1
|
Sordu P, Alaylıoğlu M, Samancı B, Bulu E, Güleç ZEK, Bilgiç B, Hanağası HA, Gürvit İH, Ulutin T, Dursun E, Gezen-Ak D. Cerebrospinal fluid HSP90AA1, HSPA4, and STUB1/CHIP levels in Alzheimer's disease, mild cognitive impairment, and frontotemporal dementia. J Alzheimers Dis 2025:13872877251329540. [PMID: 40116694 DOI: 10.1177/13872877251329540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
BackgroundThe data that we gathered from a protein-protein interaction (PPI) prediction tool, FpClass, and a limited number of studies indicated that the chaperones HSP90AA1, HSPA4, STUB1/CHIP might interact with amyloid-β (Aβ) and/or tau and could subsequently be co-released into the cerebrospinal fluid (CSF). Therefore, we investigated CSF levels of HSP90AA1, HSPA4, and STUB1/CHIP in Alzheimer's disease (AD), Non-AD mild cognitive impairment (Non-AD MCI), and frontotemporal dementia (FTD) cases.MethodsThe CSF levels of HSP90AA1, HSPA4, STUB/CHIP, and core AD biomarkers were determined by ELISA in AD (n = 90), Non-AD MCI (n = 27), FTD (n = 15), and subjective cognitive impairment (SCI) (n = 20) subjects.ResultsHSP90AA1 levels were significantly higher in AD cases compared to the SCI subjects. The CSF levels of STUB1/CHIP were significantly lower in AD, Non-AD MCI and FTD cases compared to the SCI subjects. STUB1/CHIP levels of FTD cases were significantly lower than all other groups. HSPA4 levels was correlated with core AD biomarkers (Aβ 1-42, p-Tau, t-Tau) regardless of disease. Non-APOE ε4 carrier FTD cases also had significantly lower STUB1/CHIP levels than other groups.ConclusionsThe STUB1/CHIP holds promise as a potential biomarker for distinguishing between SCI subjects, AD, and FTD. Furthermore, APOE might serve as an additional discriminatory factor that might be integrated with this chaperone for enhanced discrimination.
Collapse
Affiliation(s)
- Pelin Sordu
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bedia Samancı
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ersel Bulu
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Ece Kaya Güleç
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Başar Bilgiç
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Haşmet Ayhan Hanağası
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İbrahim Hakan Gürvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
2
|
Rekha A, Afzal M, Babu MA, Menon SV, Nathiya D, Supriya S, Mishra SB, Gupta S, Goyal K, Rana M, Ali H, Imran M. GSK-3β dysregulation in aging: Implications for tau pathology and Alzheimer's disease progression. Mol Cell Neurosci 2025; 133:104005. [PMID: 40120784 DOI: 10.1016/j.mcn.2025.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025] Open
Abstract
The role of glycogen synthase kinase-3β (GSK-3β) in the pathogenesis of Alzheimer's disease (AD) is critical for linking amyloid-beta (Aβ) and Tau pathology. The activity of GSK-3β is dysregulated in the regulation of Tau hyperphosphorylation, formation of neurofibrillary tangles (NFTs), and production of Aβ by modulating amyloid precursor protein (APP) processing. This review discusses the mechanisms controlling GSK-3β dysregulation in aging and its influence on AD progression, focusing on the role of neuroinflammation, oxidative stress, and defective signaling pathways, including PI3K/Akt and Wnt. Critical analysis is presented for therapeutic strategies targeting GSK-3β using natural compounds (e.g., curcumin, geniposide) and emerging approaches such as TREM2 modulation and miRNA therapies. In preclinical models, these interventions promise to reduce Tau hyperphosphorylation and Aβ burden, along with associated neurodegeneration. Nevertheless, achieving selective GSK-3β inhibition and optimizing drug delivery are still critical barriers to clinical translation. This review underscores the central role of GSK-3β in AD pathogenesis to highlight its potential as a multifaceted therapeutic target of an innovative strategy for treating this complex neurodegenerative disease.
Collapse
Affiliation(s)
- A Rekha
- D.Y.Patil Medical College, Hospital and Research centre, Pimpri, Pune, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S Supriya
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Shakti Bedanta Mishra
- Department of Anaesthesiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
3
|
Tylicka M, Matuszczak E, Kamińska J, Modzelewska B, Koper-Lenkiewicz OM. Proteasomes and Ubiquitin C-Terminal Hydrolase L1 as Biomarkers of Tissue Damage and Inflammatory Response to Different Types of Injury-A Short Review. Life (Basel) 2025; 15:413. [PMID: 40141757 PMCID: PMC11944130 DOI: 10.3390/life15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The proteasomal system of protein degradation is crucial for various cellular processes, including transduction of signals and differentiation of cells. Proteasome activity rises after various traumatic stressors such as hyperoxia, radiation, or oxidative damage. Removal of damaged proteins is essential to provide the necessary conditions for cell repair. Several studies report the activation of the proteasomal degradation system after thermal injury, CNS injury, abdominal trauma, ischemia-reperfusion injury, and possible clinical implications of the use of proteasome inhibitors. It is important to highlight the distinct and crucial roles of UCHL1, 26S, and 20S proteasome subunits as biomarkers. UCHL1 appears to be particularly relevant for identifying brain and neuronal damage and in advancing the diagnosis and prognosis of traumatic brain injury (TBI) and other neurological conditions. Meanwhile, the 26S and 20S proteasomes may serve as markers for peripheral tissue damage. This differentiation enhances our understanding and ability to target specific types of tissue damage in clinical settings.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| | - Beata Modzelewska
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| |
Collapse
|
4
|
Mahamud AGMSU, Tanvir IA, Kabir ME, Samonty I, Chowdhury MAH, Rahman MA. Gerobiotics: Exploring the Potential and Limitations of Repurposing Probiotics in Addressing Aging Hallmarks and Chronic Diseases. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10501-w. [PMID: 40029460 DOI: 10.1007/s12602-025-10501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
As unhealthy aging continues to rise globally, there is a pressing need for effective strategies to promote healthy aging, extend health span, and address aging-related complications. Gerobiotics, an emerging concept in geroscience, offers a novel approach to repurposing selective probiotics, postbiotics, and parabiotics to modulate key aging processes and enhance systemic health. This review explores recent advancements in gerobiotics research, focusing on their role in targeting aging hallmarks, regulating longevity-associated pathways, and reducing risks of multiple age-related chronic conditions. Despite their promise, significant challenges remain, including optimizing formulations, ensuring safety and efficacy across diverse populations, and achieving successful clinical translation. Addressing these gaps through rigorous research, well-designed clinical trials, and advanced biotechnologies can establish gerobiotics as a transformative intervention for healthy aging and chronic disease prevention.
Collapse
Affiliation(s)
| | | | - Md Ehsanul Kabir
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Ismam Samonty
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| |
Collapse
|
5
|
Singh A, Tiwari S, Singh S. Pirh2 modulates amyloid-β aggregation through the regulation of glucose-regulated protein 78 and chaperone-mediated signaling. J Cell Physiol 2023; 238:2841-2854. [PMID: 37882235 DOI: 10.1002/jcp.31134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
Amyloid-β (Aβ) protein aggregation in the brain is a pathological hallmark of Alzheimer's disease (AD) however, the underlying molecular mechanisms regulating amyloid aggregation are not well understood. Here, we studied the propitious role of E3 ubiquitin ligase Pirh2 in Aβ protein aggregation in view of its regulatory ligase activity in the ubiquitin-proteasome system employing both cellular and sporadic rodent models of AD. Pirh2 protein abundance was significantly increased during Streptozotocin (STZ) induced AD conditions, and transient silencing of Pirh2 significantly inhibited the Aβ aggregation and modified the dendrite morphology along with the substantial decrease in choline level in the differentiated neurons. MALDI-TOF/TOF, coimmunoprecipitation, and UbcH7-linked in vitro ubiquitylation analysis confirmed the high interaction of Pirh2 with chaperone GRP78. Furthermore, Pirh2 silencing inhibits the STZ induced altered level of endoplasmic reticulum stress and intracellular Ca2+ levels in neuronal N2a cells. Pirh2 silencing also inhibited the AD conditions related to the altered protein abundance of HSP90 and its co-chaperones which may collectively involve in the reduced burden of amyloid aggregates in neuronal cells. Pirh2 silencing further stabilized the nuclear translocation of phospho-Nrf2 and inhibited the altered level of autophagy factors. Taken together, our data indicated that Pirh2 is critically involved in STZ induced AD pathogenesis through its interaction with ER-chaperone GRP78, improves the neuronal connectivity, affects the altered level of chaperones, co-chaperones, & autophagic markers, and collectively inhibits the Aβ aggregation.
Collapse
Affiliation(s)
- Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Luna-Ramirez RI, Limesand SW, Goyal R, Pendleton AL, Rincón G, Zeng X, Luna-Nevárez G, Reyna-Granados JR, Luna-Nevárez P. Blood Transcriptomic Analyses Reveal Functional Pathways Associated with Thermotolerance in Pregnant Ewes Exposed to Environmental Heat Stress. Genes (Basel) 2023; 14:1590. [PMID: 37628641 PMCID: PMC10454332 DOI: 10.3390/genes14081590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental heat stress triggers a series of compensatory mechanisms in sheep that are dependent on their genetic regulation of thermotolerance. Our objective was to identify genes and regulatory pathways associated with thermotolerance in ewes exposed to heat stress. We performed next-generation RNA sequencing on blood collected from 16 pregnant ewes, which were grouped as tolerant and non-tolerant to heat stress according to a physiological indicator. Additional samples were collected to measure complete blood count. A total of 358 differentially expressed genes were identified after applying selection criteria. Gene expression analysis detected 46 GO terms and 52 KEGG functional pathways. The top-three signaling pathways were p53, RIG-I-like receptor and FoxO, which suggested gene participation in biological processes such as apoptosis, cell signaling and immune response to external stressors. Network analysis revealed ATM, ISG15, IRF7, MDM4, DHX58 and TGFβR1 as over-expressed genes with high regulatory potential. A co-expression network involving the immune-related genes ISG15, IRF7 and DXH58 was detected in lymphocytes and monocytes, which was consistent with hematological findings. In conclusion, transcriptomic analysis revealed a non-viral immune mechanism involving apoptosis, which is induced by external stressors and appears to play an important role in the molecular regulation of heat stress tolerance in ewes.
Collapse
Affiliation(s)
- Rosa I. Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Ravi Goyal
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Alexander L. Pendleton
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | - Xi Zeng
- Zoetis Inc., VMRD Genetics R&D, Kalamazoo, MI 49007, USA
| | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Javier R. Reyna-Granados
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
7
|
McNeilly AD, Gallagher JR, Evans ML, de Galan BE, Pedersen-Bjergaard U, Thorens B, Dinkova-Kostova AT, Huang JT, Ashford MLJ, McCrimmon RJ. Chronic hyperglycaemia increases the vulnerability of the hippocampus to oxidative damage induced during post-hypoglycaemic hyperglycaemia in a mouse model of chemically induced type 1 diabetes. Diabetologia 2023; 66:1340-1352. [PMID: 37015997 PMCID: PMC10244284 DOI: 10.1007/s00125-023-05907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/26/2023] [Indexed: 04/06/2023]
Abstract
AIMS/HYPOTHESIS Chronic hyperglycaemia and recurrent hypoglycaemia are independently associated with accelerated cognitive decline in type 1 diabetes. Recurrent hypoglycaemia in rodent models of chemically induced (streptozotocin [STZ]) diabetes leads to cognitive impairment in memory-related tasks associated with hippocampal oxidative damage. This study examined the hypothesis that post-hypoglycaemic hyperglycaemia in STZ-diabetes exacerbates hippocampal oxidative stress and explored potential contributory mechanisms. METHODS The hyperinsulinaemic glucose clamp technique was used to induce equivalent hypoglycaemia and to control post-hypoglycaemic glucose levels in mice with and without STZ-diabetes and Nrf2-/- mice (lacking Nrf2 [also known as Nfe2l2]). Subsequently, quantitative proteomics based on stable isotope labelling by amino acids in cell culture and biochemical approaches were used to assess oxidative damage and explore contributory pathways. RESULTS Evidence of hippocampal oxidative damage was most marked in mice with STZ-diabetes exposed to post-hypoglycaemic hyperglycaemia; these mice also showed induction of Nrf2 and the Nrf2 transcriptional targets Sod2 and Hmox-1. In this group, hypoglycaemia induced a significant upregulation of proteins involved in alternative fuel provision, reductive biosynthesis and degradation of damaged proteins, and a significant downregulation of proteins mediating the stress response. Key differences emerged between mice with and without STZ-diabetes following recovery from hypoglycaemia in proteins mediating the stress response and reductive biosynthesis. CONCLUSIONS/INTERPRETATION There is a disruption of the cellular response to a hypoglycaemic challenge in mice with STZ-induced diabetes that is not seen in wild-type non-diabetic animals. The chronic hyperglycaemia of diabetes and post-hypoglycaemic hyperglycaemia act synergistically to induce oxidative stress and damage in the hippocampus, possibly leading to irreversible damage/modification to proteins or synapses between cells. In conclusion, recurrent hypoglycaemia in sub-optimally controlled diabetes may contribute, at least in part, to accelerated cognitive decline through amplifying oxidative damage in key brain regions, such as the hippocampus. DATA AVAILABILITY The datasets generated during and/or analysed during the current study are available in ProteomeXchange, accession no. 1-20220824-173727 ( www.proteomexchange.org ). Additional datasets generated during and/or analysed during the present study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Alison D McNeilly
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Jennifer R Gallagher
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Mark L Evans
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Bastiaan E de Galan
- Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | | | - Bernard Thorens
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Jeffrey-T Huang
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, UK
- Biomarker and Drug Analysis Core Facility, School of Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Michael L J Ashford
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Rory J McCrimmon
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, UK.
| |
Collapse
|
8
|
Buchman AS, Yu L, Klein HU, Zammit AR, Oveisgharan S, Grodstein F, Tasaki S, Levey AI, Seyfried NT, Bennett DA. Proteome-Wide Discovery of Cortical Proteins That May Provide Motor Resilience to Offset the Negative Effects of Pathologies in Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:494-503. [PMID: 35512265 PMCID: PMC9977240 DOI: 10.1093/gerona/glac105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Motor resilience proteins have not been identified. This proteome-wide discovery study sought to identify proteins that may provide motor resilience. METHODS We studied the brains of older decedents with annual motor testing, postmortem brain pathologies, and proteome-wide data. Parkinsonism was assessed using 26 items of a modified United Parkinson Disease Rating Scale. We used linear mixed-effect models to isolate motor resilience, defined as the person-specific estimate of progressive parkinsonism after controlling for age, sex, and 10 brain pathologies. A total of 8 356 high-abundance proteins were quantified from dorsal lateral prefrontal cortex using tandem mass tag and liquid chromatography-mass spectrometry. RESULTS There were 391 older adults (70% female), mean age 80 years at baseline and 89 years at death. Five proteins were associated with motor resilience: A higher level of AP1B1 (Estimate -0.504, SE 0.121, p = 3.12 × 10-5) and GNG3 (Estimate -0.276, SE 0.068, p = 4.82 × 10-5) was associated with slower progressive parkinsonism. By contrast, a higher level of TTC38 (Estimate 0.140, SE 0.029, p = 1.87 × 10-6), CARKD (Estimate 0.413, SE 0.100, p = 3.50 × 10-5), and ABHD14B (Estimate 0.175, SE 0.044, p = 6.48 × 10-5) was associated with faster progressive parkinsonism. Together, these 5 proteins accounted for almost 25% of the variance of progressive parkinsonism above the 17% accounted for by 10 indices of brain pathologies. DISCUSSION Cortical proteins may provide more or less motor resilience in older adults. These proteins are high-value therapeutic targets for drug discovery that may lead to interventions that maintain motor function despite the accumulation of as yet untreatable brain pathologies.
Collapse
Affiliation(s)
- Aron S Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Hans-Ulrich Klein
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Andrea R Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Shahram Oveisgharan
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Francine Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
9
|
Zhang H, Li X, Wang X, Xu J, Elefant F, Wang J. Cellular response to β-amyloid neurotoxicity in Alzheimer's disease and implications in new therapeutics. Animal Model Exp Med 2023; 6:3-9. [PMID: 36872303 PMCID: PMC9986234 DOI: 10.1002/ame2.12313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
β-Amyloid (Aβ) is a specific pathological hallmark of Alzheimer's disease (AD). Because of its neurotoxicity, AD patients exhibit multiple brain dysfunctions. Disease-modifying therapy (DMT) is the central concept in the development of AD therapeutics today, and most DMT drugs that are currently in clinical trials are anti-Aβ drugs, such as aducanumab and lecanemab. Therefore, understanding Aβ's neurotoxic mechanism is crucial for Aβ-targeted drug development. Despite its total length of only a few dozen amino acids, Aβ is incredibly diverse. In addition to the well-known Aβ1-42 , N-terminally truncated, glutaminyl cyclase (QC) catalyzed, and pyroglutamate-modified Aβ (pEAβ) is also highly amyloidogenic and far more cytotoxic. The extracellular monomeric Aβx-42 (x = 1-11) initiates the aggregation to form fibrils and plaques and causes many abnormal cellular responses through cell membrane receptors and receptor-coupled signal pathways. These signal cascades further influence many cellular metabolism-related processes, such as gene expression, cell cycle, and cell fate, and ultimately cause severe neural cell damage. However, endogenous cellular anti-Aβ defense processes always accompany the Aβ-induced microenvironment alterations. Aβ-cleaving endopeptidases, Aβ-degrading ubiquitin-proteasome system (UPS), and Aβ-engulfing glial cell immune responses are all essential self-defense mechanisms that we can leverage to develop new drugs. This review discusses some of the most recent advances in understanding Aβ-centric AD mechanisms and suggests prospects for promising anti-Aβ strategies.
Collapse
Affiliation(s)
- Haolin Zhang
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Xianghua Li
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Xiaoli Wang
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Jiayu Xu
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | - Felice Elefant
- Department of BiologyDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Juan Wang
- Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| |
Collapse
|
10
|
Inhibition of histone methyltransferase Smyd3 rescues NMDAR and cognitive deficits in a tauopathy mouse model. Nat Commun 2023; 14:91. [PMID: 36609445 PMCID: PMC9822922 DOI: 10.1038/s41467-022-35749-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Pleiotropic mechanisms have been implicated in Alzheimer's disease (AD), including transcriptional dysregulation, protein misprocessing and synaptic dysfunction, but how they are mechanistically linked to induce cognitive deficits in AD is unclear. Here we find that the histone methyltransferase Smyd3, which catalyzes histone H3 lysine 4 trimethylation (H3K4me3) to activate gene transcription, is significantly elevated in prefrontal cortex (PFC) of AD patients and P301S Tau mice, a model of tauopathies. A short treatment with the Smyd3 inhibitor, BCI-121, rescues cognitive behavioral deficits, and restores synaptic NMDAR function and expression in PFC pyramidal neurons of P301S Tau mice. Fbxo2, which encodes an E3 ubiquitin ligase controlling the degradation of NMDAR subunits, is identified as a downstream target of Smyd3. Smyd3-induced upregulation of Fbxo2 in P301S Tau mice is linked to the increased NR1 ubiquitination. Fbxo2 knockdown in PFC leads to the recovery of NMDAR function and cognitive behaviors in P301S Tau mice. These data suggest an integrated mechanism and potential therapeutic strategy for AD.
Collapse
|
11
|
Takamura H, Nakayama Y, Ito H, Katayama T, Fraser PE, Matsuzaki S. SUMO1 Modification of Tau in Progressive Supranuclear Palsy. Mol Neurobiol 2022; 59:4419-4435. [PMID: 35567706 PMCID: PMC9167224 DOI: 10.1007/s12035-022-02734-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022]
Abstract
Small ubiquitin-like modifiers (SUMO) have been implicated in several neurodegenerative diseases. SUMO1 conjugation has been shown to promote aggregation and regulate phosphorylation of the tau protein linked to Alzheimer’s disease and related tauopathies. The current study has demonstrated that SUMO1 co-localizes with intraneuronal tau inclusions in progressive supranuclear palsy (PSP). Immunoprecipitation of isolated and solubilized tau fibrils from PSP tissues revealed SUMO1 conjugation to a cleaved and N-terminally truncated tau. The effects of SUMOylation were examined using tau-SUMO fusion proteins which showed a higher propensity for tau oligomerization of PSP-truncated tau and accumulation on microtubules as compared to the full-length protein. This was found to be specific for SUMO1 as the corresponding SUMO2 fusion protein did not display a significantly altered cytoplasmic distribution or aggregation of tau. Blocking proteasome-mediated degradation promoted the aggregation of the tau fusion proteins with the greatest effect observed for truncated tau-SUMO1. The SUMO1 modification of the truncated tau in PSP may represent a detrimental event that promotes aggregation and impedes the ability of cells to remove the resulting protein deposits. This combination of tau truncation and SUMO1 modification may be a contributing factor in PSP pathogenesis.
Collapse
Affiliation(s)
- Hironori Takamura
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Child Development & Molecular Brain Science, Center for Child Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Yoshiaki Nakayama
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Taiichi Katayama
- Department of Child Development & Molecular Brain Science, Center for Child Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Shinsuke Matsuzaki
- Department of Child Development & Molecular Brain Science, Center for Child Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan. .,Department of Radiological Sciences, Faculty of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan.
| |
Collapse
|
12
|
Zhang T, Wei W, Chang S, Liu N, Li H. Integrated Network Pharmacology and Comprehensive Bioinformatics Identifying the Mechanisms and Molecular Targets of Yizhiqingxin Formula for Treatment of Comorbidity With Alzheimer’s Disease and Depression. Front Pharmacol 2022; 13:853375. [PMID: 35548356 PMCID: PMC9081443 DOI: 10.3389/fphar.2022.853375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The Yizhiqinxin formula (YZQX) has been used to treat Alzheimer’s disease (AD) or major depression disorder (MDD). However, its specific underlying mechanisms and therapeutic targets remain unclear.Methods: The ingredients and putative targets of YZQX were screened using the TCMSP and Drugbank databases. Next, the GEO database was used to retrieve relevant differentially expressed genes (DEGs) in AD or MDD and normal tissues. The PPI network was established, merged, and further screened to identify the main ingredients and core targets of YZQX against AD and MDD comorbidities. We performed enrichment analysis of core targets to identify biological processes and pathways. Finally, AutoDock software was used to validate the binding affinity between the crucial targets of direct action and their corresponding ingredients.Results: A total of 43 ingredients were identified from YZQX, of which 43 were screened to yield 504 targets. By establishing the PPI network, 92 targets were regarded as targets of YZQX against AD and MDD comorbidities in the core network. Promising targets (HSP90AA1, ESR1, AKT1, VCAM1, EGFR, CDK1, MAPK1, CDK2, MYC, HSPB1, and HSPA5) and signaling pathways (PI3K-Akt signaling pathway, ubiquitin-mediated proteolysis, MAPK signaling pathway, etc.) were filtered and refined to elucidate the underlying mechanism of YZQX against AD and MDD comorbidities. Molecular docking confirmed the ingredients of YZQX (quercetin and kaempferol) could bind well to multiple crucial targets.Conclusion: The ingredients of YZQX, such as quercetin and kaempferol, might treat AD and MDD comorbidities by acting on multiple targets and pathways.
Collapse
Affiliation(s)
- Tingting Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Surui Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Nanyang Liu, ; Hao Li,
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Nanyang Liu, ; Hao Li,
| |
Collapse
|
13
|
Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Mol Psychiatry 2022; 27:259-268. [PMID: 34285347 DOI: 10.1038/s41380-021-01233-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
Collapse
|
14
|
Khan RIN, Sahu AR, Malla WA, Praharaj MR, Hosamani N, Kumar S, Gupta S, Sharma S, Saxena A, Varshney A, Singh P, Verma V, Kumar P, Singh G, Pandey A, Saxena S, Gandham RK, Tiwari AK. Systems biology under heat stress in Indian cattle. Gene 2021; 805:145908. [PMID: 34411649 DOI: 10.1016/j.gene.2021.145908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022]
Abstract
Transcriptome profiling of Vrindavani and Tharparkar cattle (n = 5 each) revealed that more numbers of genes were dysregulated in Vrindavani than in Tharparkar. A contrast in gene expression was observed with 18.9 % of upregulated genes in Vrindavani downregulated in Tharparkar and 17.8% upregulated genes in Tharparkar downregulated in Vrindavani. Functional annotation of genes differentially expressed in Tharparkar and Vrindavani revealed that the systems biology in Tharparkar is moving towards counteracting the effects due to heat stress. Unlike Vrindavani, Tharparkar is not only endowed with higher expression of the scavengers (UBE2G1, UBE2S, and UBE2H) of misfolded proteins but also with protectors (VCP, Serp1, and CALR) of naïve unfolded proteins. Further, higher expression of the antioxidants in Tharparkar enables it to cope up with higher levels of free radicals generated as a result of heat stress. In this study, we found relevant genes dysregulated in Tharparkar in the direction that can counter heat stress.
Collapse
Affiliation(s)
- Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Manas Ranjan Praharaj
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Neelima Hosamani
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Shakti Kumar
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Smita Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Shweta Sharma
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Archana Saxena
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Anshul Varshney
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Pragya Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Vinay Verma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Puneet Kumar
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Gyanendra Singh
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Ravi Kumar Gandham
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India.
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, Indian Veterinary Research Institute, Bareilly, India.
| |
Collapse
|
15
|
Luna-Nevárez G, Pendleton AL, Luna-Ramirez RI, Limesand SW, Reyna-Granados JR, Luna-Nevárez P. Genome-wide association study of a thermo-tolerance indicator in pregnant ewes exposed to an artificial heat-stressed environment. J Therm Biol 2021; 101:103095. [PMID: 34879913 DOI: 10.1016/j.jtherbio.2021.103095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Environmental heat stress negatively influences sheep production in warm semi-arid regions. An animal's ability to tolerate warm weather is difficult to measure naturally due to environmental variability and genetic variation between animals. In this study we developed a thermo-tolerance indicator (TTI) to define heat stress tolerance in pregnant sheep in a controlled environment. Next, we performed a genome-wide association study (GWAS) to identify genomic regions and target genes associated with thermo-tolerance in sheep. Pregnant Columbia-Rambouillet crossbred ewes (n = 127) were heat-stressed inside a climate-controlled chamber for 57 days by increasing the temperature-humidity index to ≥30. Rectal temperature (RT) and feed intake (FI) data were collected daily and used for the predictive TTI analysis. After the tenth day of heat stress, the regression analyses revealed that FI was stable; however, when the ewe's RT exceeded 39.8 °C their FI was less than thermo-tolerant ewes. This average predicted temperature was used to classify each ewe as heat stress tolerant (≤39.8 °C) and non-heat stress tolerant (>39.8 °C). A GWAS analysis was performed and genomic regions were compared between heat stress tolerant and non-tolerant ewes. The single-marker genomic analysis detected 16 single nucleotide polymorphisms (SNP) associated with heat stress tolerance (P < 0.0001), whereas the multi-marker Bayesian analysis identified 8 overlapped 1-Mb chromosomal regions accounting for 11.39% of the genetic variation associated with tolerance to heat stress. Four intragenic SNP showed a remarkable contribution to thermo-tolerance, and these markers were within the genes FBXO11 (rs407804467), PHC3 (rs414179061), TSHR (rs418575898) and STAT1 (rs417581105). In conclusion, genomic regions harboring four intragenic SNP were associated with heat stress tolerance, and these candidate genes are proposed to influence heat tolerance in pregnant ewes subjected to an artificially induced warm climate. Moreover, these genetic markers could be suitable for use in further genetic selection programs in sheep managed in semi-arid regions.
Collapse
Affiliation(s)
- Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Alexander L Pendleton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Rosa I Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Javier R Reyna-Granados
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México.
| |
Collapse
|
16
|
Mishra R, Bansal A, Mishra A. LISTERIN E3 Ubiquitin Ligase and Ribosome-Associated Quality Control (RQC) Mechanism. Mol Neurobiol 2021; 58:6593-6609. [PMID: 34590243 DOI: 10.1007/s12035-021-02564-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
According to cellular demands, ribosomes synthesize and maintain the desired pool of proteins inside the cell. However, sometimes due to defects in ribosomal machinery and faulty mRNAs, these nascent polypeptides are constantly under threat to become non-functional. In such conditions, cells acquire the help of ribosome-associated quality control mechanisms (RQC) to eliminate such aberrant nascent proteins. The primary regulator of RQC is RING domain containing LISTERIN E3 ubiquitin ligase, which is associated with ribosomes and alleviates non-stop proteins-associated stress in cells. Mouse RING finger protein E3 ubiquitin ligase LISTERIN is crucial for embryonic development, and a loss in its function causes neurodegeneration. LISTERIN is overexpressed in the mouse brain and spinal cord regions, and its perturbed functions generate neurological and motor deficits, but the mechanism of the same is unclear. Overall, LISTERIN is crucial for brain health and brain development. The present article systematically describes the detailed nature, molecular functions, and cellular physiological characterization of LISTERIN E3 ubiquitin ligase. Improve comprehension of LISTERIN's neurological roles may uncover pathways linked with neurodegeneration, which in turn might elucidate a promising novel therapeutic intervention against human neurodegenerative diseases.
Collapse
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Anurag Bansal
- Center for Converging Technologies, Jaipur, University of Rajasthan, Jaipur, 302001, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India.
| |
Collapse
|
17
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. Beta Amyloid, Tau Protein, and Neuroinflammation: An Attempt to Integrate Different Hypotheses of Alzheimer’s Disease Pathogenesis. Mol Biol 2021. [DOI: 10.1134/s002689332104004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that inevitably results in dementia and death. Currently, there are no pathogenetically grounded methods for the prevention and treatment of AD, and all current treatment regimens are symptomatic and unable to significantly delay the development of dementia. The accumulation of β-amyloid peptide (Aβ), which is a spontaneous, aggregation-prone, and neurotoxic product of the processing of signaling protein APP (Amyloid Precursor Protein), in brain tissues, primarily in the hippocampus and the frontal cortex, was for a long time considered the main cause of neurodegenerative changes in AD. However, attempts to treat AD based on decreasing Aβ production and aggregation did not bring significant clinical results. More and more arguments are arising in favor of the fact that the overproduction of Aβ in most cases of AD is not the initial cause, but a concomitant event of pathological processes in the course of the development of sporadic AD. The concept of neuroinflammation has come to the fore, suggesting that inflammatory responses play the leading role in the initiation and development of AD, both in brain tissue and in the periphery. The hypothesis about the key role of neuroinflammation in the pathogenesis of AD opens up new opportunities in the search for ways to treat and prevent this socially significant disease.
Collapse
|
18
|
Zheng X, Feng M, Wan J, Shi Y, Xie X, Pan W, Hu B, Wang Y, Wen H, Wang K, Cai S. Anti-damage effect of theaflavin-3'-gallate from black tea on UVB-irradiated HaCaT cells by photoprotection and maintaining cell homeostasis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112304. [PMID: 34536907 DOI: 10.1016/j.jphotobiol.2021.112304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Keratinocytes are rich in lipids and are the main sensitive cells to ultraviolet (UV) rays. Theaflavins are the core functional components of black tea and are known as the "soft gold" in tea. In this study, ultraviolet-B (UVB) irradiation caused apoptosis and necrosis of human epidermal keratinocytes (HaCaT). EGCG and the four theaflavins had anti-UVB damage activity, among which theaflavin-3'-gallate (TF3'G) had the best activity. The results of biophysical and molecular biology experiments showed that TF3'G has anti-damage effects on UVB-irradiated HaCaT cells through the dual effects of photoprotection and maintenance of cell homeostasis. That is, TF3'G preincubation could absorb UV rays, reduce the accumulation of aging-related heterochromatin (SAHF) formation, increase mitochondrial membrane potential, downregulate NF-κB inflammation pathways, inhibit the formation of cytotoxic aggregates, and protect biological macromolecules Structure, etc. The accumulation of conjugated π bonds and the balance benzoquinone are the core functional structure of TF3'G with high efficiency and low toxicity. The study indicates that TF3'G has the potential to inhibit the photoaging and intrinsic aging of skin cells.
Collapse
Affiliation(s)
- Xin Zheng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Juan Wan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yulan Shi
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xinya Xie
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Wenjing Pan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Baozhu Hu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yingzi Wang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Haitao Wen
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Kunbo Wang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| | - Shuxian Cai
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
19
|
Rapid initiation of cell cycle reentry processes protects neurons from amyloid-β toxicity. Proc Natl Acad Sci U S A 2021; 118:2011876118. [PMID: 33737393 DOI: 10.1073/pnas.2011876118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons are postmitotic cells. Reactivation of the cell cycle by neurons has been reported in Alzheimer's disease (AD) brains and models. This gave rise to the hypothesis that reentering the cell cycle renders neurons vulnerable and thus contributes to AD pathogenesis. Here, we use the fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology to monitor the cell cycle in live neurons. We found transient, self-limited cell cycle reentry activity in naive neurons, suggesting that their postmitotic state is a dynamic process. Furthermore, we observed a diverse response to oligomeric amyloid-β (oAβ) challenge; neurons without cell cycle reentry activity would undergo cell death without activating the FUCCI reporter, while neurons undergoing cell cycle reentry activity at the time of the oAβ challenge could maintain and increase FUCCI reporter signal and evade cell death. Accordingly, we observed marked neuronal FUCCI positivity in the brains of human mutant Aβ precursor protein transgenic (APP23) mice together with increased neuronal expression of the endogenous cell cycle control protein geminin in the brains of 3-mo-old APP23 mice and human AD brains. Taken together, our data challenge the current view on cell cycle in neurons and AD, suggesting that pathways active during early cell cycle reentry in neurons protect from Aβ toxicity.
Collapse
|
20
|
Tsamou M, Pistollato F, Roggen EL. A Tau-Driven Adverse Outcome Pathway Blueprint Toward Memory Loss in Sporadic (Late-Onset) Alzheimer's Disease with Plausible Molecular Initiating Event Plug-Ins for Environmental Neurotoxicants. J Alzheimers Dis 2021; 81:459-485. [PMID: 33843671 DOI: 10.3233/jad-201418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The worldwide prevalence of sporadic (late-onset) Alzheimer's disease (sAD) is dramatically increasing. Aging and genetics are important risk factors, but systemic and environmental factors contribute to this risk in a still poorly understood way. Within the frame of BioMed21, the Adverse Outcome Pathway (AOP) concept for toxicology was recommended as a tool for enhancing human disease research and accelerating translation of data into human applications. Its potential to capture biological knowledge and to increase mechanistic understanding about human diseases has been substantiated since. In pursuit of the tau-cascade hypothesis, a tau-driven AOP blueprint toward the adverse outcome of memory loss is proposed. Sequences of key events and plausible key event relationships, triggered by the bidirectional relationship between brain cholesterol and glucose dysmetabolism, and contributing to memory loss are captured. To portray how environmental factors may contribute to sAD progression, information on chemicals and drugs, that experimentally or epidemiologically associate with the risk of AD and mechanistically link to sAD progression, are mapped on this AOP. The evidence suggests that chemicals may accelerate disease progression by plugging into sAD relevant processes. The proposed AOP is a simplified framework of key events and plausible key event relationships representing one specific aspect of sAD pathology, and an attempt to portray chemical interference. Other sAD-related AOPs (e.g., Aβ-driven AOP) and a better understanding of the impact of aging and genetic polymorphism are needed to further expand our mechanistic understanding of early AD pathology and the potential impact of environmental and systemic risk factors.
Collapse
|
21
|
Howard CJ, Frost A. Ribosome-associated quality control and CAT tailing. Crit Rev Biochem Mol Biol 2021; 56:603-620. [PMID: 34233554 DOI: 10.1080/10409238.2021.1938507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translation is the set of mechanisms by which ribosomes decode genetic messages as they synthesize polypeptides of a defined amino acid sequence. While the ribosome has been honed by evolution for high-fidelity translation, errors are inevitable. Aberrant mRNAs, mRNA structure, defective ribosomes, interactions between nascent proteins and the ribosomal exit tunnel, and insufficient cellular resources, including low tRNA levels, can lead to functionally irreversible stalls. Life thus depends on quality control mechanisms that detect, disassemble and recycle stalled translation intermediates. Ribosome-associated Quality Control (RQC) recognizes aberrant ribosome states and targets their potentially toxic polypeptides for degradation. Here we review recent advances in our understanding of RQC in bacteria, fungi, and metazoans. We focus in particular on an unusual modification made to the nascent chain known as a "CAT tail", or Carboxy-terminal Alanine and Threonine tail, and the mechanisms by which ancient RQC proteins catalyze CAT-tail synthesis.
Collapse
Affiliation(s)
- Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
23
|
Li B, Xie PJ, Hao YW, Guo Y, Yu JR, Gong DY, Guo J, Zeng JH, Zhang Y. Yuan‑zhi‑san inhibits tau protein aggregation in an Aβ 1‑40‑induced Alzheimer's disease rat model via the ubiquitin‑proteasome system. Mol Med Rep 2021; 23:279. [PMID: 33604685 PMCID: PMC7893680 DOI: 10.3892/mmr.2021.11918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023] Open
Abstract
Yuan-zhi-san (YZS) is a classic type of Traditional Chinese Medicine, which has been reported to aid in the treatment of Alzheimer's disease (AD). The present study aimed to investigate the effects of YZS on tau protein aggregation, a hallmark of AD pathology, and its possible mechanisms. The results demonstrated that YZS improved learning and memory abilities, and decreased the severity of AD pathology in β-amyloid (Aβ1–40)-induced AD rats. Moreover, YZS administration inhibited the hyperphosphorylation of tau protein at Ser199 and Thr231 sites. Several vital enzymes in the ubiquitin-proteasome system (UPS), including ubiquitin-activating enzyme E1a/b, ubiquitin-conjugating enzyme E2a, carboxyl terminus of Hsc70-interacting protein, ubiquitin C-236 terminal hydrolase L1 and 26S proteasome, were all significantly downregulated in AD rats, which indicated an impaired enzymatic cascade in the UPS. In addition, it was identified that YZS treatment partly increased the expression levels of these enzymes in the brains of AD rats. In conclusion, the present results suggested that YZS could effectively suppress the hyperphosphorylation of tau proteins, which may be partially associated with its beneficial role in restoring functionality of the UPS.
Collapse
Affiliation(s)
- Bin Li
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Pei-Jun Xie
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Yan-Wei Hao
- Department of Chinese Internal Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Yu Guo
- Department of Chinese Internal Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Jun-Rong Yu
- Department of Chinese Internal Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Dao-Yin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Jing Guo
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Jin-Hao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Yi Zhang
- Department of Chinese Internal Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
24
|
Ramachandran AK, Das S, Joseph A, Gurupur Gautham S, Alex AT, Mudgal J. Neurodegenerative Pathways in Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:679-692. [PMID: 32851951 PMCID: PMC8573750 DOI: 10.2174/1570159x18666200807130637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/26/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that leads to insidious deterioration of brain functions and is considered the sixth leading cause of death in the world. Alzheimer's patients suffer from memory loss, cognitive deficit and behavioral changes; thus, they eventually follow a low-quality life. AD is considered as a multifactorial disorder involving different neuropathological mechanisms. Recent research has identified more than 20 pathological factors that are promoting disease progression. Three significant hypotheses are said to be the root cause of disease pathology, which include acetylcholine deficit, the formation of amyloid-beta senile plaques and tau protein hyperphosphorylation. Apart from these crucial factors, pathological factors such as apolipoprotein E (APOE), glycogen synthase kinase 3β, notch signaling pathway, Wnt signaling pathway, etc., are considered to play a role in the advancement of AD and therefore could be used as targets for drug discovery and development. As of today, there is no complete cure or effective disease altering therapies for AD. The current therapy is assuring only symptomatic relief from the disease, and progressive loss of efficacy for these symptomatic treatments warrants the discovery of newer drugs by exploring these novel drug targets. A comprehensive understanding of these therapeutic targets and their neuropathological role in AD is necessary to identify novel molecules for the treatment of AD rationally.
Collapse
Affiliation(s)
- Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Shenoy, Gurupur Gautham
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
25
|
Thadathil N, Delotterie DF, Xiao J, Hori R, McDonald MP, Khan MM. DNA Double-Strand Break Accumulation in Alzheimer's Disease: Evidence from Experimental Models and Postmortem Human Brains. Mol Neurobiol 2021; 58:118-131. [PMID: 32895786 DOI: 10.1007/s12035-020-02109-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for a majority of dementia cases. AD is characterized by progressive neuronal death associated with neuropathological lesions consisting of neurofibrillary tangles and senile plaques. While the pathogenesis of AD has been widely investigated, significant gaps in our knowledge remain about the cellular and molecular mechanisms promoting AD. Recent studies have highlighted the role of DNA damage, particularly DNA double-strand breaks (DSBs), in the progression of neuronal loss in a broad spectrum of neurodegenerative diseases. In the present study, we tested the hypothesis that accumulation of DNA DSB plays an important role in AD pathogenesis. To test our hypothesis, we examined DNA DSB expression and DNA repair function in the hippocampus of human AD and non-AD brains by immunohistochemistry, ELISA, and RT-qPCR. We observed increased DNA DSB accumulation and reduced DNA repair function in the hippocampus of AD brains compared to the non-AD control brains. Next, we found significantly increased levels of DNA DSB and altered levels of DNA repair proteins in the hippocampus of 5xFAD mice compared to non-transgenic mice. Interestingly, increased accumulation of DNA DSBs and altered DNA repair proteins were also observed in cellular models of AD. These findings provided compelling evidence that AD is associated with accumulation of DNA DSB and/or alteration in DSB repair proteins which may influence an important early part of the pathway toward neural damage and memory loss in AD.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - David F Delotterie
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - Roderick Hori
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael P McDonald
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
- Department of Anatomy & Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA.
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
26
|
Heese K. Gastrodia elata Blume (Tianma): Hope for Brain Aging and Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8870148. [PMID: 33424999 PMCID: PMC7781687 DOI: 10.1155/2020/8870148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Since aging-related diseases, including dementia, represent major public health threats to our society, physician-scientists must develop innovative, interdisciplinary strategies to open new avenues for development of alternative therapies. One such novel approach may lie in traditional Chinese medicine (TCM). Gastrodia elata Blume (G. elata, tianma) is a TCM frequently used for treatment of cerebrocardiovascular diseases (CCVDs). Recent studies of G. elata-based treatment modalities, which have investigated its pharmacologically relevant activity, potential efficacy, and safety, have employed G. elata in well-characterized, aging-related disease models, with a focus on models of aging-related dementia, such as Alzheimer's disease (AD). Here, I examine results from previous studies of G. elata, as well as related herbal preparations and pure natural products, as prophylaxis and remedies for aging-related CCVDs and dementia. Concluding, data suggest that tianma treatment may be used as a promising complementary therapy for AD.
Collapse
Affiliation(s)
- Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, Republic of Korea
| |
Collapse
|
27
|
Li Z, Rasmussen LJ. TIP60 in aging and neurodegeneration. Ageing Res Rev 2020; 64:101195. [PMID: 33091598 DOI: 10.1016/j.arr.2020.101195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic modification of chromatin, including histone methylation and acetylation, plays critical roles in eukaryotic cells and has a significant impact on chromatin structure/accessibility, gene regulation and, susceptibility to aging, neurodegenerative disease, cancer, and other age-related diseases. This article reviews the current advances on TIP60/KAT5, a major histone acetyltransferase with diverse functions in eukaryotes, with emphasis on its regulation of autophagy, proteasome-dependent protein turnover, RNA transcription, DNA repair, circadian rhythms, learning and memory, and other neurological functions implicated in aging and neurodegeneration. Moreover, the promising therapeutic potential of TIP60 is discussed to target Alzheimer's disease and other neurological diseases.
Collapse
|
28
|
Nawaz MS, Asghar R, Pervaiz N, Ali S, Hussain I, Xing P, Bao Y, Abbasi AA. Molecular evolutionary and structural analysis of human UCHL1 gene demonstrates the relevant role of intragenic epistasis in Parkinson's disease and other neurological disorders. BMC Evol Biol 2020; 20:130. [PMID: 33028204 PMCID: PMC7542113 DOI: 10.1186/s12862-020-01684-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/07/2020] [Indexed: 12/04/2022] Open
Abstract
Background Parkinson’s disease (PD) is the second most common neurodegenerative disorder. PD associated human UCHL1 (Ubiquitin C-terminal hydrolase L1) gene belongs to the family of deubiquitinases and is known to be highly expressed in neurons (1–2% in soluble form). Several functions of UCHL1 have been proposed including ubiquitin hydrolyze activity, ubiquitin ligase activity and stabilization of the mono-ubiquitin. Mutations in human UCHL1 gene have been associated with PD and other neurodegenerative disorders. The present study aims to decipher the sequence evolutionary pattern and structural dynamics of UCHL1. Furthermore, structural and interactional analysis of UCHL1 was performed to help elucidate the pathogenesis of PD. Results The phylogenetic tree topology suggests that the UCHL1 gene had originated in early gnathostome evolutionary history. Evolutionary rate analysis of orthologous sequences reveals strong purifying selection on UCHL1. Comparative structural analysis of UCHL1 pinpoints an important protein segment spanning amino acid residues 32 to 39 within secretion site with crucial implications in evolution and PD pathogenesis through a well known phenomenon called intragenic epistasis. Identified critical protein segment appears to play an indispensable role in protein stability, proper protein conformation as well as harboring critical interaction sites. Conclusions Conclusively, the critical protein segment of UCHL1 identified in the present study not only demonstrates the relevant role of intraprotein conformational epistasis in the pathophysiology of PD but also offers a novel therapeutic target for the disease.
Collapse
Affiliation(s)
- Muhammad Saqib Nawaz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Razia Asghar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nashaiman Pervaiz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irfan Hussain
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Peiqi Xing
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
29
|
Spatio-temporal correlates of gene expression and cortical morphology across lifespan and aging. Neuroimage 2020; 224:117426. [PMID: 33035668 DOI: 10.1016/j.neuroimage.2020.117426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/23/2022] Open
Abstract
Evidence from neuroimaging and genetic studies supports the concept that brain aging mirrors development. However, it is unclear whether mechanisms linking brain development and aging provide new insights to delay aging and potentially reverse it. This study determined biological mechanisms and phenotypic traits underpinning brain alterations across the lifespan and in aging by examining spatio-temporal correlations between gene expression and cortical volumes using datasets d with the age range from 2 to 82 years. We revealed that a large proportion of genes whose expression was associated with cortical volumes across the lifespan were in astrocytes. These genes, which showed up-regulation during development and down-regulation during aging, contributed to fundamental homeostatic functions of astrocytes. Included among these genes were those encoding components of cAMP, Ras, and retrograde endocannabinoid signaling pathways. Genes associated with cortical volumes in the same data aged above 55 years were also enriched for the sphingolipid, renin-angiotensin system (RAS), proteasome, and TGF-β signaling pathway, which is linked to senescence-associated secretory phenotypes. Neuroticism, drinking, and smoking were the common phenotypic traits in the lifespan and aging, while memory was the unique phenotype associated with aging. These findings provide biological mechanisms mirroring development and aging as well as unique to aging.
Collapse
|
30
|
Montes-Fernández MA, Pérez-Villegas EM, Garcia-Gonzalo FR, Pedrazza L, Rosa JL, de Toledo GA, Armengol JA. The HERC1 ubiquitin ligase regulates presynaptic membrane dynamics of central synapses. Sci Rep 2020; 10:12057. [PMID: 32694577 PMCID: PMC7374096 DOI: 10.1038/s41598-020-68970-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
HERC1 is a ubiquitin ligase protein, which, when mutated, induces several malformations and intellectual disability in humans. The animal model of HERC1 mutation is the mouse tambaleante characterized by: (1) overproduction of the protein; (2) cerebellar Purkinje cells death by autophagy; (3) dysregulation of autophagy in spinal cord motor neurons, and CA3 and neocortical pyramidal neurons; (4) impairment of associative learning, linked to altered spinogenesis and absence of LTP in the lateral amygdala; and, (5) motor impairment due to delayed action potential transmission, decrease synaptic transmission efficiency and altered myelination in the peripheral nervous system. To investigate the putative role of HERC1 in the presynaptic dynamics we have performed a series of experiments in cultured tambaleante hippocampal neurons by using transmission electron microscopy, FM1-43 destaining and immunocytochemistry. Our results show: (1) a decrease in the number of synaptic vesicles; (2) reduced active zones; (3) less clathrin immunoreactivity and less presynaptic endings over the hippocampal main dendritic trees; which contrast with (4) a greater number of endosomes and autophagosomes in the presynaptic endings of the tambaleante neurons relative to control ones. Altogether these results show an important role of HERC1 in the regulation of presynaptic membrane dynamics.
Collapse
Affiliation(s)
| | - Eva Mª Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | | | - Leonardo Pedrazza
- Department of Physiological Sciences, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, IDIBELL, University of Barcelona, Barcelona, Spain
| | | | - José A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| |
Collapse
|
31
|
Munari F, Barracchia CG, Parolini F, Tira R, Bubacco L, Assfalg M, D’Onofrio M. Semisynthetic Modification of Tau Protein with Di-Ubiquitin Chains for Aggregation Studies. Int J Mol Sci 2020; 21:ijms21124400. [PMID: 32575755 PMCID: PMC7352214 DOI: 10.3390/ijms21124400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/20/2023] Open
Abstract
Ubiquitin, a protein modifier that regulates diverse essential cellular processes, is also a component of the protein inclusions characteristic of many neurodegenerative disorders. In Alzheimer’s disease, the microtubule associated tau protein accumulates within damaged neurons in the form of cross-beta structured filaments. Both mono- and polyubiquitin were found linked to several lysine residues belonging to the region of tau protein that forms the structured core of the filaments. Thus, besides priming the substrate protein for proteasomal degradation, ubiquitin could also contribute to the assembly and stabilization of tau protein filaments. To advance our understanding of the impact of ubiquitination on tau protein aggregation and function, we applied disulfide-coupling chemistry to modify tau protein at position 353 with Lys48- or Lys63-linked di-ubiquitin, two representative polyubiquitin chains that differ in topology and structure. Aggregation kinetics experiments performed on these conjugates reveal that di-ubiquitination retards filament formation and perturbs the fibril elongation rate more than mono-ubiquitination. We further show that di-ubiquitination modulates tau-mediated microtubule assembly. The effects on tau protein aggregation and microtubule polymerization are essentially independent from polyubiquitin chain topology. Altogether, our findings provide novel insight into the consequences of ubiquitination on the functional activity and disease-related behavior of tau protein.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, 37128 Verona, Italy; (F.M.); (C.G.B.); (F.P.); (R.T.); (M.A.)
| | - Carlo Giorgio Barracchia
- Department of Biotechnology, University of Verona, 37128 Verona, Italy; (F.M.); (C.G.B.); (F.P.); (R.T.); (M.A.)
| | - Francesca Parolini
- Department of Biotechnology, University of Verona, 37128 Verona, Italy; (F.M.); (C.G.B.); (F.P.); (R.T.); (M.A.)
| | - Roberto Tira
- Department of Biotechnology, University of Verona, 37128 Verona, Italy; (F.M.); (C.G.B.); (F.P.); (R.T.); (M.A.)
| | - Luigi Bubacco
- Department of Biology, University of Padova, 35121 Padova, Italy;
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37128 Verona, Italy; (F.M.); (C.G.B.); (F.P.); (R.T.); (M.A.)
| | - Mariapina D’Onofrio
- Department of Biotechnology, University of Verona, 37128 Verona, Italy; (F.M.); (C.G.B.); (F.P.); (R.T.); (M.A.)
- Correspondence: ; Tel.: +39-045-802-7801
| |
Collapse
|
32
|
Mazmanian K, Sargsyan K, Lim C. How the Local Environment of Functional Sites Regulates Protein Function. J Am Chem Soc 2020; 142:9861-9871. [PMID: 32407086 DOI: 10.1021/jacs.0c02430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins form complex biological machineries whose functions in the cell are highly regulated at both the cellular and molecular levels. Cellular regulation of protein functions involves differential gene expressions, post-translation modifications, and signaling cascades. Molecular regulation, on the other hand, involves tuning an optimal local protein environment for the functional site. Precisely how a protein achieves such an optimal environment around a given functional site is not well understood. Herein, by surveying the literature, we first summarize the various reported strategies used by certain proteins to ensure their correct functioning. We then formulate three key physicochemical factors for regulating a protein's functional site, namely, (i) its immediate interactions, (ii) its solvent accessibility, and (iii) its conformational flexibility. We illustrate how these factors are applied to regulate the functions of free/metal-bound Cys and Zn sites in proteins.
Collapse
Affiliation(s)
- Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
33
|
Sharma S, Saini R, Sharma P, Saini A, Nehru B. Maintenance of Amyloid-beta Homeostasis by Carbenoxolone Post Aβ-42 Oligomer Injection in Rat Brain. Neuroscience 2020; 431:86-102. [DOI: 10.1016/j.neuroscience.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
|
34
|
Shen S, Kozikowski AP. A patent review of histone deacetylase 6 inhibitors in neurodegenerative diseases (2014-2019). Expert Opin Ther Pat 2020; 30:121-136. [PMID: 31865813 PMCID: PMC6950832 DOI: 10.1080/13543776.2019.1708901] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
Introduction: Histone deacetylase 6 (HDAC6) is unique in comparison with other zinc-dependent HDAC family members. An increasing amount of evidence from clinical and preclinical research demonstrates the potential of HDAC6 inhibition as an effective therapeutic approach for the treatment of cancer, autoimmune diseases, as well as neurological disorders. The recently disclosed crystal structures of HDAC6-ligand complexes offer further means for achieving pharmacophore refinement, thus further accelerating the pace of HDAC6 inhibitor discovery in the last few years.Area covered: This review summarizes the latest clinical status of HDAC6 inhibitors, discusses pharmacological applications of selective HDAC6 inhibitors in neurodegenerative diseases, and describes the patent applications dealing with HDAC6 inhibitors from 2014-2019 that have not been reported in research articles.Expert opinion: Phenylhydroxamate has proven a very useful scaffold in the discovery of potent and selective HDAC6 inhibitors. However, weaknesses of the hydroxamate function such as metabolic instability and mutagenic potential limit its application in the neurological field, where long-term administration is required. The recent invention of oxadiazole-based ligands by pharmaceutical companies may provide a new opportunity to optimize the druglike properties of HDAC6 inhibitors for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sida Shen
- Departments of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, United States
| | | |
Collapse
|
35
|
Mao Y, Fisher DW, Yang S, Keszycki RM, Dong H. Protein-protein interactions underlying the behavioral and psychological symptoms of dementia (BPSD) and Alzheimer's disease. PLoS One 2020; 15:e0226021. [PMID: 31951614 PMCID: PMC6968845 DOI: 10.1371/journal.pone.0226021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder currently affecting 45 million people worldwide, ranking as the 6th highest cause of death. Throughout the development and progression of AD, over 90% of patients display behavioral and psychological symptoms of dementia (BPSD), with some of these symptoms occurring before memory deficits and therefore serving as potential early predictors of AD-related cognitive decline. However, the biochemical links between AD and BPSD are not known. In this study, we explored the molecular interactions between AD and BPSD using protein-protein interaction (PPI) networks built from OMIM (Online Mendelian Inheritance in Man) genes that were related to AD and two distinct BPSD domains, the Affective Domain and the Hyperactivity, Impulsivity, Disinhibition, and Aggression (HIDA) Domain. Our results yielded 8 unique proteins for the Affective Domain (RHOA, GRB2, PIK3R1, HSPA4, HSP90AA1, GSK3beta, PRKCZ, and FYN), 5 unique proteins for the HIDA Domain (LRP1, EGFR, YWHAB, SUMO1, and EGR1), and 6 shared proteins between both BPSD domains (APP, UBC, ELAV1, YWHAZ, YWHAE, and SRC) and AD. These proteins might suggest specific targets and pathways that are involved in the pathogenesis of these BPSD domains in AD.
Collapse
Affiliation(s)
- Yimin Mao
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
- Applied Science Institute, Jiangxi University of Science and Technology, Jiangxi, China
| | - Daniel W. Fisher
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shuxing Yang
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
| | - Rachel M. Keszycki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
36
|
Rbfox-Splicing Factors Maintain Skeletal Muscle Mass by Regulating Calpain3 and Proteostasis. Cell Rep 2019; 24:197-208. [PMID: 29972780 DOI: 10.1016/j.celrep.2018.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/27/2017] [Accepted: 06/01/2018] [Indexed: 01/01/2023] Open
Abstract
Maintenance of skeletal muscle mass requires a dynamic balance between protein synthesis and tightly controlled protein degradation by the calpain, autophagy-lysosome, and ubiquitin-proteasome systems (proteostasis). Several sensing and gene-regulatory mechanisms act together to maintain this balance in response to changing conditions. Here, we show that deletion of the highly conserved Rbfox1 and Rbfox2 alternative splicing regulators in adult mouse skeletal muscle causes rapid, severe loss of muscle mass. Rbfox deletion did not cause a reduction in global protein synthesis, but it led to altered splicing of hundreds of gene transcripts, including capn3, which produced an active form of calpain3 protease. Rbfox knockout also led to a reduction in autophagy flux, likely producing a compensatory increase in general protein degradation by the proteasome. Our results indicate that the Rbfox-splicing factors are essential for the maintenance of skeletal muscle mass and proteostasis.
Collapse
|
37
|
Aivazidis S, Jain A, Rauniyar AK, Anderson CC, Marentette JO, Orlicky DJ, Fritz KS, Harris PS, Siegel D, Maclean KN, Roede JR. SNARE proteins rescue impaired autophagic flux in Down syndrome. PLoS One 2019; 14:e0223254. [PMID: 31714914 PMCID: PMC6850524 DOI: 10.1371/journal.pone.0223254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Down syndrome (DS) is a chromosomal disorder caused by trisomy of chromosome 21 (Ts21). Unbalanced karyotypes can lead to dysfunction of the proteostasis network (PN) and disrupted proteostasis is mechanistically associated with multiple DS comorbidities. Autophagy is a critical component of the PN that has not previously been investigated in DS. Based on our previous observations of PN disruption in DS, we investigated possible dysfunction of the autophagic machinery in human DS fibroblasts and other DS cell models. Following induction of autophagy by serum starvation, DS fibroblasts displayed impaired autophagic flux indicated by autophagolysosome accumulation and elevated p62, NBR1, and LC3-II abundance, compared to age- and sex-matched, euploid (CTL) fibroblasts. While lysosomal physiology was unaffected in both groups after serum starvation, we observed decreased basal abundance of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein Receptor (SNARE) family members syntaxin 17 (STX17) and Vesicle Associated Membrane Protein 8 (VAMP8) indicating that decreased autophagic flux in DS is due at least in part to a possible impairment of autophagosome-lysosome fusion. This conclusion was further supported by the observation that over-expression of either STX17 or VAMP8 in DS fibroblasts restored autophagic degradation and reversed p62 accumulation. Collectively, our results indicate that impaired autophagic clearance is a characteristic of DS cells that can be reversed by enhancement of SNARE protein expression and provides further evidence that PN disruption represents a candidate mechanism for multiple aspects of pathogenesis in DS and a possible future target for therapeutic intervention.
Collapse
Affiliation(s)
- Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Abhilasha Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Abhishek K. Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Colin C. Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - John O. Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Peter S. Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Kenneth N. Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
| | - James R. Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
38
|
Rösler TW, Costa M, Höglinger GU. Disease-modifying strategies in primary tauopathies. Neuropharmacology 2019; 167:107842. [PMID: 31704274 DOI: 10.1016/j.neuropharm.2019.107842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022]
Abstract
Tauopathies are neurodegenerative brain diseases that are characterized by the formation of intraneuronal inclusions containing the microtubule-associated protein tau. This major hallmark defines tau pathology which is predominant in primary tauopathies, while in secondary forms additional driving forces are involved. In the course of the disease, different brain areas degenerate and lead to severe defects of language, behavior and movement. Although neuropathologically heterogeneous, primary tauopathies share a common feature, which is the generation of abnormal tau species that aggregate and progress into filamentous deposits in neurons. Mechanisms that are involved in this disease-related process offer a broad range of targets for disease-modifying therapeutics. The present review provides an up-to-date overview of currently known targets in primary tauopathies and their possible therapeutic modulation. It is structured into four major targets, the post-translational modifications of tau and tau aggregation, protein homeostasis, disease propagation, and tau genetics. Chances, as well as obstacles in the development of effective therapies are highlighted. Some therapeutic strategies, e.g., passive or active immunization, have already reached clinical development, raising hopes for affected patients. Other concepts, e.g., distinct modulators of proteostasis, are at the ready to be developed into promising future therapies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Thomas W Rösler
- School of Medicine, Technical University of Munich, 81675, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Márcia Costa
- School of Medicine, Technical University of Munich, 81675, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Günter U Höglinger
- School of Medicine, Technical University of Munich, 81675, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany; Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
39
|
Amyloid β-Induced Upregulation of Na v1.6 Underlies Neuronal Hyperactivity in Tg2576 Alzheimer's Disease Mouse Model. Sci Rep 2019; 9:13592. [PMID: 31537873 PMCID: PMC6753212 DOI: 10.1038/s41598-019-50018-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Hyperexcitability and alterations in neuronal networks contribute to cognitive impairment in Alzheimer’s Disease (AD). Voltage-gated sodium channels (NaV), which are crucial for regulating neuronal excitability, have been implicated in AD-related hippocampal hyperactivity and higher incidence of spontaneous non-convulsive seizures. Here, we show by using primary hippocampal neurons exposed to amyloid-β1–42 (Aβ1–42) oligomers and from Tg2576 mouse embryos, that the selective upregulation of NaV1.6 subtype contributes to membrane depolarization and to the increase of spike frequency, thereby resulting in neuronal hyperexcitability. Interestingly, we also found that NaV1.6 overexpression is responsible for the aberrant neuronal activity observed in hippocampal slices from 3-month-old Tg2576 mice. These findings identify the NaV1.6 channels as a determinant of the hippocampal neuronal hyperexcitability induced by Aβ1–42 oligomers. The selective blockade of NaV1.6 overexpression and/or hyperactivity might therefore offer a new potential therapeutic approach to counteract early hippocampal hyperexcitability and subsequent cognitive deficits in the early stages of AD.
Collapse
|
40
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
41
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. The Major Human Stress Protein Hsp70 as a Factor of Protein Homeostasis and a Cytokine-Like Regulator. Mol Biol 2019. [DOI: 10.1134/s0026893319020055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Aivazidis S, Anderson CC, Roede JR. Toxicant-mediated redox control of proteostasis in neurodegeneration. CURRENT OPINION IN TOXICOLOGY 2019; 13:22-34. [PMID: 31602419 PMCID: PMC6785977 DOI: 10.1016/j.cotox.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Disruption in redox signaling and control of cellular processes has emerged as a key player in many pathologies including neurodegeneration. As protein aggregations are a common hallmark of several neuronal pathologies, a firm understanding of the interplay between redox signaling, oxidative and free radical stress, and proteinopathies is required to sort out the complex mechanisms in these diseases. Fortunately, models of toxicant-induced neurodegeneration can be utilized to evaluate and report mechanistic alterations in the proteostasis network (PN). The epidemiological links between environmental toxicants and neurological disease gives further credence into characterizing the toxicant-mediated PN disruptions observed in these conditions. Reviewed here are examples of mechanistic interaction between oxidative or free radical stress and PN alterations. Additionally, investigations into toxicant-mediated PN disruptions, specifically focusing on environmental metals and pesticides, are discussed. Finally, we emphasize the need to distinguish whether the presence of protein aggregations are contributory to phenotypes related to neurodegeneration, or if they are a byproduct of PN deficiencies.
Collapse
Affiliation(s)
- Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
43
|
Cai S, Yang H, Wen B, Zhu K, Zheng X, Huang J, Wang Y, Liu Z, Tu P. Inhibition by microbial metabolites of Chinese dark tea of age-related neurodegenerative disorders in senescence-accelerated mouse prone 8 (SAMP8) mice. Food Funct 2019; 9:5455-5462. [PMID: 30283947 DOI: 10.1039/c8fo01512k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dark tea has a significant effect on the prevention and treatment of age-related degenerative diseases. At present, further exploration of its functional mechanisms is delayed because of the complexity of post-fermentation microbial metabolites during the production phase. In this study, new isolated microbial metabolites extracted from dark tea were used to explore the neuroprotective effects, and they also helped allow further exploration of the mechanism of dark tea. Taking senescence-accelerated mouse prone 8 (SAMP8) mice as a biological model, we examined the protective effect on brain neurons of post-fermentation microbial metabolites which were extracted from dark tea. The 4-month-old mice were given treatments of the same concentration (10 mg kg-1 d-1) which were l-theanine, 3,3'-azanediylbis(4-hydroxybenzoic acid) (CDT-1) and one of the 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols (CDT-2) by gavage for 14 weeks. Relative measurements such as RT-PCR, ELISA, western blotting, and section staining (HE, Nissl and myelin) were carried out. The results showed that l-theanine, CDT-1 and CDT-2 could inhibit the decrease in body weight, and down-regulate the formation of 4-HNE and ubiquitinated protein aggregates and the Aβ metabolic pathway. They could also increase endogenous antioxidant capacity, relieve cell hypoxia, and reduce the rate of neuronal apoptosis. This means that their protective activity regarding SAMP8 neurons was excellent and the activity of CDT-2 was the most significant.
Collapse
Affiliation(s)
- Shuxian Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Autophagy and Ubiquitin-Proteasome System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:527-550. [DOI: 10.1007/978-981-15-0602-4_25] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Shen Q, Qiu Z, Wu W, Zheng J, Jia Z. Characterization of interaction and ubiquitination of phosphoenolpyruvate carboxykinase by E3 ligase UBR5. Biol Open 2018; 7:bio.037366. [PMID: 30552140 PMCID: PMC6310884 DOI: 10.1242/bio.037366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK1) is ubiquitinated by E3 ubiquitin ligase UBR5, which was thought to be facilitated by the acetylation of Lys70, Lys71 and Lys594 in PEPCK1. Here, we made a series of UBR5 HECT domain truncation variants and, through pull-down assay, showed that the N-terminal lobe of the UBR5 HECT domain is largely responsible for interacting with PEPCK1. We mutated all three lysine residues thought to be acetylated in PEPCK1 but were surprised to observe no loss of binding to UBR5 HECT domain. Furthermore, two PEPCK1 truncation variants (74-622 aa and 10-560 aa) lacking these lysine residues were still able to bind with UBR5 and ubiquitinated in HEK293T cells. To discover the ubiquitination site(s) of PEPCK1, which is currently unknown, the Lys residues of PEPCK1 were mutated to Ala and the ubiquitination level of the PEPCK1 mutants was assessed. Results revealed at least two ubiquitination sites (Lys243 and Lys342), which represent the first time that ubiquitination sites of PEPCK1 have been identified. Our pull-down experiments further show that the lack of ubiquitination of PEPCK1 Lys243Ala and Lys342Ala mutants is not due to their binding to UBR5, which remained unchanged. Taken together, our work has provided new insights into UBR5 mediated ubiquitination of PEPCK1. Summary: Identification of the recruit function of the N-terminal lobe of the UBR5 HECT domain and ubiquitination site(s) of PEPCK1.
Collapse
Affiliation(s)
- Qingya Shen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenping Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zongchao Jia
- Department of Biochemical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
46
|
Specific Modification of Aged Proteasomes Revealed by Tag-Exchangeable Knock-In Mice. Mol Cell Biol 2018; 39:MCB.00426-18. [PMID: 30348842 DOI: 10.1128/mcb.00426-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/10/2018] [Indexed: 01/02/2023] Open
Abstract
The proteasome is the proteolytic machinery at the center of regulated intracellular protein degradation and participates in various cellular processes. Maintaining the quality of the proteasome is therefore important for proper cell function. It is unclear, however, how proteasomes change over time and how aged proteasomes are disposed. Here, we show that the proteasome undergoes specific biochemical alterations as it ages. We generated Rpn11-Flag/enhanced green fluorescent protein (EGFP) tag-exchangeable knock-in mice and established a method for selective purification of old proteasomes in terms of their molecular age at the time after synthesis. The half-life of proteasomes in mouse embryonic fibroblasts isolated from these knock-in mice was about 16 h. Using this tool, we found increased association of Txnl1, Usp14, and actin with the proteasome and specific phosphorylation of Rpn3 at Ser 6 in 3-day-old proteasomes. We also identified CSNK2A2 encoding the catalytic α' subunit of casein kinase II (CK2α') as a responsible gene that regulates the phosphorylation and turnover of old proteasomes. These findings will provide a basis for understanding the mechanism of molecular aging of the proteasome.
Collapse
|
47
|
Corpas R, Griñán-Ferré C, Palomera-Ávalos V, Porquet D, García de Frutos P, Franciscato Cozzolino SM, Rodríguez-Farré E, Pallàs M, Sanfeliu C, Cardoso BR. Melatonin induces mechanisms of brain resilience against neurodegeneration. J Pineal Res 2018; 65:e12515. [PMID: 29907977 DOI: 10.1111/jpi.12515] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is an endogenous pleiotropic molecule which orchestrates regulatory functions and protective capacity against age-related ailments. The increase in circulating levels of melatonin through dietary supplements intensifies its health benefits. Investigations in animal models have shown that melatonin protects against Alzheimer's disease (AD)-like pathology, although clinical studies have not been conclusive. We hypothesized that melatonin induces changes in the brain that prevent or attenuate AD by increasing resilience. Therefore, we treated healthy nontransgenic (NoTg) and AD transgenic (3xTg-AD) 6-month-old mice with a daily dose of 10 mg/kg of melatonin until 12 months of age. As expected, melatonin reversed cognitive impairment and dementia-associated behaviors of anxiety and apathy and reduced amyloid and tau burden in 3xTg-AD mice. Remarkably, melatonin induced cognitive enhancement and higher wellness level-related behavior in NoTg mice. At the mechanism level, NF-κB and proinflammatory cytokine expressions were decreased in both NoTg and 3xTg-AD mice. The SIRT1 pathway of longevity and neuroprotection was also activated in both mouse strains after melatonin dosing. Furthermore, we explored new mechanisms and pathways not previously associated with melatonin treatment such as the ubiquitin-proteasome proteolytic system and the recently proposed neuroprotective Gas6/TAM pathway. The upregulation of proteasome activity and the modulation of Gas6 and its receptors by melatonin were similarly displayed by both NoTg and 3xTg-AD mice. Therefore, these results confirm the potential of melatonin treatment against AD pathology, by way of opening new pathways in its mechanisms of action, and demonstrating that melatonin induces cognitive enhancement and brain resilience against neurodegenerative processes.
Collapse
Affiliation(s)
- Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC and IDIBAPS, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Christian Griñán-Ferré
- Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona and CIBERNED, Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona and CIBERNED, Barcelona, Spain
| | - David Porquet
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC and IDIBAPS, Barcelona, Spain
| | - Pablo García de Frutos
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC and IDIBAPS, Barcelona, Spain
| | - Silvia M Franciscato Cozzolino
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduard Rodríguez-Farré
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC and IDIBAPS, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mercè Pallàs
- Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona and CIBERNED, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC and IDIBAPS, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Bárbara R Cardoso
- Institute for Physical Activity and Nutrition Research (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Vic., Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Vic., Australia
| |
Collapse
|
48
|
Smith DM. Could a Common Mechanism of Protein Degradation Impairment Underlie Many Neurodegenerative Diseases? J Exp Neurosci 2018; 12:1179069518794675. [PMID: 30147359 PMCID: PMC6102758 DOI: 10.1177/1179069518794675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
At the cellular level, many neurodegenerative diseases (NDs), often considered proteinopathies, are characterized by the accumulation of misfolded and damaged proteins into large insoluble aggregates. Prominent species that accumulate early and play fundamental roles in disease pathogenesis are amyloid β (Aβ) and tau in Alzheimer disease, α-synuclein (α-syn) in Parkinson disease, and polyQ-expanded huntingtin (Htt) in Huntington disease. Although significant efforts have focused on how the cell deals with these protein aggregates, why is it that these misfolded proteins are not degraded normally in the first place? A vast body of literature supports the notion that the cell's protein degradation system for individual proteins-the ubiquitin proteasome system (UPS)-does not function sufficiently in many NDs. The proteasome itself has received significant focus for years due to its obvious failure to degrade misfolded proteins in ND, but no general mechanism has been uncovered. We have recently found that specific pathologically relevant oligomers can potently and directly inhibit the proteasome. What is most interesting is that the misfolded protein's primary amino acid sequence was irrelevant to its ability to inhibit. Instead, the culprit is the 3-dimensional shape of the misfolded oligomers. It turns out that many misfolded proteins in ND can take on this proteasome-impairing shape suggesting that there could be a common mechanism for UPS impairment in many NDs. The proteasome is already an important target for treating cancer, could it also be targeted to broadly treat ND?
Collapse
Affiliation(s)
- David M Smith
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
49
|
Lee HY, Fan SJ, Huang FI, Chao HY, Hsu KC, Lin TE, Yeh TK, Lai MJ, Li YH, Huang HL, Yang CR, Liou JP. 5-Aroylindoles Act as Selective Histone Deacetylase 6 Inhibitors Ameliorating Alzheimer's Disease Phenotypes. J Med Chem 2018; 61:7087-7102. [PMID: 30028616 DOI: 10.1021/acs.jmedchem.8b00151] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This paper reports the development of a series of 5-aroylindolyl-substituted hydroxamic acids. N-Hydroxy-4-((5-(4-methoxybenzoyl)-1 H-indol-1-yl)methyl)benzamide (6) has potent inhibitory selectivity against histone deacetylase 6 (HDAC6) with an IC50 value of 3.92 nM. It decreases not only the level of phosphorylation of tau proteins but also the aggregation of tau proteins. Compound 6 also shows neuroprotective activity by triggering ubiquitination. In animal models, compound 6 is able to ameliorate the impaired learning and memory, and it crosses the blood-brain barrier after oral administration. Compound 6 can be developed as a potential treatment for Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Sheng-Jun Fan
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 10607 , Taiwan
| | - Fang-I Huang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 10607 , Taiwan
| | - Hsin-Yi Chao
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology , Taipei Medical University , Taipei 11031 , Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology , Taipei Medical University , Taipei 11031 , Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Zhunan Town , Miaoli County 35053 , Taiwan
| | - Mei-Jung Lai
- Research Center of Cancer Translational Medicine , Taipei Medical University , Taipei 11031 , Taiwan
| | - Yu-Hsuan Li
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Hsiang-Ling Huang
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 10607 , Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| |
Collapse
|
50
|
Roe MS, Wahab B, Török Z, Horváth I, Vigh L, Prodromou C. Dihydropyridines Allosterically Modulate Hsp90 Providing a Novel Mechanism for Heat Shock Protein Co-induction and Neuroprotection. Front Mol Biosci 2018; 5:51. [PMID: 29930942 PMCID: PMC6000670 DOI: 10.3389/fmolb.2018.00051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Chaperones play a pivotal role in protein homeostasis, but with age their ability to clear aggregated and damaged protein from cells declines. Tau pathology is a driver of a variety of neurodegenerative disease and in Alzheimer's disease (AD) it appears to be precipitated by the formation of amyloid-β (Aβ) aggregates. Aβ-peptide appears to trigger Tau hyperphosphorylation, formation of neurofibrillary tangles and neurotoxicity. Recently, dihydropyridine derivatives were shown to upregulate the heat shock response (HSR) and provide a neuroprotective effect in an APPxPS1 AD mouse model. The HSR response was only seen in diseased cells and consequently these compounds were defined as co-inducers since they upregulate chaperones and co-chaperones only when a pathological state is present. We show for compounds tested herein, that they target predominantly the C-terminal domain of Hsp90, but show some requirement for its middle-domain, and that binding stimulates the chaperones ATPase activity. We identify the site for LA1011 binding and confirm its identification by mutagenesis. We conclude, that binding compromises Hsp90's ability to chaperone, by modulating its ATPase activity, which consequently induces the HSR in diseased cells. Collectively, this represents the mechanism by which the normalization of neurofibrillary tangles, preservation of neurons, reduced tau pathology, reduced amyloid plaque, and increased dendritic spine density in the APPxPS1 Alzheimer's mouse model is initiated. Such dihydropyridine derivatives therefore represent potential pharmaceutical candidates for the therapy of neurodegenerative disease, such as AD.
Collapse
Affiliation(s)
- Mark S Roe
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Ben Wahab
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | | |
Collapse
|