11-1.12 mM and Ki values in the range of 0.15 ± 0.04-3.55 ± 0.88 mM. Among these compounds, 7-chloro-1H-indazole was shown as the most potent PPO inhibitor (Ki : 0.15 ± 0.04 mM). Determination of the enzyme's inhibition kinetics will simplify the testing of candidate PPO inhibitors.
Collapse
Affiliation(s)
- Cansu Öztürk
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Songül Bayrak
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Mine Aksoy
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Zuhal Alım
- Department of Chemistry, Faculty of Science and Arts, Ahievran University, Kırşehir, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | | |
Collapse
|
14
|
Türkeş C, Kesebir AÖ, Demir Y, Küfrevioğlu Öİ, Beydemir Ş. Calcium Channel Blockers: The Effect of Glutathione S‐Transferase Enzyme Activity and Molecular Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202103100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Arzu Öztürk Kesebir
- Department of Chemistry Faculty of Science Atatürk University Erzurum 25240 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
15
|
Bekalu ZE, Dionisio G, Madsen CK, Etzerodt T, Fomsgaard IS, Brinch-Pedersen H. Barley Nepenthesin-Like Aspartic Protease HvNEP-1 Degrades Fusarium Phytase, Impairs Toxin Production, and Suppresses the Fungal Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:702557. [PMID: 34394154 PMCID: PMC8358834 DOI: 10.3389/fpls.2021.702557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Nepenthesins are categorized under the subfamily of the nepenthesin-like plant aspartic proteases (PAPs) that form a distinct group of atypical PAPs. This study describes the effect of nepenthesin 1 (HvNEP-1) protease from barley (Hordeum vulgare L.) on fungal histidine acid phosphatase (HAP) phytase activity. Signal peptide lacking HvNEP-1 was expressed in Pichia pastoris and biochemically characterized. Recombinant HvNEP-1 (rHvNEP-1) strongly inhibited the activity of Aspergillus and Fusarium phytases, which are enzymes that release inorganic phosphorous from phytic acid. Moreover, rHvNEP-1 suppressed in vitro fungal growth and strongly reduced the production of mycotoxin, 15-acetyldeoxynivalenol (15-ADON), from Fusarium graminearum. The quantitative PCR analysis of trichothecene biosynthesis genes (TRI) confirmed that rHvNEP-1 strongly repressed the expression of TRI4, TRI5, TRI6, and TRI12 in F. graminearum. The co-incubation of rHvNEP-1 with recombinant F. graminearum (rFgPHY1) and Fusarium culmorum (FcPHY1) phytases induced substantial degradation of both Fusarium phytases, indicating that HvNEP-1-mediated proteolysis of the fungal phytases contributes to the HvNEP-1-based suppression of Fusarium.
Collapse
|
16
|
Karagöz FP, Demir Y, Kotan MŞ, Dursun A, Beydemir Ş, Dikbaş N. Purification of the phytase enzyme from Lactobacillus plantarum: The effect on pansy growth and macro-micro element content. Biotechnol Appl Biochem 2020; 68:1067-1075. [PMID: 32919432 DOI: 10.1002/bab.2026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, the phytase enzyme was purified from Lactobacillus plantarum with a 3.08% recovery, 9.57-purification fold, and with a specific activity of 278.82 EU/mg protein. Then, the effects of the 5 EU and 10 EU purified phytase was determined on the plant growth, quality, the macro-micro nutrient content of pansy (Viola × wittrockiana), which is of great importance in ornamental plants industry. The research was established under greenhouse conditions with natural light in 2017. The pansy seeds were coated with phytase enzyme solution, sown in a peat environment, and transferred to pots at the seedling period. In general, the 5 EU and 10 EU applications increase plant height, the number of leaves per plant, the number of side branches per plant, and flower height parameters compared to control. Also, micro- and macronutrient values in soil and plant samples were examined. According to the results, the phytase application on pansy cultivation positively affected the properties and yielded high quality of plants.
Collapse
Affiliation(s)
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Merve Şenol Kotan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Atilla Dursun
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department Biochemistry, Faculty Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Neslihan Dikbaş
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| |
Collapse
|
17
|
Türkeş C, Demir Y, Beydemir Ş. Some calcium-channel blockers: kinetic and in silico studies on paraoxonase-I. J Biomol Struct Dyn 2020; 40:77-85. [DOI: 10.1080/07391102.2020.1806927] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cüneyt Türkeş
- Faculty of Pharmacy, Department of Biochemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Şükrü Beydemir
- Faculty of Pharmacy, Department of Biochemistry, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
18
|
Huang Y, Wang J, Hou Y, Hu SQ. Production of yeast hydrolysates by Bacillus subtilis derived enzymes and antihypertensive activity in spontaneously hypertensive rats. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1791174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yanbo Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- State Key Laboratory of Pulp and Paper Engineering, South China University and Technology, Guangzhou, Guangdong, China
| | - Jiajia Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Lab of Agricultural Products Processing, Guangzhou, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University and Technology, Guangzhou, Guangdong, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollán GC. Partial characterization and purification of phytase from Lactobacillus plantarum CRL1964 isolated from pseudocereals. J Basic Microbiol 2020; 60:787-798. [PMID: 33448445 DOI: 10.1002/jobm.202000236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 01/07/2023]
Abstract
Cereals and pseudocereals are a rich source of nutrients and trace elements, but their dietary bioavailability is low due to the presence of phytate (IP6), an antinutritional compound with the ability to chelate cations and proteins. Phytase is an enzyme that catalyzes the hydrolysis of IP6 and it is used as an additive improving the nutritional quality of grain-based foods. The aim of this study was to select lactic acid bacteria (LAB) isolated from pseudocereals with phytase activity, characterize their production and activity, and purify the enzyme. LAB strains isolated from grains and spontaneous sourdough of quinoa and amaranth were grown in the Man Rogosa and Sharpe medium where the inorganic phosphate (Pi) was replaced by 1% of IP6. Phytase activity was determined by measuring the Pi released from IP6. Phytase of Lactobacillus (L.) plantarum CRL1964 (PhyLP) showed the highest specific activity from 73 LAB evaluated. IP6 induces PhyLP production, which is at its maximum at the end of the exponential phase. PhyLP was thermostable and maintained its activity under acidic conditions. The enzymatic activity is stimulated by ethylenediaminetetraacetic acid, Co2+, and ascorbic acid. PhyLP was partially purified and showed a molecular mass of 55 kDa. L. plantarum CRL1964 and/or PhyLP have the potential to be included in the processing of cereal/pseudocereals based products for animal feed and/or the food industry improving its nutritional value.
Collapse
Affiliation(s)
| | | | - Carla L Gerez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - Graciela C Rollán
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| |
Collapse
|
20
|
Demir Y, Türkeş C, Beydemir Ş. Molecular Docking Studies and Inhibition Properties of Some Antineoplastic Agents against Paraoxonase-I. Anticancer Agents Med Chem 2020; 20:887-896. [DOI: 10.2174/1871520620666200218110645] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/15/2019] [Accepted: 01/27/2020] [Indexed: 01/28/2023]
Abstract
Background:
Currently, most of the drugs used in clinical applications show their pharmacological
influences by inhibiting or activating enzymes. Therefore, enzyme inhibitors have an essential place in the drug
design for many diseases.
Objective:
The current study aimed to contribute to this growing drug design field (i.e., medicine discovery and
development) by analyzing enzyme-drug interactions.
Methods:
For this reason, Paraoxonase-I (PON1) enzyme was purified from fresh human serum by using rapid
chromatographic techniques. Additionally, the inhibition effects of some antineoplastic agents were researched
on the PON1.
Results:
The enzyme was obtained with a specific activity of 2603.57 EU/mg protein. IC50 values for pemetrexed
disodium, irinotecan hydrochloride, dacarbazine, and azacitidine were determined to be 9.63μM,
30.13μM, 53.31μM, and 21.00mM, respectively. These agents found to strongly inhibit PON1, with Ki constants
ranging from 8.29±1.47μM to 23.34±2.71mM. Dacarbazine and azacitidine showed non-competitive inhibition,
while other drugs showed competitive inhibition. Furthermore, molecular docking was performed using maestro
for these agents. Among these, irinotecan hydrochloride and pemetrexed disodium possess the binding energy of
-5.46 and -8.43 kcal/mol, respectively.
Conclusion:
The interaction studies indicated that these agents with the PON1 possess binding affinity.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| |
Collapse
|
21
|
Demir Y. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking,
ADME
and inhibition studies on human serum paraoxonase‐1 associated with cardiovascular diseases. Drug Dev Res 2020; 81:628-636. [DOI: 10.1002/ddr.21667] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High SchoolArdahan University Ardahan Turkey
| |
Collapse
|
22
|
Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Sci Rep 2020; 10:1926. [PMID: 32024895 PMCID: PMC7002416 DOI: 10.1038/s41598-020-58676-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/30/2019] [Indexed: 01/07/2023] Open
Abstract
The nutritional challenge faced by the monogastric animals due to the chelation effects of phytic acid, fuel the research on bioprospecting of probiotics for phytase production. Pediococcus acidilactici SMVDUDB2 isolated from Kalarei, exhibited extracellular phytase activity of 5.583 U/mL after statistical optimization of fermentation conditions viz. peptone (1.27%); temperature (37 °C); pH (6.26) and maltose (1.43%). The phytase enzyme possessed optimum pH and temperature of 5.5 and 37 °C, respectively and was thermostable at 60 °C. The enzyme was purified 6.42 fold with a specific activity of 245.12 U/mg with hydrophobic interaction chromatography. The purified enzyme had Km and Vmax values of 0.385 mM and 4.965 μmol/min respectively, with sodium phytate as substrate. The strain depicted more than 80% survival rate at low pH (pH 2.0, 3.0), high bile salt concentration (0.3 and 0.5%), after gastrointestinal transit, highest hydrophobicity affinity with ethyl acetate (33.33 ± 0%), autoaggregation (77.68 ± 0.68%) as well as coaggregation (73.57 ± 0.47%) with Staphylococcus aureus (MTCC 3160). The strain exhibited antimicrobial activity against Bacillus subtilis (MTCC 121), Mycobacterium smegmatis (MTCC 994), Staphylococcus aureus (MTCC 3160), Proteus vulgaris (MTCC 426), Escherichia coli (MTCC 1652) and Lactobacillus rhamnosus (MTCC 1408). The amount of exopolysaccharide produced by the strain was 2 g/L. This strain having the capability of phytate degradation and possessing probiotic traits could find application in food and feed sectors.
Collapse
|
23
|
Demir Y. Purification of Glutathione Reductase from Human Erythrocytes: Inhibition Profile of Some Anti-Epileptic Drugs. ACTA ACUST UNITED AC 2019. [DOI: 10.21597/jist.525154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Insight into the glycosylation and hydrolysis kinetics of alpha-glucosidase in the synthesis of glycosides. Appl Microbiol Biotechnol 2019; 103:9423-9432. [DOI: 10.1007/s00253-019-10205-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
25
|
Demir Y, Özaslan MS, Duran HE, Küfrevioğlu Öİ, Beydemir Ş. Inhibition effects of quinones on aldose reductase: Antidiabetic properties. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103195. [PMID: 31125830 DOI: 10.1016/j.etap.2019.103195] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease characterized by abnormal glucose metabolism. Aldose reductase (AR) is the first enzyme in the polyol pathway and converts glucose to sorbitol. It plays a vital role as a glucose reducing agent and is involved in the pathophysiology of diabetic complications. In this study, we purified AR from sheep kidney with a specific activity of 2.00 EU/mg protein and 133.33- fold purification After the purification of the AR enzyme, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed and the molecular weight of the enzyme was found approximately as 38 kDa. The inhibition effects of eight quinones were studied against AR. The quinones were potent inhibitors of AR with Ki values in the range of 0.07-20.04 μM. Anthraquinone showed the best potential inhibitory effects against AR. All compounds exhibited noncompetitive inhibition against AR. These compounds may be selective inhibitors of this enzyme. AR inhibition is an essential strategy for the attenuation and prevention of diabetic complications.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey; Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey.
| | - Muhammet Serhat Özaslan
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey; Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Hatice Esra Duran
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| |
Collapse
|
26
|
Badoei-Dalfard A, Parhamfar M, Karami Z. Characterization of a Thermostable, Acidic-Phytase from Bacillus tequilensis Dm018; Medium Optimization by Response Surface Methodology. Catal Letters 2019. [DOI: 10.1007/s10562-019-02881-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Beydemir Ş, Türkeş C, Yalçın A. Gadolinium-based contrast agents: in vitro paraoxonase 1 inhibition, in silico studies. Drug Chem Toxicol 2019; 44:508-517. [PMID: 31179770 DOI: 10.1080/01480545.2019.1620266] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Medications show their biological effects by interaction with enzymes, which have been known to play an essential role in the pathogenesis of many diseases. Inhibition or induction of drug metabolizing enzymes has an essential place in the drug design for many kinds of diseases including cardiovascular, neurological, metabolic, and cancer. The main goal of the current study is to contribute to this growing drug design field by observing PON1-drug interactions. In recent years, the safety of gadolinium-based contrast agents (GBCAs) used in magnetic resonance imaging (MRI) has discussed. In the present study, paraoxonase 1 (PON1) enzyme was purified from human serum by simple chromatographic methods with 4095.24 EU mg-1 protein specific activity. The inhibitory activities of gadoteric acid, gadopentetic acid, gadoxetate disodium, and gadodiamide were investigated on PON1 activity of the enzyme. IC50 values were found in the range of 51.28 ± 0.14 to 285.80 ± 0.96 mM. Ki constants were found as 67.95 ± 0.60 mM, 104.97 ± 0.96 mM, 202.33 ± 1.75 mM, and 299.43 ± 2.64 mM for gadoteric acid, gadopentetic acid, gadoxetate disodium, and gadodiamide, respectively. While the inhibition types are determined as competitive of gadoxetate disodium and gadodiamide by the Lineweaver-Burk curves, it was noncompetitive for other compounds. In addition, the molecular docking analyses of gadoxetate disodium and gadodiamide were carried out to understand the binding interactions on the active site of the PON1 enzyme. The structure-activity relationship (SAR) of the drugs was established on the basis of different substituents and their positions in the compounds.
Collapse
Affiliation(s)
- Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Ahmet Yalçın
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|