1
|
Wei Q, Lv Y, Chen M, Wei Y, Huang Z, Xu W, Zhang W, Guang C, Ni D, Mu W. Mining and identifying a D-mannose isomerase with high fructose isomerization activity and its expression in Bacillus subtilis for D-mannose production. Int J Biol Macromol 2025; 311:143724. [PMID: 40315667 DOI: 10.1016/j.ijbiomac.2025.143724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
D-mannose is a functional monosaccharide with numerous positive physiological effects and holds significant commercial potential in the pharmaceutical, nutraceutical, and food industries. In this study, a hypothetical AGE family epimerase/isomerase from Stenotrophomonas maltophilia was identified and characterized as a D-mannose isomerase, named Stma-MIase, capable of efficiently converting d-fructose into D-mannose. Stma-MIase exhibited optimal activity at pH 8.5 and 60 °C, with a denaturation temperature (Tm) of 61.2 °C. The enzyme displayed a half-life of 11.1 h and 0.996 h at 50 and 55 °C, respectively. The recombinant Stma-MIase demonstrated the highest substrate affinity (Km) and catalytic efficiency (kcat/Km) among other reported MIases, which was further supported by molecular dynamics simulations based on binding free energy and distance distribution. Additionally, the expression of Stma-MIase in Bacillus subtilis yielded a fermentation volume activity of 76.1 U/mL through shake-flask fermentation. Whole-cell catalysis using 500 g/L of d-fructose as substrate resulted in a conversion rate of 26.0 %. This study not only uncovers a promising Stma-MIase with high fructose isomerization efficiency but also emphasizes its potential for industrial-scale D-mannose production.
Collapse
Affiliation(s)
- Qiang Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yizheng Lv
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maiqi Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuhan Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Pang B, Yang J, Song M, Zhang W, Qian S, Xu M, Chen X, Huang Y, Gu R, Wang K. Advances and prospects on production of lactulose and epilactose by cellobiose 2-epimerases: A review. Int J Biol Macromol 2025; 305:141283. [PMID: 39984086 DOI: 10.1016/j.ijbiomac.2025.141283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Lactulose and epilactose are nondigestible disaccharides with a wide range of applications in clinical medicine, nutrition, and the food industry due to their health-benefiting properties. Their chemical synthesis typically involves stringent catalytic conditions and intricate reaction procedures, resulting in elevated production costs and challenges in product separation. Cellobiose 2-epimerases (CEs) facilitate the isomerization and epimerization of lactose to produce lactulose and epilactose directly, without the need for co-substrates. This enzymatic process offers advantages such as mild reaction conditions, straightforward operation, high conversion efficiency, and reduced by-product formation. Recently, numerous CE genes have been identified and characterized, with their enzymatic properties undergoing extensive analysis. This review consolidates information on the properties of CEs from various sources and examines their catalytic mechanisms based on crystal structure data. Additionally, the current research progress in the enzymatic synthesis of lactulose and epilactose is comprehensively reviewed. The future direction of CE research is discussed, highlighting the potential for large-scale production of lactulose and epilactose through environmentally sustainable enzymatic methods.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jiahao Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Manxi Song
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Wenxin Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shiqi Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Mingfang Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xia Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yujun Huang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Kai Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
3
|
Wei Y, Xu W, Zhang W, Petrova P, Petrov K, Ni D, Mu W. Characterization of Runella zeae D-mannose 2-epimerase and its expression in Bacillus subtilis for D-mannose production from D-glucose. Enzyme Microb Technol 2024; 181:110506. [PMID: 39265454 DOI: 10.1016/j.enzmictec.2024.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
D-Mannose 2-epimerase (MEase) catalyzes the bioconversion between D-glucose and D-mannose. It is an important potential biocatalyst for large-scale production of D-mannose, a functional monosaccharide used in pharmaceutical and food industries. In this study, a new microbial MEase was characterized from Runella zeae DSM 19591. The enzyme was purified by one-step nickel-affinity chromatography and determined to be a dimeric protein with two identical subunits of approximately 86.1 kDa by gel filtration. The enzyme showed the highest activity at pH 8.0 and 40 °C, with a specific activity of 2.99 U/mg on D-glucose and 3.71 U/mg on D-mannose. The melting temperature (Tm) was 49.4 °C and the half-life was 115.14 and 3.23 h at 35 and 40 °C, respectively. The purified enzyme (1 U/mL) produced 115.7 g/L of D-mannose from 500 g/L of D-glucose for 48 h, with a conversion ratio of 23.14 %. It was successfully expressed in Bacillus subtilis WB600 via pP43NMK as the vector. The highest fermentation activity was 10.58 U/mL after fed-batch cultivation for 28 h, and the whole cells of recombinant B. subtilis produced 114.0 g/L of D-mannose from 500 g/L of D-glucose, with a conversion ratio of 22.8 %.
Collapse
Affiliation(s)
- Yuhan Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Ni D, Wei Y, Zhang Y, Moussa TAA, Zhang W, Mu W. Biochemical identification of D-mannose 2-epimerase from Cytophagaceae bacterium SJW1-29 for efficient bioconversion of D-glucose to D-mannose. Enzyme Microb Technol 2024; 179:110465. [PMID: 38852283 DOI: 10.1016/j.enzmictec.2024.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Enzymatic production of D-mannose attracts increasing attention because of the health effects and commercial values of D-mannose. Several kinds of epimerases or isomerases have been used for enzymatic production of D-mannose from D-glucose or D-fructose. D-Mannose epimerase (MEase), belonging to N-acyl-D-glucosamine 2-epimerase superfamily enzymes, catalyzes the C-2 epimerization between D-glucose and D-mannose. In this study, a novel MEase was identified from Cytophagaceae bacterium SJW1-29. Sequence and structure alignments indicate that it is highly conserved with the reported R. slithyformis MEase with the known crystal structure. It was a metal-independent enzyme, with an optimal pH of 8.0 and an optimal temperature of 40 °C. The specific activities on D-glucose and D-mannose were 2.90 and 2.96 U/mg, respectively. The Km, kcat, and kcat/Km on D-glucose were measured to be 194.9 mM, 2.72 s-1, and 0.014 mM-1 s-1, respectively. The purified enzyme produced 23.15 g/L of D-mannose from 100 g/L of D-glucose at pH 8.0 and 40 °C for 8 h, with a conversion rate of 23.15 %.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuhan Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yulei Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tarek A A Moussa
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
5
|
Wang Y, Chen E, Wang Y, Sun X, Dong Q, Chen P, Zhang C, Yang J, Sun Y. Biosynthesis of mannose from glucose via constructing phosphorylation-dephosphorylation reactions in Escherichia coli. Enzyme Microb Technol 2024; 177:110427. [PMID: 38518553 DOI: 10.1016/j.enzmictec.2024.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.
Collapse
Affiliation(s)
- Yuyao Wang
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China; National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Enhui Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfei Wang
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China; National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinming Sun
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China; National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qianzhen Dong
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Chen
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China; National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chenglin Zhang
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xiao S, Luo X, Zhang P, Zhang G, Hu X. Characterization of a novel recombinant D-mannose isomerase from Bifidobacterium bifidum and its catalytic mechanism. Enzyme Microb Technol 2024; 173:110355. [PMID: 38041880 DOI: 10.1016/j.enzmictec.2023.110355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/04/2023]
Abstract
Due to the increasing demand for health-conscious and environmentally friendly products, D-mannose has gained significant attention as a natural, low-calorie sweetener. The use of D-mannose isomerases (D-MIases) for D-mannose production has emerged as a prominent area of research, offering superior advantages compared with conventional methods such as plant extraction and chemical synthesis. In this study, a gene encoding D-MIase was cloned from Bifidobacterium and expressed in E. coli BL21 (DE3). The heterologously expressed enzyme, Bifi-mannose, formed a trimer with a molecular weight of 146.3 kDa and a melting temperature (Tm) of 63.39 ± 1.3 °C. Bifi-mannose exhibited optimal catalytic activity at pH 7.5 and 55 °C, and retained more than 80% of its activity after a 3-hour incubation at 55 °C, demonstrating excellent thermal stability. The Km, Vmax, and kcat/Km values of Bifi-mannose for D-fructose isomerization were determined as 538.7 ± 62.5 mM, 11.7 ± 0.9 μmol·mg1·s1, and 1.02 ± 0.3 mM1·s1, respectively. Notably, under optimized conditions, catalytic yields of 29.4, 87.1, and 148.5 mg·mL1 were achieved when using 100, 300, and 500 mg·mL1 of D-fructose as substrates, resulting in a high conversion rate (29%). Furthermore, kinetic parameters and molecular docking studies revealed that His387 residue primarily participates in the opening of the pyranose ring, while His253 acts as a basic catalyst in the isomerization process.
Collapse
Affiliation(s)
- Shuang Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoqiao Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Peng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
7
|
Li YX, Hua XH, Yan QJ, Jin Y, Jiang ZQ. One-Pot Three-Enzyme System for Production of a Novel Prebiotic Mannosyl-β-(1 → 4)-Fructose Using a d-Mannose Isomerase from Xanthomonas phaseoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12117-12127. [PMID: 36121717 DOI: 10.1021/acs.jafc.2c04649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present supply of prebiotics is entirely inadequate to meet their demand. To produce novel prebiotics, a d-mannose isomerase (XpMIaseA) from Xanthomonas phaseoli was first produced in Komagataella phaffii (Pichia pastoris). XpMIaseA shared the highest amino acid sequence identity (58.0%) with the enzyme from Marinomonas mediterranea. Efficient secretory production of XpMIaseA (282.0 U mL-1) was achieved using high cell density fermentation. The optimal conditions of XpMIaseA were pH 7.5 and 55 °C. It showed a broad substrate specificity, which isomerized d-mannose, d-talose, mannobiose, epilactose, and mannotriose. XpMIaseA was employed to construct a one-pot three-enzyme system for the production of mannosyl-β-(1 → 4)-fructose (MF) using mannan (5%, w/v) as the substrate. The equilibrium yield of MF was 58.2%. In in vitro fermentations, MF significantly stimulated (≤3.2-fold) the growth of 12 among 15 tested Bifidobacterium and Lactobacillus strains compared with fructo-oligosaccharides. Thus, the novel d-mannose isomerase provides a one-pot bioconversion strategy for efficiently producing novel prebiotics.
Collapse
Affiliation(s)
- Yan-Xiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Xiao-Han Hua
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Qiao-Juan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Jin
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Zheng-Qiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| |
Collapse
|