1
|
Meng S, Miao A, Wu S, Du X, Gao F. Genetically modified chickens as bioreactors for protein-based drugs. Front Genome Ed 2025; 6:1522837. [PMID: 39845893 PMCID: PMC11753250 DOI: 10.3389/fgeed.2024.1522837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Protein drug production encompasses various methods, among which animal bioreactors are emerging as a transgenic system. Animal bioreactors have the potential to reduce production costs and increase efficiency, thereby producing recombinant proteins that are crucial for therapeutic applications. Various species, including goats, cattle, rabbits, and poultry, have been genetically engineered to serve as bioreactors. This review delves into the analysis and comparison of different expression systems for protein drug production, highlighting the advantages and limitations of microbial, yeast, plant cell, and mammalian cell expression systems. Additionally, the emerging significance of genetically modified chickens as a potential bioreactor system for producing protein-based drugs is highlighted. The avian bioreactor enables the expression of target genes in ovarian cells, resulting in the production of corresponding gene expression products in egg whites. This production method boasts advantages such as a short cycle, high production efficiency, low research costs, and the expression products being closer to their natural state and easier to purify. It demonstrates immense potential in production applications, scientific research, and sustainable development. The utilization of advanced gene editing technologies, such as CRISPR/Cas9, has revolutionized the precision and efficiency of generating genetically modified chickens. This has paved the way for enhanced production of recombinant therapeutic proteins with desired glycosylation patterns and reduced immunogenic responses.
Collapse
Affiliation(s)
- Shujuan Meng
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Aijun Miao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Fei Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Yoo E, Choi HJ, Kim JK, Kim YM, Park JS, Han JY. Sustainable production of multimeric and functional recombinant human adiponectin using genome-edited chickens. J Biol Eng 2024; 18:32. [PMID: 38715027 PMCID: PMC11077872 DOI: 10.1186/s13036-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Adiponectin (ADPN) plays a critical role in endocrine and cardiovascular functions, but traditional production methods, such as Escherichia coli and mammalian systems, have faced challenges in generating sufficiently active middle molecular weight (MMW) and high molecular weight (HMW) forms of recombinant human ADPN (hADPN). In our previous study, we proposed genome-edited chickens as an efficient platform for producing multimeric hADPN. However, the consistency of multimeric hADPN expression in this system across generations had not been further investigated. RESULTS In this study, subsequent generations of ovalbumin (OVA) ADPN knock-in chickens showed stable multimeric hADPN production, yielding ~ 26% HMW ADPN (0.59 mg/mL) per hen. Comparative analysis revealed that egg white (EW)-derived hADPN predominantly consisted of hexameric and HMW forms, similar to serum-derived hADPN. In contrast, hADPN obtained from human embryonic kidney (HEK) 293 and High-Five (Hi-5) cells also exhibited the presence of trimers, indicating variability across different production systems. Furthermore, transcriptional expression analysis of ADPN multimerization-associated endoplasmic reticulum chaperone genes (Ero1-Lα, DsbA-L, ERP44, and PDI) indicated upregulation in the oviduct magnum of ADPN KI hens, suggesting the chicken oviduct magnum as the optimal site for HMW ADPN production. Lastly, the functional analysis demonstrated that EW-derived hADPN significantly reduced lipid droplets and downregulated lipid accumulation-related genes (LOX-1, AT1R, FAS, and FABP4) in human umbilical vein endothelial cells (HUVECs). CONCLUSION In summary, stable and functional multimeric hADPN can be produced in genome-edited chickens even after generations. This highlights the potential of using chicken bioreactor for producing various high-value proteins.
Collapse
Affiliation(s)
- Eunhui Yoo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Kyoo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, 25354, Gangwon-do, Republic of Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Avinnogen Co., Ltd, Seoul, Republic of Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Avinnogen Co., Ltd, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Du X, Xu X, Liu Y, Wang Z, Qiu H, Zhao A, Lu L. Cell Heterogeneity Analysis Revealed the Key Role of Fibroblasts in the Magnum Regression of Ducks. Animals (Basel) 2024; 14:1072. [PMID: 38612311 PMCID: PMC11011120 DOI: 10.3390/ani14071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Duck egg production, like that of laying hens, follows a typical low-peak-low cycle, reflecting the dynamics of the reproductive system. Post-peak, some ducks undergo a cessation of egg laying, indicative of a regression process in the oviduct. Notably, the magnum, being the longest segment of the oviduct, plays a crucial role in protein secretion. Despite its significance, few studies have investigated the molecular mechanisms underlying oviduct regression in ducks that have ceased laying eggs. In this study, we conducted single-cell transcriptome sequencing on the magnum tissue of Shaoxing ducks at 467 days of age, utilizing the 10× Genomics platform. This approach allowed us to generate a detailed magnum transcriptome map of both egg-laying and ceased-laying ducks. We collected transcriptome data from 13,708 individual cells, which were then subjected to computational analysis, resulting in the identification of 27 distinct cell clusters. Marker genes were subsequently employed to categorize these clusters into specific cell types. Our analysis revealed notable heterogeneity in magnum cells between the egg-laying and ceased-laying ducks, primarily characterized by variations in cells involved in protein secretion and extracellular matrix (ECM)-producing fibroblasts. Specifically, cells engaged in protein secretion were predominantly observed in the egg-laying ducks, indicative of their role in functional albumen deposition within the magnum, a phenomenon not observed in the ceased-laying ducks. Moreover, the proportion of THY1+ cells within the ECM-producing fibroblasts was found to be significantly higher in the egg-laying ducks (59%) compared to the ceased-laying ducks (24%). Similarly, TIMP4+ fibroblasts constituted a greater proportion of the ECM-producing fibroblasts in the egg-laying ducks (83%) compared to the ceased-laying ducks (58%). These findings suggest a potential correlation between the expression of THY1 and TIMP4 in ECM-producing fibroblasts and oviduct activity during functional reproduction. Our study provides valuable single-cell insights that warrant further investigation into the biological implications of fibroblast subsets in the degeneration of the reproductive tract. Moreover, these insights hold promise for enhancing the production efficiency of laying ducks.
Collapse
Affiliation(s)
- Xue Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; (X.D.)
| | - Xiaoqin Xu
- Institute of Ecology, China West Normal University, Nanchong 637002, China
| | - Yali Liu
- Zhejiang Provincial Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station, Hangzhou 310020, China
| | - Zhijun Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; (X.D.)
| | - Hao Qiu
- Independent Researcher, Hangzhou 310021, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; (X.D.)
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Yousefi Taemeh S, Dehdilani N, Goshayeshi L, Rival-Gervier S, Mehrzad J, Pain B, Dehghani H. Study of the regulatory elements of the Ovalbumin gene promoter using CRISPR technology in chicken cells. J Biol Eng 2023; 17:46. [PMID: 37461059 DOI: 10.1186/s13036-023-00367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Hormone-dependent promoters are very efficient in transgene expression. Plasmid-based reporter assays have identified regulatory sequences of the Ovalbumin promoter that are involved in response to estrogen and have shown that the deletion of the steroid-dependent regulatory element (SDRE) and negative regulatory element (NRE) leads to a steroid-independent expression of a reporter. However, the functional roles of these regulatory elements within the native genomic context of the Ovalbumin promoter have not been evaluated. RESULTS In this study, we show that the negative effects of the NRE element on the Ovalbumin gene can be counteracted by CRISPR interference. We also show that the CRISPR-mediated deletion of SDRE and NRE promoter elements in a non-oviduct cell can lead to the significant expression of the Ovalbumin gene. In addition, the targeted knock-in of a transgene reporter in the Ovalbumin coding region and its expression confirms that the truncated promoter of the Ovalbumin gene can be efficiently used for an estrogen-independent expression of a foreign gene. CONCLUSIONS The methodology applied in this paper allowed the study of promoter regulatory sequences in their native nuclear organization.
Collapse
Affiliation(s)
- Sara Yousefi Taemeh
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lena Goshayeshi
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sylvie Rival-Gervier
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, Bron, 69500, France
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Bertrand Pain
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, Bron, 69500, France
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
5
|
Tingaud V, Bordes C, Al Mouazen E, Cogné C, Bolzinger MA, Lawton P. Experimental studies from shake flasks to 3 L stirred tank bioreactor of nutrients and oxygen supply conditions to improve the growth of the avian cell line DuckCelt®-T17. J Biol Eng 2023; 17:31. [PMID: 37095522 PMCID: PMC10127095 DOI: 10.1186/s13036-023-00349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND To produce viral vaccines, avian cell lines are interesting alternatives to replace the egg-derived processes for viruses that do not grow well on mammalian cells. The avian suspension cell line DuckCelt®-T17 was previously studied and investigated to produce a live attenuated metapneumovirus (hMPV)/respiratory syncytial virus (RSV) and influenza virus vaccines. However, a better understanding of its culture process is necessary for an efficient production of viral particles in bioreactors. RESULTS The growth and metabolic requirements of the avian cell line DuckCelt®-T17 were investigated to improve its cultivation parameters. Several nutrient supplementation strategies were studied in shake flasks highlighting the interest of (i) replacing L-glutamine by glutamax as main nutrient or (ii) adding these two nutrients in the serum-free growth medium in a fed-batch strategy. The scale-up in a 3 L bioreactor was successful for these types of strategies confirming their efficiencies in improving the cells' growth and viability. Moreover, a perfusion feasibility test allowed to achieve up to ~ 3 times the maximum number of viable cells obtained with the batch or fed-batch strategies. Finally, a strong oxygen supply - 50% dO2 - had a deleterious effect on DuckCelt®-T17 viability, certainly because of the greater hydrodynamic stress imposed. CONCLUSIONS The culture process using glutamax supplementation with a batch or a fed-batch strategy was successfully scaled-up to 3 L bioreactor. In addition, perfusion appeared as a very promising culture process for subsequent continuous virus harvesting.
Collapse
Affiliation(s)
- Valentine Tingaud
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Claire Bordes
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Eyad Al Mouazen
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Claudia Cogné
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Marie-Alexandrine Bolzinger
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France
| | - Philippe Lawton
- LAGEPP, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, GePharm Team, Université Claude Bernard Lyon 1, CNRS UMR5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne CEDEX, 69622, France.
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, ISPB, 8 avenue Rockefeller, Lyon, 69373, CEDEX 08, France.
| |
Collapse
|
6
|
Kim YM, Woo SJ, Han JY. Strategies for the Generation of Gene Modified Avian Models: Advancement in Avian Germline Transmission, Genome Editing, and Applications. Genes (Basel) 2023; 14:genes14040899. [PMID: 37107658 PMCID: PMC10137648 DOI: 10.3390/genes14040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Avian models are valuable for studies of development and reproduction and have important implications for food production. Rapid advances in genome-editing technologies have enabled the establishment of avian species as unique agricultural, industrial, disease-resistant, and pharmaceutical models. The direct introduction of genome-editing tools, such as the clustered regularly interspaced short palindromic repeats (CRISPR) system, into early embryos has been achieved in various animal taxa. However, in birds, the introduction of the CRISPR system into primordial germ cells (PGCs), a germline-competent stem cell, is considered a much more reliable approach for the development of genome-edited models. After genome editing, PGCs are transplanted into the embryo to establish germline chimera, which are crossed to produce genome-edited birds. In addition, various methods, including delivery by liposomal and viral vectors, have been employed for gene editing in vivo. Genome-edited birds have wide applications in bio-pharmaceutical production and as models for disease resistance and biological research. In conclusion, the application of the CRISPR system to avian PGCs is an efficient approach for the production of genome-edited birds and transgenic avian models.
Collapse
Affiliation(s)
| | - Seung-Je Woo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Yong Han
- Avinnogen Co., Ltd., Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Ibrahim M, Stadnicka K. The science of genetically modified poultry. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
The exuberant development of targeted genome editing has revolutionized research on the chicken genome, generating chickens with beneficial parameters. The chicken model is a crucial experimental tool that can be utilized for drug manufacture, preclinical research, pathological observation, and other applications. In essence, tweaking the chicken’s genome has enabled the poultry industry to get more done with less, generating genetically modified chickens that lay eggs containing large amounts of lifesaving humanized drugs. The transition of gene editing from concept to practical application has been dramatically hastened by the development of programmable nucleases, bringing scientists closer than ever to the efficient producers of tomorrow’s medicines. Combining the developmental and physiological characteristics of the chicken with cutting-edge genome editing, the chicken furnishes a potent frontier that is foreseen to be actively pursued in the future. Herein we review the current and future prospects of gene editing in chickens and the contributions to the development of humanized pharmaceuticals.
Collapse
Affiliation(s)
- Mariam Ibrahim
- Department of Animal Biotechnology and Genetics , PBS University of Science and Technology , 85-084 Bydgoszcz , Poland
| | - Katarzyna Stadnicka
- Department of Oncology , Collegium Medicum Nicolaus Copernicus University , 85-821 Bydgoszcz , Poland
| |
Collapse
|
8
|
Kim YM, Shim JH, Park JS, Choi HJ, Jung KM, Lee KY, Park KJ, Han JY. Sequential verification of exogenous protein production in OVA gene-targeted chicken bioreactors. Poult Sci 2022; 102:102247. [PMID: 36335737 PMCID: PMC9640325 DOI: 10.1016/j.psj.2022.102247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
The chicken has potential as an efficient bioreactor system because of its outstanding protein production capacity and low cost. The CRISPR/Cas9-mediated gene-editing system enables production of highly marketable exogenous proteins in transgenic chicken bioreactors. However, because it takes approximately 18 mo to evaluate the recombinant protein productivity of the bioreactor due to the generation interval from G0 founders to G1 egg-laying hens, to verification of the exogenous protein at the early stage is difficult. Here we propose a system for sequential validation of exogenous protein production in chicken bioreactors as in hatching female chicks as well as in egg-laying hens. We generated chicken OVALBUMIN (OVA) EGFP knock-in (KI) chicken (OVA EGFP KI) by CRISPR/Cas9-mediated nonhomologous end joining at the chicken OVA gene locus. Subsequently, the estrogen analog, diethylstilbestrol (DES), was subcutaneously implanted in the abdominal region of 1-wk-old OVA EGFP KI female chicks to artificially increase OVALBUMIN expression. The oviducts of DES-treated OVA EGFP KI female chicks expressed OVA and EGFP at the 3-wk-old stage (10 d after DES treatment). We evaluated the expression of EGFP protein in the oviduct, along with the physical properties of eggs and egg white from OVA EGFP KI hens. The rapid identification and isolation of exogenous protein can be confirmed at a very early stage and high-yield production is possible by targeting the chicken oviduct.
Collapse
|
9
|
Use of Genome Editing Techniques to Produce Transgenic Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:279-297. [PMID: 34807447 PMCID: PMC9810480 DOI: 10.1007/978-3-030-85686-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recombinant proteins are essential for the treatment and diagnosis of clinical human ailments. The availability and biological activity of recombinant proteins is heavily influenced by production platforms. Conventional production platforms such as yeast, bacteria, and mammalian cells have biological and economical challenges. Transgenic livestock species have been explored as an alternative production platform for recombinant proteins, predominantly through milk secretion; the strategy has been demonstrated to produce large quantities of biologically active proteins. The major limitation of utilizing livestock species as bioreactors has been efforts required to alter the genome of livestock. Advancements in the genome editing field have drastically improved the ability to genetically engineer livestock species. Specifically, genome editing tools such as the CRISPR/Cas9 system have lowered efforts required to generate genetically engineered livestock, thus minimizing restrictions on the type of genetic modification in livestock. In this review, we discuss characteristics of transgenic animal bioreactors and how the use of genome editing systems enhances design and availability of the animal models.
Collapse
|
10
|
Dehdilani N, Taemeh SY, Goshayeshi L, Dehghani H. Genetically engineered birds; pre-CRISPR and CRISPR era. Biol Reprod 2021; 106:24-46. [PMID: 34668968 DOI: 10.1093/biolre/ioab196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Abstract
Generating biopharmaceuticals in genetically engineered bioreactors continues to reign supreme. Hence, genetically engineered birds have attracted considerable attention from the biopharmaceutical industry. Fairly recent genome engineering methods have made genome manipulation an easy and affordable task. In this review, we first provide a broad overview of the approaches and main impediments ahead of generating efficient and reliable genetically engineered birds, and various factors that affect the fate of a transgene. This section provides an essential background for the rest of the review, in which we discuss and compare different genome manipulation methods in the pre-CRISPR and CRISPR era in the field of avian genome engineering.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
11
|
Yang H, Lee BR, Lee HC, Choi H, Jung SK, Kim JY, No J, Shanmugam S, Jo YJ, Oh KB, Kim KW, Byun SJ. Development and in vitro evaluation of recombinant chicken promoters to efficiently drive transgene expression in chicken oviduct cells. Poult Sci 2021; 100:101365. [PMID: 34375836 PMCID: PMC8358702 DOI: 10.1016/j.psj.2021.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
Virus injection into EGK-X embryos is a well-defined approach in avian transgenesis. This system uses a chicken ovalbumin gene promoter to induce transgene expression in the chicken oviduct. Although a reconstructed chicken ovalbumin promoter that links an ovalbumin promoter and estrogen-responsive enhancer element (ERE) is useful, a large viral vector containing the ovalbumin promoter and a target gene restricts viral packaging capacity and produces low-titer virus particles. We newly developed recombinant chicken promoters by linking regulatory regions of ovalbumin and other oviduct-specific genes. Putative enhancer fragments of the genes, such as ovotransferrin (TF), ovomucin alpha subunit (OVOA), and ovalbumin-related protein X (OVALX), were placed at the 5`-flanking region of the 2.8-kb ovalbumin promoter. Basal promoter fragments of the genes, namely, pTF, lysozyme (pLYZ), and ovomucoid (pOVM), were placed at the 3`-flanking region of the 1.6-kb ovalbumin ERE. The recombinant promoters cloned into each reporter vector were evaluated using a dual luciferase assay in human and chicken somatic cells, and LMH/2A cells treated with 0-1,000 nM estrogen, and cultured primary chicken oviduct cells. The recombinant promoters with linking ovalbumin and TF, OVOA, pOVM, and pLYZ regulatory regions had 2.1- to 19.5-fold (P < 0.05) higher luciferase activity than the reconstructed ovalbumin promoter in chicken oviduct cells. Therefore, recombinant promoters may be used to efficiently drive transgene expression in transgenic chickens.
Collapse
Affiliation(s)
- Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Hwi-Cheul Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Hoonsung Choi
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sun Keun Jung
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Ji-Youn Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Jingu No
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sureshkumar Shanmugam
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Yong Jin Jo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Kyung Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea.
| |
Collapse
|
12
|
Park JS, Lee KY, Han JY. Precise Genome Editing in Poultry and Its Application to Industries. Genes (Basel) 2020; 11:E1182. [PMID: 33053652 PMCID: PMC7601607 DOI: 10.3390/genes11101182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
Poultry such as chickens are valuable model animals not only in the food industry, but also in developmental biology and biomedicine. Recently, precise genome-editing technologies mediated by the CRISPR/Cas9 system have developed rapidly, enabling the production of genome-edited poultry models with novel traits that are applicable to basic sciences, agriculture, and biomedical industry. In particular, these techniques have been combined with cultured primordial germ cells (PGCs) and viral vector systems to generate a valuable genome-edited avian model for a variety of purposes. Here, we summarize recent progress in CRISPR/Cas9-based genome-editing technology and its applications to avian species. In addition, we describe further applications of genome-edited poultry in various industries.
Collapse
Affiliation(s)
| | | | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.P.); (K.Y.L.)
| |
Collapse
|
13
|
Lee J, Kim DH, Lee K. Current Approaches and Applications in Avian Genome Editing. Int J Mol Sci 2020; 21:ijms21113937. [PMID: 32486292 PMCID: PMC7312999 DOI: 10.3390/ijms21113937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in genome-editing technologies and sequencing of animal genomes enable researchers to generate genome-edited (GE) livestock as valuable animal models that benefit biological researches and biomedical and agricultural industries. As birds are an important species in biology and agriculture, their genome editing has gained significant interest and is mainly performed by using a primordial germ cell (PGC)-mediated method because pronuclear injection is not practical in the avian species. In this method, PGCs can be isolated, cultured, genetically edited in vitro, and injected into a recipient embryo to produce GE offspring. Recently, a couple of GE quail have been generated by using the newly developed adenovirus-mediated method. Without technically required in vitro procedures of the PGC-mediated method, direct injection of adenovirus into the avian blastoderm in the freshly laid eggs resulted in the production of germ-line chimera and GE offspring. As more approaches are available in avian genome editing, avian research in various fields will progress rapidly. In this review, we describe the development of avian genome editing and scientific and industrial applications of GE avian species.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-688-7963
| |
Collapse
|
14
|
Serralbo O, Salgado D, Véron N, Cooper C, Dejardin MJ, Doran T, Gros J, Marcelle C. Transgenesis and web resources in quail. eLife 2020; 9:56312. [PMID: 32459172 PMCID: PMC7286689 DOI: 10.7554/elife.56312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Due to its amenability to manipulations, to live observation and its striking similarities to mammals, the chicken embryo has been one of the major animal models in biomedical research. Although it is technically possible to genome-edit the chicken, its long generation time (6 months to sexual maturity) makes it an impractical lab model and has prevented it widespread use in research. The Japanese quail (Coturnix coturnix japonica) is an attractive alternative, very similar to the chicken, but with the decisive asset of a much shorter generation time (1.5 months). In recent years, transgenic quail lines have been described. Most of them were generated using replication-deficient lentiviruses, a technique that presents diverse limitations. Here, we introduce a novel technology to perform transgenesis in quail, based on the in vivo transfection of plasmids in circulating Primordial Germ Cells (PGCs). This technique is simple, efficient and allows using the infinite variety of genome engineering approaches developed in other models. Furthermore, we present a website centralizing quail genomic and technological information to facilitate the design of genome-editing strategies, showcase the past and future transgenic quail lines and foster collaborative work within the avian community.
Collapse
Affiliation(s)
- Olivier Serralbo
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - David Salgado
- Marseille Medical Genetics (GMGF), Aix Marseille University, Marseille, France
| | - Nadège Véron
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - Caitlin Cooper
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | | | - Timothy Doran
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Jérome Gros
- Department of Developmental and Stem Cell Biology, Pasteur Institute, Paris, France
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
15
|
Qin X, Xiao N, Xu Y, Yang F, Wang X, Hu H, Liu Q, Cui K, Tang X. Efficient knock-in at the chicken ovalbumin locus using adenovirus as a CRISPR/Cas9 delivery system. 3 Biotech 2019; 9:454. [PMID: 31832301 DOI: 10.1007/s13205-019-1966-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022] Open
Abstract
In this study, efficient knock-in (KI) of human epidermal growth factor (hEGF) cDNA at the ovalbumin (OV) locus in cultured chicken cells was achieved using adenovirus as a delivery for CRISPR/Cas9 elements and optimizing donor vector construction. The strategy of recruiting donor DNA to the insertion site further improved the KI efficiency. The inserted hEGF cDNA can expressed in primary oviduct cells and secreted hEGF promoted proliferation of Hela cells. Moreover, we achieved efficient KI in blastoderm cells without altering their induction in vitro and obtained germline chimeric KI chicken embryos by transplanting KI blastoderm cells as well as injecting adenovirus directly, in vivo. Our results provided an efficient KI method for chicken cells and embryos, and lay the foundation for more convenient production of KI chicken at the OV locus, which will promote the development of oviduct-specific bioreactor.
Collapse
Affiliation(s)
- Xiaolian Qin
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Ning Xiao
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Yu Xu
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Fengshuo Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi, 530004 People's Republic of China
| | - Xiaoli Wang
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Hao Hu
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Qingyou Liu
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Kuiqing Cui
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Xiaochuan Tang
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| |
Collapse
|