1
|
Tang L, Niu S, Xu J, Lu W, Zhou L. miR-221-3p is upregulated in acute pulmonary embolism complicated with pulmonary hypertension and promotes pulmonary arterial smooth muscle cells proliferation and migration by inhibiting PTEN. Cytotechnology 2024; 76:453-463. [PMID: 38933873 PMCID: PMC11196540 DOI: 10.1007/s10616-024-00628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/18/2024] [Indexed: 06/28/2024] Open
Abstract
Pulmonary arterial smooth muscle cells (PASMCs) functions are associated with the pathogenesis of pulmonary hypertension (PH) which is a life-threatening complication of acute pulmonary embolism (APE). This study sought to explore the expression pattern of microRNA (miR)-221-3p in APE-PH patients and its role in PASMCs proliferation and migration. The clinical data and venous blood of APE-PH patients were collected. The expression levels of miR-221-3p and phosphatase and tensin homolog (PTEN) in serum were determined, followed by receiver operator characteristic curve analysis of miR-221-3p diagnostic efficacy. PASMCs were transfected with miR-221-3p mimics and PTEN-overexpressed vector, followed by assessment of cell viability, proliferation, and migration through cell counting kit-8, 5-ethynyl-2'-deoxyuridine, Transwell, and wound healing assays. The binding between miR-221-3p and PTEN 3'UTR region was testified by the dual-luciferase assay. miR-221 was upregulated in the serum of APE-PH patients and presented with good diagnostic efficacy with 1.155 cutoff value, 66.25% sensitivity, and 67.50% specificity. miR-221 was negatively correlated with PTEN in APE-PH patients. miR-221 overexpression facilitated PASMCs proliferation and migration in vitro. miR-221-3p bound to PTEN 3'UTR region to decrease PTEN protein levels. PTEN overexpression abolished the promotive role of miR-221-3p in PASMCs. Overall, miR-221-3p targeted PTEN to facilitate PASMC proliferation and migration.
Collapse
Affiliation(s)
- Lei Tang
- Vascular Surgery Department, Hebei General Hospital, Shijiazhuang City, 050000 China
| | - Shuai Niu
- Vascular Surgery Department, Hebei General Hospital, Shijiazhuang City, 050000 China
| | - Jinwei Xu
- Respiratory Medicine Department, Hebei General Hospital, Shijiazhuang City, 050000 China
| | - Wei Lu
- Respiratory Medicine Department, Hebei Medical University Third Hospital, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang City, 050000 Hebei Province China
| | - Li Zhou
- Respiratory Medicine Department, Hebei Medical University Third Hospital, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang City, 050000 Hebei Province China
| |
Collapse
|
2
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
3
|
Wei ZJ, Fan BY, Liu Y, Ding H, Tang HS, Pan DY, Shi JX, Zheng PY, Shi HY, Wu H, Li A, Feng SQ. MicroRNA changes of bone marrow-derived mesenchymal stem cells differentiated into neuronal-like cells by Schwann cell-conditioned medium. Neural Regen Res 2019; 14:1462-1469. [PMID: 30964074 PMCID: PMC6524508 DOI: 10.4103/1673-5374.253532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesenchymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis identified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathways were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).
Collapse
Affiliation(s)
- Zhi-Jian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bao-You Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao-Shuai Tang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Da-Yu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia-Xiao Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Yuan Zheng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Yu Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ang Li
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Wang CX, Cui GS, Liu X, Xu K, Wang M, Zhang XX, Jiang LY, Li A, Yang Y, Lai WY, Sun BF, Jiang GB, Wang HL, Tong WM, Li W, Wang XJ, Yang YG, Zhou Q. METTL3-mediated m6A modification is required for cerebellar development. PLoS Biol 2018; 16:e2004880. [PMID: 29879109 PMCID: PMC6021109 DOI: 10.1371/journal.pbio.2004880] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/27/2018] [Accepted: 05/15/2018] [Indexed: 01/26/2023] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is the most abundant modification on mRNAs and plays important roles in various biological processes. The formation of m6A is catalyzed by a methyltransferase complex including methyltransferase-like 3 (METTL3) as a key factor. However, the in vivo functions of METTL3 and m6A modification in mammalian development remain unclear. Here, we show that specific inactivation of Mettl3 in mouse nervous system causes severe developmental defects in the brain. Mettl3 conditional knockout (cKO) mice manifest cerebellar hypoplasia caused by drastically enhanced apoptosis of newborn cerebellar granule cells (CGCs) in the external granular layer (EGL). METTL3 depletion–induced loss of m6A modification causes extended RNA half-lives and aberrant splicing events, consequently leading to dysregulation of transcriptome-wide gene expression and premature CGC death. Our findings reveal a critical role of METTL3-mediated m6A in regulating the development of mammalian cerebellum. N6-methyladenosine (m6A) is an abundant modification in mRNA molecules and regulates mRNA metabolism and various biological processes, such as cell fate control, early embryonic development, sex determination, and diseases like diabetes and obesity. Adenosine methylation is regulated by a large methyltransferase complex and by demethylases, as well as by other binding proteins. METTL3 is one of the core subunits of the methyltransferase complex catalyzing m6A formation. However, the role of METTL3-mediated m6A in mammalian brain development remains unclear mainly because of the lack of specific spatiotemporal knockout animal models, as conventional METTL3 knockout in mice leads to early embryonic death. In this study, we specifically inactivated METTL3 in the developing mouse brain. We detected a drastic depletion of m6A accompanied by severe developmental defects in the cerebellum of these mice. Further analysis established that METTL3-mediated m6A participates in cerebellar development by controlling mRNA stability of genes related to cerebellar development and apoptosis and by regulating alternative splicing of pre-mRNAs of synapse-associated genes.
Collapse
Affiliation(s)
- Chen-Xin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guan-Shen Cui
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiuying Liu
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin-Xin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Yuan Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ang Li
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wei-Yi Lai
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bao-Fa Sun
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hai-Lin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XJW); (YGY); (QZ)
| | - Yun-Gui Yang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XJW); (YGY); (QZ)
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XJW); (YGY); (QZ)
| |
Collapse
|
5
|
Developing integrated PBPK/PD coupled mechanistic pathway model (miRNA-BDNF): An approach towards system toxicology. Toxicol Lett 2017; 280:79-91. [DOI: 10.1016/j.toxlet.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/30/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
|
6
|
Electromagnetic Fields for the Regulation of Neural Stem Cells. Stem Cells Int 2017; 2017:9898439. [PMID: 28932245 PMCID: PMC5592400 DOI: 10.1155/2017/9898439] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/02/2017] [Indexed: 01/25/2023] Open
Abstract
Localized magnetic fields (MFs) could easily penetrate the scalp, skull, and meninges, thus inducing an electrical current in both the central and peripheral nervous systems, which is primarily used in transcranial magnetic stimulation (TMS) for inducing specific effects on different regions or cells that play roles in various brain activities. Studies of repetitive transcranial magnetic stimulation (rTMS) have led to novel attractive therapeutic approaches. Neural stem cells (NSCs) in adult human brain are able to self-renew and possess multidifferential ability to maintain homeostasis and repair damage after acute central nervous system. In the present review, we summarized the electrical activity of NSCs and the fundamental mechanism of electromagnetic fields and their effects on regulating NSC proliferation, differentiation, migration, and maturation. Although it was authorized for the rTMS use in resistant depression patients by US FDA, there are still unveiling mechanism and limitations for rTMS in clinical applications of acute central nervous system injury, especially on NSC regulation as a rehabilitation strategy. More in-depth studies should be performed to provide detailed parameters and mechanisms of rTMS in further studies, making it a powerful tool to treat people who are surviving with acute central nervous system injuries.
Collapse
|
7
|
Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro. ACTA ACUST UNITED AC 2015; 35:766-772. [PMID: 26489637 DOI: 10.1007/s11596-015-1505-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/10/2015] [Indexed: 10/22/2022]
Abstract
Neural stem cells (NSCs) proliferation can be influenced by repetitive transcranial magnetic stimulation (rTMS) in vivo via microRNA-106b-25 cluster, but the underlying mechanisms are poorly understood. This study investigated the involvement of microRNA-106b-25 cluster in the proliferation of NSCs after repetitive magnetic stimulation (rMS) in vitro. NSCs were stimulated by rMS (200/400/600/800/1000 pulses per day, with 10 Hz frequency and 50% maximum machine output) over a 3-day period. NSCs proliferation was detected by using ki-67 and EdU staining. Ki-67, p21, p57, cyclinD1, cyclinE, cyclinA, cdk2, cdk4 proteins and miR-106b, miR-93, miR-25 mRNAs were detected by Western blotting and qRT-PCR, respectively. The results showed that rMS could promote NSCs proliferation in a dose-dependent manner. The proportions of ki-67+ and Edu+ cells in 1000 pulses group were 20.65% and 4.00%, respectively, significantly higher than those in control group (9.25%, 2.05%). The expression levels of miR-106b and miR-93 were significantly upregulated in 600-1000 pulses groups compared with control group (P<0.05 or 0.01 for all). The expression levels of p21 protein were decreased significantly in 800/1000 pulses groups, and those of cyclinD1, cyclinA, cyclinE, cdk2 and cdk4 were obviously increased after rMS as compared with control group (P<0.05 or 0.01 for all). In conclusion, our findings suggested that rMS enhances the NSCs proliferation in vitro in a dose-dependent manner and miR-106b/p21/cdks/cyclins pathway was involved in the process.
Collapse
|
8
|
MicroRNA delivery for regenerative medicine. Adv Drug Deliv Rev 2015; 88:108-22. [PMID: 26024978 DOI: 10.1016/j.addr.2015.05.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022]
Abstract
MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development.
Collapse
|
9
|
Sun B, Liu R, Ye N, Xiao ZD. Comprehensive evaluation of microRNA expression profiling reveals the neural signaling specific cytotoxicity of superparamagnetic iron oxide nanoparticles (SPIONs) through N-methyl-D-aspartate receptor. PLoS One 2015; 10:e0121671. [PMID: 25798908 PMCID: PMC4370573 DOI: 10.1371/journal.pone.0121671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/03/2015] [Indexed: 01/31/2023] Open
Abstract
Though nanomaterials are considered as drug carriers or imaging reagents targeting the central nervous system their cytotoxicity effect on neuronal cells has not been well studied. In this study, we treated PC12 cells, a model neuronal cell line, with a nanomaterial that is widely accepted for medical use, superparamagnetic iron oxide nanoparticles (SPIONs). Our results suggest that, after treated with SPIONs, the expression pattern of the cellular miRNAs changed widely in PC12 cells. As potential miRNA targets, NMDAR, one of the candidate mRNAs that were selected using GO and KEGG pathway enrichment, was significantly down regulated by SPIONs treatment. We further illustrated that SPIONs may induce cell death through NMDAR suppression. This study revealed a NMDAR neurotoxic effect of SPIONs and provides a reliable approach for assessing the neurocytotoxic effects of nanomaterials based on the comprehensive annotation of miRNA profiling.
Collapse
Affiliation(s)
- Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Institute of Microbiology, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Rui Liu
- Laboratory of Biophysics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Nan Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Zhong-Dang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
10
|
Yao Y, Hu J, Shen Z, Yao R, Liu S, Li Y, Cong H, Wang X, Qiu W, Yue L. MiR-200b expression in breast cancer: a prognostic marker and act on cell proliferation and apoptosis by targeting Sp1. J Cell Mol Med 2015; 19:760-9. [PMID: 25639535 PMCID: PMC4395190 DOI: 10.1111/jcmm.12432] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have been identified as important post-transcriptional regulators involved in various biological and pathological processes of cells. In the present study, we investigated the roles and mechanisms of miR-200b in human breast cancer (BC). MiR-200b expression was carried out by qRT-PCR in human BC cell lines and clinical samples and the prognostic potential of miR-200b expression was further evaluated. In vitro, effects of miR-200b on BC cell proliferation, apoptosis and cell cycle distribution were tested by CCK-8 kit, flow cytometric analysis respectively. Luciferase assay and Western blot analysis were performed to validate the potential targets of miR-200b after the preliminary screening by employing open access software. We found that miR-200b was significantly down-regulated in both BC tissues and cell lines. The low expression of miR-200b was correlated with late TNM stage, negative oestrogen receptor and positive HER-2 status. Multivariate analysis showed that miR-200b expression was an independent prognostic predictor for BC patients. Integrated analysis identified Sp1 as a direct and functional target of miR-200b. Knockdown of Sp1 inhibited cell proliferation, induce apoptosis and act on cell cycle resembling that of miR-200b high expression. Our data demonstrates that miR-200b has potential to serve as prognostic biomarker and tumour suppressor for BC patients. As a direct and functional target of miR-200b, Sp1 and miR-200b both could be an exciting target for BC treatment strategy.
Collapse
Affiliation(s)
- YaSai Yao
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China; Molecular Cancer Biology and Translational Medicine Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Medrano S, Sequeira-Lopez MLS, Gomez RA. Deletion of the miR-143/145 cluster leads to hydronephrosis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3226-38. [PMID: 25307343 PMCID: PMC4258506 DOI: 10.1016/j.ajpath.2014.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/12/2014] [Accepted: 08/19/2014] [Indexed: 11/21/2022]
Abstract
Obstructive nephropathy, the leading cause of kidney failure in children, can be anatomic or functional. The underlying causes of functional hydronephrosis are not well understood. miRNAs, which are small noncoding RNAs, regulate gene expression at the post-transcriptional level. We found that miR-145-5p, a member of the miR-143/145 cluster that is highly expressed in smooth muscle cells of the renal vasculature, was present in the pelvicalyceal system and the ureter. To evaluate whether the miR-143/145 cluster is involved in urinary tract function we performed morphologic, functional, and gene expression studies in mice carrying a whole-body deletion of miR-143/145. miR-143/145-deficient mice developed hydronephrosis, characterized by severe papillary atrophy and dilatation of the pelvicalyceal system without obvious physical obstruction. Moreover, mutant mice showed abnormal ureteral peristalsis. The number of ureter contractions was significantly higher in miR-143/145-deficient mice. Peristalsis was replaced by incomplete, short, and more frequent contractions that failed to completely propagate in a proximal-distal direction. Microarray analysis showed 108 differentially expressed genes in ureters of miR-143/145-deficient mice. Ninety genes were up-regulated and 18 genes were down-regulated, including genes with potential regulatory roles in smooth muscle contraction and extracellular matrix-receptor interaction. We show that miR-143/145 are important for the normal peristalsis of the ureter and report an association between the expression of these miRNAs and hydronephrosis.
Collapse
Affiliation(s)
- Silvia Medrano
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | | | - R Ariel Gomez
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
12
|
Tamim S, Vo DT, Uren PJ, Qiao M, Bindewald E, Kasprzak WK, Shapiro BA, Nakaya HI, Burns SC, Araujo PR, Nakano I, Radek AJ, Kuersten S, Smith AD, Penalva LOF. Genomic analyses reveal broad impact of miR-137 on genes associated with malignant transformation and neuronal differentiation in glioblastoma cells. PLoS One 2014; 9:e85591. [PMID: 24465609 PMCID: PMC3899048 DOI: 10.1371/journal.pone.0085591] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/05/2013] [Indexed: 02/05/2023] Open
Abstract
miR-137 plays critical roles in the nervous system and tumor development; an increase in its expression is required for neuronal differentiation while its reduction is implicated in gliomagenesis. To evaluate the potential of miR-137 in glioblastoma therapy, we conducted genome-wide target mapping in glioblastoma cells by measuring the level of association between PABP and mRNAs in cells transfected with miR-137 mimics vs. controls via RIPSeq. Impact on mRNA levels was also measured by RNASeq. By combining the results of both experimental approaches, 1468 genes were found to be negatively impacted by miR-137--among them, 595 (40%) contain miR-137 predicted sites. The most relevant targets include oncogenic proteins and key players in neurogenesis like c-KIT, YBX1, AKT2, CDC42, CDK6 and TGFβ2. Interestingly, we observed that several identified miR-137 targets are also predicted to be regulated by miR-124, miR-128 and miR-7, which are equally implicated in neuronal differentiation and gliomagenesis. We suggest that the concomitant increase of these four miRNAs in neuronal stem cells or their repression in tumor cells could produce a robust regulatory effect with major consequences to neuronal differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Saleh Tamim
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Dat T. Vo
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Philip J. Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Mei Qiao
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Eckart Bindewald
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Wojciech K. Kasprzak
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, California
| | - Helder I. Nakaya
- Department of Clinical Analyses and Toxicology, Institute of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suzanne C. Burns
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Patricia R. Araujo
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ichiro Nakano
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Agnes J. Radek
- Epicentre (An Illumina Company), Madison, Wisconsin, United States of America
| | - Scott Kuersten
- Epicentre (An Illumina Company), Madison, Wisconsin, United States of America
| | - Andrew D. Smith
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Luiz O. F. Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
13
|
Higa GSV, de Sousa E, Walter LT, Kinjo ER, Resende RR, Kihara AH. MicroRNAs in neuronal communication. Mol Neurobiol 2014; 49:1309-26. [PMID: 24385256 DOI: 10.1007/s12035-013-8603-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) are short nucleotides sequences that regulate the expression of genes in different eukaryotic cell types. A tremendous amount of knowledge on miRNAs has rapidly accumulated over the last few years, revealing the growing interest in this field of research. On the other hand, clarifying the physiological regulation of gene expression in the central nervous system is important for establishing a reference for comparison to the diseased state. It is well known that the fine tuning of neuronal networks relies on intricate molecular mechanisms, such as the adjustment of the synaptic transmission. As determined by recent studies, regulation of neuronal interactions by miRNAs has critical consequences in the development, adaptation to ambient demands, and degeneration of the nervous system. In contrast, activation of synaptic receptors triggers downstream signaling cascades that generate a vast array of effects, which includes the regulation of novel genes involved in the control of the miRNA life cycle. In this review, we have examined the hot topics on miRNA gene-regulatory activities in the broad field of neuronal communication-related processes. Furthermore, in addition to indicating the newly described effect of miRNAs on the regulation of specific neurotransmitter systems, we have pointed out how these systems affect the expression, transport, and stability of miRNAs. Moreover, we discuss newly described and under-investigation mechanisms involving the intercellular transfer of miRNAs, aided by exosomes and gap junctions. Thus, in the current review, we were able to highlight recent findings related to miRNAs that indisputably contributed towards the understanding of the nervous system in health and disease.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Av. Atlântica 420, 09060-000, Santo André, SP, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Su W, Hopkins S, Nesser NK, Sopher B, Silvestroni A, Ammanuel S, Jayadev S, Möller T, Weinstein J, Garden GA. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. THE JOURNAL OF IMMUNOLOGY 2013; 192:358-66. [PMID: 24319262 DOI: 10.4049/jimmunol.1301397] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuroinflammation occurs in acute and chronic CNS injury, including stroke, traumatic brain injury, and neurodegenerative diseases. Microglia are specialized resident myeloid cells that mediate CNS innate immune responses. Disease-relevant stimuli, such as reactive oxygen species (ROS), can influence microglia activation. Previously, we observed that p53, a ROS-responsive transcription factor, modulates microglia behaviors in vitro and in vivo, promoting proinflammatory functions and suppressing downregulation of the inflammatory response and tissue repair. In this article we describe a novel mechanism by which p53 modulates the functional differentiation of microglia both in vitro and in vivo. Adult microglia from p53-deficient mice have increased expression of the anti-inflammatory transcription factor c-Maf. To determine how p53 negatively regulates c-Maf, we examined the impact of p53 on known c-Maf regulators. MiR-155 is a microRNA that targets c-Maf. We observed that cytokine-induced expression of miR-155 was suppressed in p53-deficient microglia. Furthermore, Twist2, a transcriptional activator of c-Maf, is increased in p53-deficient microglia. We identified recognition sites in the 3' untranslated region of Twist2 mRNA that are predicted to interact with two p53-dependent microRNAs: miR-34a and miR-145. In this article, we demonstrate that miR-34a and -145 are regulated by p53 and negatively regulate Twist2 and c-Maf expression in microglia and the RAW macrophage cell line. Taken together, these findings support the hypothesis that p53 activation induced by local ROS or accumulated DNA damage influences microglia functions and that one specific molecular target of p53 in microglia is c-Maf.
Collapse
Affiliation(s)
- Wei Su
- Department of Neurology, University of Washington, Seattle, WA 98195
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Palm T, Hemmer K, Winter J, Fricke IB, Tarbashevich K, Sadeghi Shakib F, Rudolph IM, Hillje AL, De Luca P, Bahnassawy L, Madel R, Viel T, De Siervi A, Jacobs AH, Diederichs S, Schwamborn JC. A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1-miRNA feedback loop. Nucleic Acids Res 2013; 41:3699-712. [PMID: 23396440 PMCID: PMC3616707 DOI: 10.1093/nar/gkt070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cell fate decisions are controlled by a molecular network in which transcription factors and miRNAs are of key importance. To systemically investigate their impact on neural stem cell (NSC) maintenance and neuronal commitment, we performed a high-throughput mRNA and miRNA profiling and isolated functional interaction networks of involved mechanisms. Thereby, we identified an E2F1–miRNA feedback loop as important regulator of NSC fate decisions. Although E2F1 supports NSC proliferation and represses transcription of miRNAs from the miR-17∼92 and miR-106a∼363 clusters, these miRNAs are transiently up-regulated at early stages of neuronal differentiation. In these early committed cells, increased miRNAs expression levels directly repress E2F1 mRNA levels and inhibit cellular proliferation. In mice, we demonstrated that these miRNAs are expressed in the neurogenic areas and that E2F1 inhibition represses NSC proliferation. The here presented data suggest a novel interaction mechanism between E2F1 and miR-17∼92 / miR-106a∼363 miRNAs in controlling NSC proliferation and neuronal differentiation.
Collapse
Affiliation(s)
- Thomas Palm
- Westfälische Wilhelms-Universität Münster, ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Keeve PL, Dittmar T, Gassmann G, Grimm WD, Niggemann B, Friedmann A. Characterization and analysis of migration patterns of dentospheres derived from periodontal tissue and the palate. J Periodontal Res 2012; 48:276-85. [PMID: 23030636 DOI: 10.1111/jre.12005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Stem cells derived from periodontal and palatal tissues may be useful for regenerative therapies of periodontal tissues. In addition to the use of single periodontium-derived stem cells (pdSCs) and palatal-derived stem cells (paldSCs), the application of pdSC and paldSC dentospheres, providing a pool of vital stem cells, may be a useful approach. As cell migration is a prerequisite for stem cells to regenerate a three-dimensional tissue environment, we characterized pdSCs and paldSCs and investigated the migratory activity of dentospheres within a three-dimensional environment. We also investigated the capacity of the dentospheres to grow on zirconium dioxide surfaces. MATERIAL AND METHODS The capacity of pdSCs and paldSCs to differentiate into the neuronal and osteogenic lineages was proved by RT-PCR and immunohistochemistry through the detection of specific lineage markers, such as alkaline phosphatase, glutamate decarboxylase 1 (also known as GAD67, the 67-kDa isoform of glutamate decarboxylase), neurofilament-M and β-III-tubulin. The expression profile of surface molecules on pdSCs and paldSCs was analyzed by flow cytometry. Adhesion and growth of pdSC/paldSC dentospheres on zirconium dioxide surfaces were determined using confocal laser-scanning microscopy. The migratory behavior of the cells was analyzed using a three-dimensional collagen matrix migration assay. RESULTS Both pdSCs and paldSCs were positive for epidermal growth factor receptor, CC chemokine receptor 2 and CXC chemokine receptor 4 expression and were able to grow on zirconium dioxide surfaces. Cell-migration experiments revealed that both stem-cell populations responded similarly to epidermal growth factor (EGF), monocyte chemotactic protein 1 (MCP-1) and stromal cell-derived factor 1alpha (SDF-1α). Stimulation with EGF resulted in an increased migratory activity of both stem-cell types, whereas the locomotory behavior of the cells was impaired by both MCP-1 and SDF-1α. CONCLUSION Dentospheres represent a pool of vital pdSCs/paldSCs. As a result of the migratory activity demonstrated, along with the capacity to grow on zirconium dioxide surfaces, dentospheres may be useful for regenerative purposes in periodontal tissues.
Collapse
Affiliation(s)
- P L Keeve
- Department of Periodontology, School of Dentistry, ZBAF, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Veremeyko T, Starossom SC, Weiner HL, Ponomarev ED. Detection of microRNAs in microglia by real-time PCR in normal CNS and during neuroinflammation. J Vis Exp 2012:4097. [PMID: 22872097 DOI: 10.3791/4097] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microglia are cells of the myeloid lineage that reside in the central nervous system (CNS)(1). These cells play an important role in pathologies of many diseases associated with neuroinflammation such as multiple sclerosis (MS)(2). Microglia in a normal CNS express macrophage marker CD11b and exhibit a resting phenotype by expressing low levels of activation markers such as CD45. During pathological events in the CNS, microglia become activated as determined by upregulation of CD45 and other markers(3). The factors that affect microglia phenotype and functions in the CNS are not well studied. MicroRNAs (miRNAs) are a growing family of conserved molecules (~22 nucleotides long) that are involved in many normal physiological processes such as cell growth and differentiation(4) and pathologies such as inflammation(5). MiRNAs downregulate the expression of certain target genes by binding complementary sequences of their mRNAs and play an important role in the activation of innate immune cells including macrophages(6) and microglia(7). In order to investigate miRNA-mediated pathways that define the microglial phenotype, biological function, and to distinguish microglia from other types of macrophages, it is important to quantitatively assess the expression of particular microRNAs in distinct subsets of CNS-resident microglia. Common methods for measuring the expression of miRNAs in the CNS include quantitative PCR from whole neuronal tissue and in situ hybridization. However, quantitative PCR from whole tissue homogenate does not allow the assessment of the expression of miRNA in microglia, which represent only 5-15% of the cells of neuronal tissue. Hybridization in situ allows the assessment of the expression of microRNA in specific cell types in the tissue sections, but this method is not entirely quantitative. In this report we describe a quantitative and sensitive method for the detection of miRNA by real-time PCR in microglia isolated from normal CNS or during neuroinflammation using experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. The described method will be useful to measure the level of expression of microRNAs in microglia in normal CNS or during neuroinflammation associated with various pathologies including MS, stroke, traumatic injury, Alzheimer's disease and brain tumors.
Collapse
Affiliation(s)
- Tatiana Veremeyko
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School
| | | | | | | |
Collapse
|